
RESEARCH PAPER

Identification and validation of a five-lncRNA signature for predicting survival 
with targeted drug candidates in ovarian cancer
Nuan Lina,b,c,d, Jia-zhe Line, Yoshiaki Tanakaf, Pingnan Sunb,c,d, and Xiaoling Zhoub,c,d

aObstetrics & Gynecology Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of 
China; bStem Cell Research Center, Shantou University Medical College, Shantou, People’s Republic of China; cThe Center for Reproductive 
Medicine, Shantou University Medical College, Shantou, People’s Republic of China; dGuangdong Provincial Key Laboratory of Infectious 
Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People’s Republic of China; eNeurosurgical 
Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, People’s Republic of China; fDepartment of 
Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA

ABSTRACT
The dysregulation of long non-coding RNAs (lncRNAs) plays a crucial role in ovarian cancer (OC). 
In this study, we screened out five differentially expressed lncRNAs (AC092718.4, AC138035.1, 
BMPR1B-DT, RNF157-AS1, and TPT1-AS1) between OC and normal ovarian based on TCGA and 
GTEx RNA-seq databases by using Kaplan–Meier analysis and univariate Cox, LASSO, and multi-
variate Cox regression. Then, a risk signature was constructed, with 1, 3, 5-year survival prediction 
accuracy confirmed by ROC curves, and an online survival calculator for easier clinical use. With 
lncRNA-microRNA-mRNA regulatory networks established, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses were performed, suggesting the involve-
ment of a variety of cancer-related functions and pathways. Finally, five candidate small-molecule 
drugs (thioridazine, trifluoperazine, loperamide, LY294002, and puromycin) were predicted by 
Connectivity Map. In conclusion, we identified a 5-lncRNA signature of prognostic value with its 
ceRNA networks, and five candidate drugs against OC.
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1. Introduction

Ovarian cancer (OC) represents the seventh most 
common cancer among women in the world and 
is the most lethal gynecological malignancy with 
a 5-year survival of 46% [1]. Current first-line 
treatment for OC patients involves primary 
debulking surgery (PDS) for all International 
Federation of Gynecology and Obstetrics 
(FIGO) stages, followed by combination che-
motherapy, usually carboplatin and paclitaxel in 
advanced-stage OC [1,2]. Unfortunately, the effi-
cacy of these treatments is limited, and the prog-
nosis of OC patients is still poor, with a 5-year 
survival of only 20–40% for stage III or IV cancer 
patients who received surgery and chemotherapy 
[3]. A majority of patients either undergo relapse 
or succumb to the disease due to chemotherapy 
resistance [3,4], which is attributed to a wide 
range of metabolic or structural properties within 
tumor cells, such as multidrug resistance pro-
teins, mismatch repair processes, and alterations 
in the p53 pathway [5]. In addition, about 75% of 
patients are diagnosed at an advanced stage 
because of the asymptomatic nature of OC [1]. 
Thus, we explored novel molecular biomarkers 
for diagnosis, prognosis, and targeted therapy 
for OC.

Advances in sequencing technologies have led 
to the discovery of non-coding RNAs, which are 
key regulators of physiological activities and 
pathological processes, particularly in cancer [6]. 
Long non-coding RNAs (lncRNAs) are widely 
expressed and can ultimately affect gene expres-
sion in diverse biological and physiopathological 
contexts by functioning as competing endogen-
ous RNAs (ceRNAs) [7]. CeRNAs, also known 
as miRNA ‘decoy’ or miRNA‘sponges’, are RNA 
transcripts that compete for the binding to 
miRNA via base pairing with miRNA recogni-
tion/response elements (MREs), resulting in sub-
sequent reduction of the amount of available 
miRNAs to target messenger RNAs (mRNAs) 
[8,9]. Since human diseases are driven by com-
plex interactions among a variety of molecular 
mediators rather than being caused by single 
molecular defect, ceRNA networks hold the 
promise of uncovering the causes and 

revolutionizing the diagnosis and treatments of 
human diseases [10]. For instance, lncRNA PVT1 
plays an important role in human breast cancer 
by dysregulating the ceRNA-ceRNA network 
[11]. LncRNA-mediated ceRNA networks are 
involved in colorectal cancer initiation, progres-
sion, and metastasis [12]. Zhao et al. showed that 
a lncRNA SNHG5/miR-32 axis plays an impor-
tant role in the proliferation and migration of 
gastric cancer by targeting KLF4 [13].

Therefore, we hypothesized that some 
lncRNAs can serve as critical biomarkers as well 
as therapeutic targets for OC. Hence, in this 
study, we aimed to develop a prognostic 
lncRNA signature with predicted candidate 
drugs for OC. We first identified and validated 
five differentially expressed lncRNAs 
(DElncRNA) for the development of a risk sig-
nature for OC patient survival. CeRNA regula-
tory networks were further established, as well as 
the relevant biological functions and pathways 
identified and candidate drugs predicted based 
on the prognostic signature. Finally, an online 
survival calculator was established to facilitate 
clinical practitioners.

2. Materials and methods

2.1. Data set extraction and processing

Functional genomic data sets were downloaded from 
UCSC Xena, the RNA sequencing profiles, clinical 
information, and survival data from serous OC (data-
set ID: TCGA-OV.htseq_fpkm) and data for normal 
ovarian tissues (dataset ID: dataset ID: 
gtex_RSEM_gene_fpkm) were extracted from The 
Cancer Genome Atlas (TCGA) and Genotype- 
Tissue Expression (GTEx), respectively. The gene 
symbols were re-annotated using Ensembl (https:// 
uswest.ensembl.org/index.html) to select lncRNAs 
[14], expressions of which come from 88 normal 
ovarian samples and 379 OC samples and were pre-
sented by log2 (fpkm+1). Then, ‘limma’ package (ver-
sion 3.42.0) [15] was used to combine the two sets of 
lncRNAs into one with normalization. In total, 467 
samples concerning 14,087 lncRNAs were filtered out, 
followed by removal of those genes with 0 expression.
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2.2. DElncRNA identification

Using ‘stats’ package, version 3.6.2 [16], principal 
component analysis (PCA) was performed to 
assess lncRNA expression distribution between 
OC and normal ovarian tissue. Using R language 
(limma package, R version 3.6.2), DElncRNAs 
between OC and normal ovarian tissue were deter-
mined according to the criteria set as | log2 (fold- 
change) | ≥ 2 and false discovery rate (FDR) 
< 0.05.

2.3. Prognostic lncRNA signature generation

Six OC samples were excluded due to the lack of 
survival data and clinical information. Running 
the ‘caret’ package, version 6.0–85 [17], the 
DElncRNA profile was then randomly divided 
into a training cohort (n = 188) and a validation 
cohort (n = 185) according to the criteria that age, 
FIGO stage, and histological grade between the 
two groups were similar.

Data was divided into two groups, training 
cohort, where a survival analysis model was estab-
lished by running ‘survival’ package (version 3.1– 
8) [18] and a separate validation cohort for model 
testing. First, the training cohort was used to per-
form analysis step by step as follows: 1. Kaplan– 
Meier (KM) method was used to assess the survi-
val differences between the low and high expres-
sion groups of lncRNA. 2. Application of 
univariate Cox proportional hazards regression 
models to evaluate the association between 
DElncRNA expressions and overall survival (OS) 
where P-value < 0.05 was considered statistically 
significant. 3. Least absolute shrinkage and selec-
tion operator (LASSO) regression was performed 
to filter out the DElncRNAs according to the best 
value of lambda, thus eliminating overfitting of the 
model. 4. Multivariate Cox proportional hazards 
regression analysis was used to further select 
lncRNAs by a ‘step’ function, with results visua-
lized as a forest plot. Finally, a prognostic predic-
tion model including five DElncRNAs was 
constructed based on the regression coefficient- 
weighted lncRNA expression. We took the prog-
nostic index as the risk score and a risk score 
formula, which has been well established in the 
literature [19], was generated as follows:

Riskscore ¼
Xn

i¼1
Expi � Coei 

In the formula, N, Expi, and Coei represent the 
number of selected lncRNAs, expression of each 
lnc, and the multivariate Cox regression coeffi-
cient, respectively. A nomogram was constructed 
based on the lncRNA expression for predicting 
the survival of OC patients. We then extracted 
each corresponding lncRNA expression in the 
training cohort and substituted into the model, 
thereby generating every patient’s risk score, the 
median of which divided patients into low- and 
high-risk prognostic groups. Based on this, the 
receiver operating characteristic (ROC) curve 
(‘survivalROC’ packages, version 1.0.3) was used 
to assess the efficacies of the nomogram. 
Repetition was done in the validation cohort. 
Using DEnorm package (version 5.0.1), a free 
online calculator for the final nomogram was 
established and published in https://www.shi 
nyapps.io/, in order to facilitate clinical use.

2.4. Construction of the lncRNA-miRNA-mRNA 
regulatory network

MiRNAs that potentially bind to lncRNAs were 
generated using DIANA tools [20]. Predictions of 
miRNA-targeting genes were made using three 
datasets, including miRDB [21], miRTarBase 
[22], and TargetScan [23]. Pearson analysis 
was performed to calculate the expression corre-
lation between lncRNAs and miRNA-targeting 
genes. Target genes with | r | ≥ 0.3 were selected 
and Cytoscape (version 3.7.2) was used to con-
struct the lncRNA-miRNA-mRNA regulatory 
networks.

2.5. Functional annotations and signaling 
pathway enrichment analysis

Gene Oncology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis of 
the risk signature were performed to analyze the 
target genes via the Metascape website [24]. GO 
results and KEGG pathways with FDR < 0.05 were 
selected and shown in charts.
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2.6. Identification of candidate small molecule 
drugs

Connectivity Map (CMap) (version build 02) is 
a database exploring connections among small 
molecules and genes [25]. With its usage, candi-
date small-molecule drugs OC were predicted 
based on the rationale of targeting the ceRNA 
networks. The enrichment scores (ranging from 
−1 to 1) representing similarity were measured 
and drugs with negative connectivity were consid-
ered as potential therapeutics. To select drugs that 
are more likely to be effective, we set the enrich-
ment scores < −0.85 and p-value < 0.001 as selec-
tion criteria. Tomographs of the candidate drugs 
were queried in the PubChem database.

2.7. Statistical analysis

All statistical tests were conducted using 
R programming language. Quantitative data are 
presented as the mean ± standard deviation. 
Statistical differences between the two groups 
were examined using the Wilcoxon test. P-value 
< 0.05 was considered statistically significant.

3. Results

In this study, we developed a prognostic model by 
using DElncRNAs to predict the survival of OC. 
Afterward, we established ceRNA regulatory net-
works for biological function, pathway exploration 
in addition to candidate drugs prediction. The 
results were as follows:

3.1. Identification of five prognostic DElncRNAs

A total of 14,087 lncRNAs were included in this 
study. To reduce the dimensionality, PCA was 
performed to increase the interpretability while 
minimizing the information loss at the same 
time. As a result, the distribution of the lncRNAs 
between OC and normal ovarian samples was 
clearly shown (Figure 1a). To reflect the distinct 
characteristics of OC and normal ovarian tissue, 
158 DElncRNAs between these two datasets were 
selected for further study (Figure 1b, 1c). Each 
lncRNA with median expression levels in OC and 
normal ovarian tissues was shown (Figure 1d). OC 
patients in the TCGA dataset with detailed clinical 
information (age, clinical stage, histologic grade, 
survival time, and status) were enrolled and 

Figure 1. Identification of differentially expressed lncRNAs (DElncRNAs) for constructing the risk signature for OC. (a) Principal 
components analysis of lncRNAs between OC and normal ovarian tissue. (b) Volcano plot shows the distribution of DElncRNAs. Red 
and green dots represent the up-regulated and down-regulated DElncRNAs with | log2(fold-change) | ≥ 2, respectively (c) Heatmap 
exhibits the expression levels of the DElncRNAs. (d) Boxplot shows the detail of DElncRNAs. Red and green boxes indicate the lncRNA 
expression in OC and in normal ovarian tissue, respectively.
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randomly divided into a training cohort (n = 188) 
and a validation cohort (n = 185) (Table S1). To 
confirm the prognostic value of these DElncRNAs, 
we performed a KM analysis in the training cohort 
and 15 potential prognostic DElncRNAs were 
screened out (Table S2), followed by the identifi-
cation of 7 DElncRNAs that were correlated with 
OC prognosis (Table S3). To select appropriate 
parameters for constructing a risk signature, 
LASSO regression was used, six DElncRNAs were 
identified (AC011603.2, AC092718.4, AC138035.1, 
BMPR1B-DT, RNF157-AS1, and TPT1-AS1) 
(Figure 2a, b). Eventually, there were only five 
DElncRNAs (AC092718.4, AC138035.1, BMPR1B- 
DT, RNF157-AS1, and TPT1-AS1) left following 

multivariate Cox regression analysis. BMPR1B- 
DT, AC092718.4, and RNF157-AS1 were regarded 
as protective factors (HR < 1), while AC138035.1 
and TPT1-AS1 were defined as risk factors (HR 
> 1) in OC (Figure 2c).

As shown in Figure 2d-H, higher levels of 
AC138035.1 or TPT1-AS1 exhibited poorer prog-
nosis compared to those in the lower expression 
group. On the contrary, patients with higher 
expression of BMPR1B-DT, AC092718.4, and 
RNF157-AS1 had relatively favorable prognosis. 
Based on both univariate and multivariate Cox 
regression analysis, five DElncRNAs, as prognos-
tic biomarkers, were suggested for further 
analysis.

Figure 2. Differentially expressed lncRNA (DElncRNAs) for risk signature construction. (a) Log (Lambda) value of the 7 lncRNAs in the 
least absolute shrinkage and selection operator (LASSO) regression. (b) The most appropriate log (Lambda) value in the LASSO 
model. (c) Multivariate Cox regression analysis was performed and 5 lncRNAs (AC092718.4, AC138035.1, BMPR1B-DT, RNF157-AS1, and 
TPT1-AS1) were selected to construct the risk signature. (d-h) Kaplan–Meier analysis showed overall survival differences between 
low-risk and high-risk groups in AC092718.4, AC138035.1, BMPR1B-DT, RNF157-AS1, and TPT1-AS1, respectively.
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3.2. Establishment of an OC prognostic risk 
signature using the five lncRNAs

The risk score of each patient in the training 
cohort, calculated using the formula mentioned 
in the Materials and Methods 2.3, is as follows: 
risk score = (−0.2735 × expression level of 
AC092718.4) + (0.8891 × expression level of 
AC138035.1) + (−0.1682 × expression level of 
BMPR1B-DT) + (−0.1957 × expression level of 
RNF157-AS1) + (0.5509 × expression level of 
TPT1-AS1). Accordingly, patients were then 
divided into low – and high-risk groups based on 
the median risk score. As shown in Figure 3a, 
more deaths were seen with risk score rising. 
Interestingly, with the increasing in risk score, 
the expression levels of BMPR1B-DT, 
AC092718.4, and RNF157-AS1 were decreased, 
whereas levels of AC138035.1 and TPT1-AS1 
were upregulated. As the KM curve suggested, 

high-risk group tended to develop poorer prog-
noses (Figure 3b). The ROC curve used to assess 
the efficacy of survival prediction in OC patients 
showed that the areas under curve (AUC) for the 
1-, 3-, and 5-year survivals were 0.674, 0.685, and 
0.737, respectively (Figure 3c-e), indicating good 
predictive efficacy of the risk signature.

3.3. Validation of the five-lncRNA risk signature

In accordance with the results in the training 
cohort, down-regulation of BMPR1B-DT, 
AC092718.4, and RNF157-AS1, and up-regulation 
of the other two lncRNAs in the validation cohort 
corresponded to an increase in number of deaths, 
as reflected by increased risk scores (Figure 4a). 
KM curves also showed that the high-risk group 
had poorer prognoses (Figure 4b). AUCs for 1-, 3-, 
and 5-year survival were 0.612, 0.558, and 0.564, 

Figure 3. Characteristics of the five-lncRNA risk signature in the training cohort. (a) LncRNA expression profiles, risk score 
distributions and patient survival in the training cohort. (b) Survival curves for high-risk and low-risk groups decided by the risk 
signature in the training cohort. (c-e) ROC of the five-lncRNA risk signature in predicting the 1-, 3-, and 5-year survival in the training 
cohort.
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respectively (Figure 4c-e), thus confirming the 
good efficacy for survival prediction.

3.4. Construction of a nomogram based on the 
risk signature

To confirm the prognostic value of the risk sig-
nature, univariate and multivariate Cox regres-
sion analyses were conducted in the training 
cohort. It was observed that the risk signature 
of the five lncRNAs was independently associated 
with overall survival of OC (Figure S1A, S1B). 
Considering the potential clinical relevance, the 
prognostic values of age, histological grade, and 
FIGO stage were also evaluated. However, among 
these OC samples, factors such as age, clinical 
stage, and histologic grade were of no survival- 
prognostic value since their p-values were larger 
than 0.05. Thus, a nomogram was constructed 

using only the five lncRNAs. As the nomogram 
showed, the 1-, 3-, and 5-year survival incidences 
could quickly be determined according to the 
total points, by summing the points in each 
item (Figure S1C). An online software for the 
survival nomogram was utilized for easier clinical 
use by DEnorm package: https://linnuanqq.shi 
n y a p p s . i o / d y n n o m a p p 2 / ? _ g a = 2 . 1 2 0 8 4 9 7 .  
1499237141.1594603552-159983587.1588641469.

3.5. LncRNA-miRNA-mRNA regulatory networks

LncRNAs can regulate gene expression by func-
tioning as miRNA sponges and rescuing miRNA- 
targeted genes via ceRNA networks [26]. MiRNAs 
that could potentially bind to the five lncRNAs 
were identified and listed in Table S4. The pre-
dicted mRNAs that were common in at least two 
of the databases used (miRDB, miRTarBase, and 

Figure 4. Evaluating the efficacy of the five-lncRNA risk signature in the validation cohort. (a) LncRNA expression profiles, risk score 
distributions and patient survival in the validation cohort. (b) Survival curves for high-risk and low-risk groups decided by the risk 
signature in the validation cohort. (c-e) ROC of the five-lncRNA risk signature in predicting the 1-, 3-, and 5-year survival in the 
validation cohort.
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TargetScan) and those with | r | ≥ 0.3 were selected 
as potential target genes, listed in Table S5. Finally, 
lncRNA-miRNA-mRNA regulatory networks were 
established based on 5 lncRNAs, 531 miRNAs, and 
1639 mRNAs. However, due to the huge number 
of genes in the network, only mRNAs with | r | ≥ 
0.4 were visualized by Cytoscape (Figure 5a).

3.6. Functional annotations and signaling 
pathway enrichments

To further investigate the functions of the prognostic 
signature, the biological processes and pathways, 
based on the constructed ceRNA networks, were 
explored. The signature was closely related to 

cancer-associated biological processes, such as chro-
matin binding, covalent chromatin modification, 
and regulation of cell cycle process (Figure 5b, 
p-value < 0.05). Similarly, several KEGG pathways 
including cell cycle, DNA damage-induced cell cycle 
checkpoints, the mTOR signaling pathway, and the 
ovarian-specific BRCA1-associated genome surveil-
lance complex (BASC) were identified (Figure 5c, 
p-value < 0.05). Taken together, these results suggest 
that the risk signature is correlated with the behavior 
of OC.

3.7. Five candidate small molecule drugs

A total of 1639 genes from the regulatory networks 
were analyzed in CMap, and five candidate small 

Figure 5. Construction of lncRNA-miRNA-mRNA regulatory networks with functional annotations and signaling pathways. (a) 
LncRNAs as well as their potential binding miRNAs and target genes with | r | ≥ 0.4 related to the five lncRNAs were used to 
construct the lncRNA-miRNA-mRNA regulatory networks. However, due to the huge number of genes in the networks, only mRNAs 
with | r | ≥ 0.4 are visualized here. Blue hexagons represent lncRNAs, which are located at the cores of the networks. Red ellipses and 
green triangles stand for miRNAs and mRNAs, respectively. Gene oncology (b) and KEGG pathway (c) analyses were performed based 
on the target genes of the networks via Metascape.
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molecules with potential therapeutic value were 
predicted (Table 1). Thioridazine, trifluoperazine, 
loperamide, LY294002, and puromycin were all 
negatively correlated with the upregulated genes, 
and their tomographies were shown (Figure S2).

4. Discussion

The prognosis of OC remains poor, and there are 
few effective prognostic biomarkers or models for 
improving the clinical outcomes of OC patients. In 
the present study, we identify five key lncRNAs 
(TPT1-AS1, RNF157-AS1, BMPR1B-DT, AC0927 
18.4, and AC138035.1) with a constructed risk 
signature for predicting survival of OC.

TPT1-AS1 (TPT1 antisense RNA 1) is located on 
chromosome 13 and has been reported to promote 
proliferation and metastasis in a variety of cancers 
[27,28]. Interestingly, our finding of TPT1-AS1 as 
a potential therapeutic target for OC is corrobo-
rated by the study of Wu et al., who recently 
showed that TPT1-AS1 induces OC tumor growth 
and metastasis [29]. Limited research on RNF157- 
AS1 (RNF157 antisense RNA 1) has been published 
so far, with only a microarray analysis suggesting 
its up-regulation in OC, followed by quantitative 
real-time PCR validation [30]. In addition to this 
previous finding, our results also suggest that 
RNF157-AS1 is a positive predictor for survival of 
OC patients. BMPR1B-DT is a divergent transcript 
of its neighboring protein-coding gene BMPR1B 
(ALK6). However, the role of BMPR1B-DT has not 
been elaborated. Transcription of the most diver-
gent lncRNAs makes the adjacent gene locus more 
accessible or alternatively, inaccessible by compet-
ing for mRNA gene promoters [31,32]. Expression 
of BMPR1B is highest in adult ovaries, and is the 

major gene identified for reproductive traits 
including folliculogenesis. While it was reported 
that OC patients with BMPR1B expression have 
an unfavorable prognosis [33], our results indicate 
that the lncRNA BMPR1B-DT predicts longer sur-
vival. Taken together, it is conceivable that 
lncRNA BMPR1B-DT is a competitor for the 
BMPR1B mRNA promoter. Despite emerging stu-
dies on the biological functions of lncRNAs, the 
role of the remaining two lncRNAs (AC092718.4, 
AC138035.1) in OC progression is not documen-
ted. Here, for the first time, we show that 
AC092718.4 has an HR < 1, indicating it is 
a positive predictor for OC. In contrast, a higher 
expression of AC138035.1 suggests an unfavorable 
prognosis in OC. Therefore, according to our 
study, all five lncRNAs can serve as candidate 
prognostic markers and therapeutic targets of 
OC, although further studies are warranted.

Emerging evidence suggests that lncRNAs play 
a vital role in a variety of physiological functions 
and disease progression, including cancer [12,13]. 
Importantly, some lncRNAs compete for specific 
miRNA target sites, thus, regulating gene expres-
sion via acting as ceRNAs [7]. In this study, we 
constructed lncRNA-miRNA-mRNA regulatory 
networks to show the relationships of the 
lncRNAs (AC092718.4, AC138035.1, BMPR1B- 
DT, RNF157-AS1, and TPT1-AS1) along with 
their binding miRNAs and target genes. To 
explore the biological functions and signaling 
pathways of the risk signature, further gene 
enrichment analysis was performed, with results 
indicating that the ceRNA networks can play 
a role in cancer-related biological processes, such 
as regulation of cell cycle, chromatin binding, 
modification and remodeling, mTOR signaling 
pathway, and the ovarian-cancer specific BASC.

Currently, chemotherapeutic drugs including pla-
tinum, carboplatin, and paclitaxel are widely used 
among OC patients, with challenges posed by drug 
resistance and cancer recurrence. Molecular targets 
and pathways currently under investigation for drug 
development in ovarian cancers include, cell cycle 
inhibitors, mTOR inhibitors, and PI3K inhibitors. 
A recent study found that cisatracurium can inhibit 
the progression of OC cells by upregulating 
lncRNA-p21 activated by p53 inhibiting miR-181b 
expression, indicating that drugs targeting ceRNA 

Table 1. The top 10 OC-related small molecules with highly 
significant correlations in the results of CMap.

rank cmap name mean n enrichment p-value

1 puromycin −0.86 4 −0.982 0
2 thioridazine −0.455 20 −0.529 0
3 LY-294,002 −0.435 61 −0.501 0
4 loperamide −0.654 6 −0.869 0.00002
5 trifluoperazine −0.313 16 −0.495 0.00034
6 bumetanide 0.458 4 0.868 0.0004
7 atractyloside 0.347 5 0.819 0.00042
8 5,230,742 −0.814 2 −0.983 0.00058
9 15-delta prostaglandin J2 −0.392 15 −0.482 0.00108
10 cefamandole 0.517 4 0.834 0.00115
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networks are indeed promising in treating OC [34]. 
In our study, we found five small-molecule drugs 
with potential therapeutic efficacy based on OC 
RNA-seq using bioinformatics analysis, thus guid-
ing the direction for future drug exploration. 
Thioridazine, a potent anti-psychotic and anti- 
anxiety agent, was specifically demonstrated to act 
against OC, possibly by targeting the mTOR path-
way [35]. Trifluoperazine, is another widely used 
clinical antipsychotic agent that reportedly regulates 
cell cycle progression and has been shown to 
potentiate cisplatin toxicity in ovarian carcinoma 
cells [36,37]. As a classical antidiarrhea agent, loper-
amide is being increasingly recognized as a tumor 
suppressor in several cancer cells, including ovarian 
cancer, via inducing G2/M-phase cell cycle arrest 
[38,39]. LY294002, a potent PI3-K inhibitor, has 
been shown to inhibit tumor growth and ascites 
formation in OC [40]. Puromycin is a tRNA 
mimic traditionally viewed as an antibiotic [41]. 
Unlike the other four small molecules, its efficacy 
has never been reported in OC. However, puromy-
cin induced apoptosis in breast cancer cells 
mediated by insulin-like growth factor 1 (IGF-I) 
[42]. Considering that the involvement of IGF-I in 
ovarian tumorigenesis has been supported by IGF- 
I-targeting strategies and ongoing clinical trials [43], 
a therapeutic potential of puromycin in OC can be 
anticipated. Nonetheless, further investigation is 
required in xenograft models and in clinical trials 
to gain more insight into these five potential ther-
apeutic drugs for clinical application.

Zhou M et al., recently identified 10 prognostic 
lncRNAs and the associated ceRNA in ovarian 
cancer using the TCGA database [44]. However, 
it is not surprising that there is no overlap 
between the 10 lncRNAs identified by their ana-
lyses and the 5 lncRNAs proposed by us, since in 
the current study, it is the aberrantly expressed 
lncRNA between OC and normal ovarian tissue 
that were identified. An important advantage of 
this study is the use of transcriptome data from 
the GTEx Project [45], which allows accessibility 
to a much larger source of ovarian tissue data, 
while minimizing the measurement bias com-
pared to data extraction from different GEO data-
sets. In addition to that, we made significant 
improvements in survival prediction in OC 
patients. First, LASSO regression was used to 

identify lncRNA in order to avoid overfitting of 
the model. Secondly, we constructed lncRNA- 
miRNA-mRNA regulatory networks and 
described the underlying functions of the risk 
signature in OC based on highly correlated 
genes. Thirdly, we validated the established risk 
signature in a validation group, thereby testing its 
accuracy in predicting survival. Nonetheless, we 
recognize that our study has some limitations. 
First, the data of ovarian cancer samples with 
clinicopathological information included are still 
limited. Additionally, the histologic grade and 
FIGO stage were of no predictive value for OC 
survival, probably due to the statistically increased 
false-negative rate, when samples in some sub- 
groups were too small to be followed by sub- 
staging and sub-grading [46]. Nevertheless, our 
risk score has good performance in predicting 
the 1-, 3-, and 5-year survival of the validation 
cohort, indicating that molecular features may be 
more stable in prognosis. Moreover, some other 
confounding factors of survival, such as surgical 
resection and chemotherapy, were not available in 
the datasets and thus not taken into account. 
Finally, the validation cohort was based on 185 
retrospective cases from TCGA, so we may repli-
cate our study in larger cohorts with comprehen-
sive clinical information to validate the five- 
lncRNA signature in future studies.

5. Conclusion

Our study complements available genomic-based 
studies, identifies lncRNA biomarkers, establishes 
a five-lncRNA signature for survival prediction, 
and constructs ceRNA networks for exploration 
of potentially more selective drugs for OC.
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