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Abstract

Motivation: Accurate motif enrichment analyses depend on the choice of background DNA sequences used, which
should ideally match the sequence composition of the foreground sequences. It is important to avoid false positive
enrichment due to sequence biases in the genome, such as GC-bias. Therefore, relying on an appropriate set of
background sequences is crucial for enrichment analysis.

Results: We developed BiasAway, a command line tool and its dedicated easy-to-use web server to generate syn-
thetic sequences matching any k-mer nucleotide composition or select genomic DNA sequences matching the
mononucleotide composition of the foreground sequences through four different models. For genomic sequences,
we provide precomputed partitions of genomes from nine species with five different bin sizes to generate appropri-
ate genomic background sequences.

Availability and implementation: BiasAway source code is freely available from Bitbucket (https://bitbucket.org/
CBGR/biasaway) and can be easily installed using bioconda or pip. The web server is available at https://biasaway.
uio.no and a detailed documentation is available at https://biasaway.readthedocs.io.

Contact: anthony.mathelier@ncmm.uio.no

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcription factors (TFs) are proteins that control cellular proc-
esses by binding to DNA in a sequence specific manner to modulate
gene expression (Lambert et al., 2018). In gene regulation studies,
motif enrichment analyses have been key to identify TF binding sites
in regulatory regions. Accurate motif enrichment analysis depends
on background DNA sequences that represent an adequate null hy-
pothesis (Boeva, 2016; Simcha et al., 2012; Worsley Hunt et al.,
2014). Indeed, genomes do not harbor a uniform sequence/nucleo-
tide composition but contain local sequence biases such as variation
of GC content (Badis et al., 2009; Nekrutenko et al., 2000; Plotkin
et al., 2011; Worsley Hunt et al., 2014). Therefore, selection of
background sequences has a strong influence on motif enrichment
analysis. Ideally, background sequences need to match the fore-
ground sequence compositional features to perform accurate enrich-
ment analyses.

The importance of DNA background sequences for motif over-
representation analysis has recurrently been highlighted (Boeva,

2016; Mariani et al., 2017; Simcha et al., 2012; Worsley Hunt et al.,
2014) and several approaches have been developed to address this
problem. A classical approach consists in randomly shuffling fore-
ground sequences to preserve mono- or di-nucleotide compositions
to reduce nucleotide composition biases (Jiang et al., 2008;
Roadmap Epigenomics Consortium et al., 2015; Weirauch et al.,
2014). Tools such as HOMER (Heinz et al., 2010), RSAT (Nguyen
et al., 2018; Thomas-Chollier et al., 2008) and GENRE (Mariani
et al., 2017) offer the possibility to generate sequences that are either
synthetic or genomic. Nevertheless, none offers multiple approaches
or models to construct synthetic and genomic background sequences
matching the nucleotide composition of foreground sequences in a
unified framework.

We previously developed BiasAway, a command-line tool with
six distinct methodologies to generate DNA background sequences
(Worsley Hunt et al., 2014). Background sequences generated by
BiasAway can either be synthetic or real genomic sequences that
match the global or local mono- or di-nucleotide composition of
user-provided sequences.
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We updated BiasAway to generate synthetic sequences matching

any k-mer nucleotide composition or select genomic DNA sequences
matching the mononucleotide composition of the foreground

sequences. BiasAway is now developed with Python-3 and can easily
be installed through bioconda and pip. Finally, we implemented a
web server companion, which comes with precomputed genomic

partitions with five different bin sizes from nine species to generate
background sequences. BiasAway is open source and its source code

and interactive web interface are freely available at https://biasaway.
uio.no.

2 Results

2.1 BiasAway background models
BiasAway provides flexibility to the user to choose from the four
models (modules) to generate synthetic or real genomic background
sequences that conserve either the global and/or local nucleotide

composition of the foreground sequences. Specifically, the four
approaches generate background sequences through (i) k-mer shuf-

fling of the foreground sequences, (ii) k-mer shuffling of the fore-
ground sequences using a sliding window, or extracting real
genomic sequences matching (iii) the global mononucleotide com-

position or (iv) the local mononucleotide composition distribution
(using a sliding window) of the foreground sequences. To match

local nucleotide composition, BiasAway utilizes a sliding window
over the input sequences to determine the %GC distribution along
them and find background sequences with similar distribution.

Altogether, BiasAway is a unique unified framework to generate
synthetic or genomic DNA sequences [supporting the IUPAC alpha-

bet (IUPAC-IUB Commission on Biochemical Nomenclature (CBN),
1970)] with more features than existing tools (Heinz et al., 2010;
Mariani et al., 2017; Nguyen et al., 2018), such as a variety of mod-

els, a web interface, a large number of pre-computed genomic
sequences and an easy command-line installation (Supplementary
Table S1).

2.1.1 Synthetic k-mer shuffled sequences

This model permutes the nucleotides of the target sequences by
keeping any k-mer composition of the original sequence selected by
the user. For instance, the user can select k¼2 to preserve dinucleo-
tide composition, which would conserve CpG distributions.
BiasAway relies on the uShuffle python package to shuffle the pro-
vided sequences (Jiang et al., 2008). This module should be run
when the user aims at preserving the global k-mer nucleotide fre-
quencies of input sequences. To read the help of this module, the
user can type: biasaway k.

2.1.2 Synthetic k-mer shuffled sequences in a sliding window

This approach is based on a sliding window to consider sub-regions
of distinct nucleotide composition within the input sequences, which
could be derived from evolutionary changes such as insertion of re-
petitive sequences, local rearrangements or biochemical missteps
(see module 4 as well). The model generates a background sequence
by shuffling the nucleotides within a sliding window W (default
100 bp) with a step S (default 50 bp) to conserve the local k-mer nu-
cleotide composition for each sequence in the target sequences. This
module should be run when the user aims at preserving the local k-
mer nucleotide frequencies of input sequences. To read the help of
this module, type: biasaway w.

2.1.3 Genomic mononucleotide distribution matched sequences

This model requires both foreground and a set of genomic back-
ground sequences to be drawn as input. We also provide several
background options for multiple species to choose from. First, GC
composition of each target sequence is computed and sequences are
assigned to bins in steps of 1% GC and the same is applied to the
background pool of sequences. Then for each target sequence in a
given GC bin, it randomly selects a background sequence from the
equivalent background 1% GC bin. This module should be run
when the user aims at selecting genuine genomic background
sequences from a pool of provided genomic sequences to match the
distribution of mononucleotide for each target sequence. To read
the help of this module, type: biasaway g.

Fig. 1. Screenshots of the BiasAway web application when launching the module [g] (A) and the corresponding result page (B)
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2.1.4 Genomic mononucleotide distribution within a sliding

window matched sequences

This method requires both foreground and a set of genomic back-
ground sequences to be drawn as input. It first computes the distri-
bution of %GC composition within a sliding window W (default
100 bp) with a step S (default 50 bp) for each sequence in the input
set of target sequences. Then it matches each target sequence to a
background sequence with a similar %GC distribution (mean 6 SD
stdev over the sliding windows, default SD ¼ 2.6) (Worsley Hunt
et al., 2014). This module should be run when the user aims at
selecting genuine genomic background sequences from a pool of
provided genomic sequences to match the local distribution of
mononucleotide for each target sequence. To read the help of this
module, type: biasaway c.

2.2 Quality control plots and metrics
BiasAway provides quality control (QC) plots and metrics to assess the
similarity of the mono- and di-nucleotide, and length distributions for
the foreground and background sequences (Fig. 1). Specifically, four
plots are provided to visualize how similar the foreground and back-
ground sequences are when considering (i) their distributions of %GC
content using density plots, (ii) their dinucleotide contents considering
all IUPAC nucleotides using a heatmap, (iii) their dinucleotide contents
considering adenine, cytosine, guanine and thymine nucleotides using a
heatmap and (iv) their distributions of lengths. For each of the four QC
plots, BiasAway provides QC metrics corresponding to the mean abso-
lute error [implemented in scikit-learn (Pedregosa et al., 2011)] and
goodness of fit [implemented in scipy (Virtanen et al., 2020)] computed
as Pearson’s chi-squared statistic, log-likelihood ratio test (G-test)
(McDonald, 2014; Sokal et al., 1981), and the Cressie-Read power di-
vergence (Cressie et al., 1984).

2.3 BiasAway command-line and web server
The BiasAway tool is implemented in Python 3, is open source
(https://bitbucket.org/CBGR/biasaway), and can easily be installed
using bioconda (Grüning et al., 2018) or pip. A detailed documenta-
tion is provided at http://biasaway.readthedocs.io/ (available as
Supplementary Text).

For online generation of background sequences and to help non-
programmers, we provide an interactive and easy-to-use web inter-
face for BiasAway. The web server is developed using the Django
MVC framework Django and Bootstrap for user interface and is
available at http://biasaway.uio.no (Fig. 1). The web server comes
with precomputed genomic partitions of 100, 250, 500, 750 and
1000 bp bins for the genome of nine species (Arabidopsis thaliana;
Caenorhabditis elegans; Danio rerio; Drosophila melanogaster;
Homo sapiens; Mus musculus; Rattus norvegicus; Saccharomyces cer-
evisiae; and Schizosaccharomyces pombe; Fig. 1A). The background
sequences are provided to the users through Zenodo (https://doi.org/
10.5281/zenodo.3923866) and were generated using the script avail-
able at https://bitbucket.org/CBGR/biasaway_background_construc
tion, which can be run by users to generate their own background
sequences. The result page provides the QC plots computed from the
provided and generated sequences for comparison (Fig. 1B).
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