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Abstract: To investigate whether high-sensitivity troponin I (hs-TnI) elevation is associated with
in-hospital mortality and major adverse cardiac events (MACEs) in neurosurgical and neurocritically
ill patients. Among neurosurgical patients admitted to the intensive care unit (ICU) from January 2013
to December 2019, those whose serum hs-TnI levels were obtained within 7 days after ICU admission
were included. Propensity score matching was used. Each patient with hs-TnI elevation was matched
to a control patient. The primary endpoint was in-hospital mortality and the secondary outcome
was MACEs. The hs-TnI elevation was shown in 848 (14.1%) of 6004 patients. After propensity score
matching, 706 pairs of data were generated by 1:1 individual matching without replacement. In
multivariable analysis of overall and propensity score-matched population, hs-TnI elevation was
associated with in-hospital mortality (adjusted odds ratio (OR): 2.37, 95% confidence interval (CI):
1.68–3.33 and adjusted OR: 1.89, 95% CI: 1.28–2.81, respectively). In addition, hs-TnI elevation was
associated with MACEs (adjusted OR: 2.73, 95% CI: 1.74–4.29 and adjusted OR: 2.64, 95% CI: 1.60–4.51,
respectively). In this study, hs-TnI elevation was associated with in-hospital mortality and MACEs in
neurosurgical and neurocritically ill patients.

Keywords: cardiac troponin I; prognosis; neurosurgery; intensive care unit

1. Background

Perioperative myocardial injury is associated with major adverse cardiac events
(MACEs) and clinical prognosis of patients with non-cardiac or non-vascular surgeries [1,2].
Many surgical patients experience MACEs during the perioperative period and the first year
after surgery [1,3–5]. In particular, postoperative cardiac troponin elevation is important
to predict prognosis of these surgical patients [1]. In addition, cardiac troponin elevation
is associated with increased mortality and hospitalization in critically ill patients [6]. Re-
gardless of the associated cardiovascular disease, cardiac troponin is a specific marker of
myocardial injury and a predictor of prognosis [7–9]. From the Fourth Universal Definition
of Myocardial Infarction, a diagnosis criteria of acute myocardial infarction includes the
detection of an increase and/or decrease of a high-sensitivity troponin, with at least one
value above the 99th percentile of the upper reference limit (URL) and at least one of the
following: symptoms of myocardial ischemia, new ischemic changes in electrocardiogram,
development of pathological Q waves on electrocardiogram, imaging evidence of loss of

Diagnostics 2022, 12, 2259. https://doi.org/10.3390/diagnostics12092259 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12092259
https://doi.org/10.3390/diagnostics12092259
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-4464-3521
https://orcid.org/0000-0001-7939-1275
https://orcid.org/0000-0002-5768-5990
https://orcid.org/0000-0003-1705-848X
https://doi.org/10.3390/diagnostics12092259
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12092259?type=check_update&version=1


Diagnostics 2022, 12, 2259 2 of 10

viable myocardium or new regional wall motion abnormality in a pattern consistent with an
ischemic etiology or intracoronary thrombus detected on angiography or autopsy [10–14].

Most morbidity and mortality of neurosurgical patients may be due to neurosurgical
or neurocritical illness, although cardiac injury might also contribute to their poor clinical
prognosis [15–17]. Cardiac troponin elevation is also associated with prognosis of neurocrit-
ically ill patients with intracerebral hemorrhage or subarachnoid hemorrhage [15,17–19].

A limited number of studies have reported that clinical outcomes of neurosurgical
and neurocritically ill patients are associated with high-sensitivity troponin I (hs-TnI)
elevation [15,16,19]. Therefore, the objective of this study was to investigate whether hs-TnI
elevation might be associated with in-hospital mortality and MACEs in patients admitted
to a neurosurgical intensive care unit (ICU). In addition, we evaluated whether hs-TnI
elevation per se was associated with poor prognosis when severity and factors other than
hs-TnI elevation were controlled by propensity score matching.

2. Methods
2.1. Study Population

This was a retrospective, single-center, observational study. Patients who were admit-
ted to the neurosurgical ICU in a tertiary referral hospital (Samsung Medical Center, Seoul,
Korea) from January 2013 to December 2019 were eligible. This study was approved by
the Institutional Review Board of Samsung Medical Center (approval number: SMC 2020-
09-082). Included criteria were: (1) patients who were hospitalized in the neurosurgical
ICU due to postoperative management or neurocritical illness and (2) those whose serum
hs-TnI levels were obtained within seven days after ICU admission. Exclusion criteria were:
(1) those with insufficient medical records, (2) those who had ‘do not resuscitate’ order,
(3) those who were admitted to departments other than neurosurgery, and (4) those who
were transferred to other hospitals or with unknown prognoses (Figure 1).
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Figure 1. Study flow chart. ICU, intensive care unit; hs-TnI, high-sensitivity troponin I.

2.2. Definitions and Endpoints

In this study, baseline characteristics such as comorbidities, ICU management, and
laboratory data were collected retrospectively using Clinical Data Warehouse. Our center
constructed the “Clinical Data Warehouse Darwin-C” designed for investigators to search
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and retrieve de-identified medical records from electronic archives. It contains data pertain-
ing to more than four million patients. Clinical and laboratory data were extracted from
the Clinical Data Warehouse Darwin-C after finalizing the patient list in this study. Risk
of surgery was defined according to the 2014 European Society of Cardiology/European
Society of Anesthesiology (ESC/ESA) guidelines [20]. Perioperative management of pa-
tients followed institutional protocols based on current guidelines [9,20]. According to the
institutional guideline, perioperative hs-TnI was measured for patients with more than
moderate risk or undergoing moderate- to high-risk surgeries [9,20]. It was also measured
at the discretion of attending clinicians for patients with mild risks [20]. An automated
analyzer (Advia Centaur XP, Siemens Healthcare Diagnostics, Erlangen, Germany) with
a highly sensitive immunoassay was used for hs-TnI measurement. The lowest limit of
detection was 6 ng/L. The 99th percentile URL is 40 ng/L provided by the manufacturer.
In this study, hs-TnI elevation was defined as an increase in hs-TnI above 40 ng/L within
7 days after ICU admission according to Fourth Universal Definition of Myocardial Infarc-
tion and the 99th-percentile URL provided by the manufacturer [9,11]. Acute Physiology
and Chronic Health Evaluation (APACHE) II score was calculated based on the worst value
recorded during the initial 24 h in the ICU admission [21,22]. If the patient was intubated,
the verbal score of Glasgow Coma Scale (GCS) was estimated using eye and motor scores
as reported previously [23]. MACEs were defined as non-fatal cardiac arrest, emergent
coronary revascularization, acute coronary syndrome, stroke, congestive heart failure, atrial
fibrillation (new onset or destabilization of pre-existing atrial fibrillation), major arrhythmia,
cardiovascular death, and rehospitalization for cardiovascular reasons [1]. The primary
endpoint was in-hospital mortality, and the secondary outcome was MACES.

2.3. Statistical Analyses

All data are presented as means ± standard deviations for continuous variables and
frequencies and proportions for categorical variables. Data were compared using Student’s
t-test for continuous variables and Chi-square test or Fisher’s exact test for categorical
variables. Propensity score matching was used to control the selection bias and the con-
founding factor detected in this observational study. Each patient with hs-TnI elevation
was matched to one control patient with the nearest neighbor matching within calipers
determined by the propensity score. A caliper width of 0.2 of the standard deviation of the
logit of the propensity score was used for the matching [24]. To determine the effectiveness
of propensity score matching for controlling the differences between patients with and
without hs-TnI elevation, standardized mean differences (SMDs) were calculated for each
variable before and after matching. SMDs less than 10% indicated successful propensity
scores matching and balancing between the two groups. To evaluate whether there was
a difference in in-hospital mortality and MACEs according to the hs-TnI elevation, we
performed multiple logistic regression with stepwise variable selection in the overall and
matched population. In the overall population, we tried to obtain the result of correcting
confounding through regression adjustment, and in the matching dataset, we performed
doubly robust estimation to additionally correct the bias that might still exit after propensity
score matching. The variables included in the multiple analyses were age, sex, comorbidi-
ties, cause of ICU admission, utilization of organ support modalities, including mechanical
ventilators, continuous renal replacement therapy and vasopressors, ICP monitoring de-
vices, hyperosmolar therapy, GCS, and APACHE II score on ICU admission. Cumulative
mortality was calculated by Kaplan–Meier estimate and compared using a log-rank test. All
tests were two-sided and p values less than 0.05 were considered statistically significant. All
statistical analyses were performed with R Statistical Software (version 4.0.2; R Foundation
for Statistical Computing, Vienna, Austria).
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3. Results
3.1. Baseline Characteristics

A total of 12,743 patients were admitted to the neurosurgical ICU during the study
period and 6004 patients were included in the final analysis. In the overall study population,
hs-TnI elevation was shown in 848 (14.1%) patients (Figure 1). The mean age of all patients
was 55.8 ± 15.6 years. There were 2698 (44.9%) male patients. Malignancy (50.5%) and
hypertension (34.8) were the most common comorbidities. Elective vascular surgery (37.1%)
and brain tumors (36.0%) were the most common reasons for ICU admission (Table 1). In the
overall population, there were significant differences for variables of baseline characteristics
between the two groups except for current smoking and the use of mannitol (Table 1). The
mean value of maximum hs-TnI level was higher in the hs-TnI elevation group than in
the normal hs-TnI group (4196.1 ± 31,274.7 ng/L vs. 8.7 ± 6.5 ng/L, p < 0.001). After
propensity score matching, 706 pairs of data were generated by 1:1 individual matching
without replacement. No significant imbalance was found in baseline characteristics
between matched pairs (Table 1).

Table 1. Baseline characteristics of study population.

Overall Study Population Propensity Score-Matched Population

No
Elevation
(n = 5156)

Elevation
(n = 848) p Value SMD

No
Elevation (n

= 706)

Elevation (n
= 706) p Value SMD

Patient demographics

Age (year) 54.7 ± 15.3 62.1 ± 15.9 <0.001 0.471 62.0 ± 14.6 61.8 ± 16.0 0.770 0.016
Sex, male 2266 (43.9) 432 (50.9) <0.001 0.14 349 (49.4) 366 (51.8) 0.394 0.048

Comorbidities

Malignancy 2657 (51.5) 373 (44.0) <0.001 0.152 350 (49.6) 344 (48.7) 0.790 0.017
Hypertension 1678 (32.5) 412 (48.6) <0.001 0.331 341 (48.3) 347 (49.2) 0.790 0.017
Diabetes mellitus 567 (11.0) 162 (19.1) <0.001 0.228 111 (15.7) 141 (20.0) 0.044 0.111
Chronic kidney disease 154 (3.0) 95 (11.2) <0.001 0.324 61 (8.6) 69 (9.8) 0.519 0.039
Cardiovascular disease 92 (1.8) 88 (10.4) <0.001 0.366 57 (8.1) 65 (9.2) 0.507 0.040
Chronic liver disease 99 (1.9) 31 (3.7) 0.002 0.106 24 (3.4) 25 (3.5) 0.999 0.008

Behavioral risk factors

Current alcohol consumption 1257 (24.4) 172 (20.3) 0.011 0.098 151 (21.4) 147 (20.8) 0.845 0.014
Current smoking 577 (11.2) 90 (10.6) 0.662 0.019 83 (11.8) 77 (10.9) 0.675 0.027

Cause of ICU admission <0.001 1.132 0.907 0.098

Brain tumor 1961 (38.0) 200 (23.6) 200 (28.3) 196 (27.8)
Elective vascular surgery 2137 (41.4) 93 (11.0) 74 (10.5) 93 (13.2)
Intracerebral hemorrhage 234 (4.5) 160 (18.9) 138 (19.5) 129 (18.3)
Traumatic brain injury 221 (4.3) 155 (18.3) 122 (17.3) 116 (16.4)
Subarachnoid hemorrhage 202 (3.9) 144 (17.0) 100 (14.2) 100 (14.2)
Spinal surgery 213 (4.1) 29 (3.4) 25 (3.5) 28 (4.0)
Central nervous system infection 41 (0.8) 10 (1.2) 7 (1.0) 8 (1.1)
Cerebral infarction 29 (0.6) 18 (2.1) 18 (2.5) 14 (2.0)
Others 118 (2.3) 39 (4.6) 22 (3.1) 22 (3.1)

APACHE II score on ICU
admission 3.2 ± 4.3 7.54 ± 7.83 <0.001 0.691 6.0 ± 6.3 6.41 ±7.04 0.254 0.061

Glasgow coma scale on ICU
admission 14.6 ± 1.5 12.2 ± 4.2 <0.001 0.776 13.2 ± 3.3 13.1 ± 3.4 0.706 0.020

ICU management

Use of vasopressors 112 (2.2) 103 (12.1) <0.001 0.394 68 (9.6) 73 (10.3) 0.723 0.024
Mechanical ventilation 775 (15.0) 504 (59.4) <0.001 1.034 374 (53.0) 367 (52.0) 0.749 0.020
Continuous renal

replacement therapy 11 (0.2) 46 (5.4) <0.001 0.319 10 (1.4) 13 (1.8) 0.674 0.034

ICP monitoring 376 (7.3) 170 (20.0) <0.001 0.378 137 (19.4) 139 (19.7) 0.946 0.007
Use of mannitol a 2250 (43.6) 349 (41.2) 0.189 0.05 295 (41.8) 286 (40.5) 0.665 0.026
Use of glycerin a 508 (9.9) 267 (31.5) <0.001 0.554 207 (29.3) 209 (29.6) 0.953 0.006

Clinical outcomes b
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Table 1. Cont.

Overall Study Population Propensity Score-Matched Population

No
Elevation
(n = 5156)

Elevation
(n = 848) p Value SMD

No
Elevation (n

= 706)

Elevation (n
= 706) p Value SMD

In-hospital mortality 158 (3.1) 226 (26.7) <0.001 102 (14.4) 136 (19.3) 0.019
28-day mortality 144 (2.8) 223 (26.3) <0.001 93 (13.2) 134 (19.0) 0.004
ICU mortality 87 (1.7) 163 (19.2) <0.001 68 (9.6) 83 (11.8) 0.228
ICU length of stay (hour) 57.0 ± 334.2 131.8 ± 200.2 <0.001 145.3 ± 827.1 132.8 ± 203.3 0.695
Hospital length of stay (day) 22.9 ± 93.9 45.7 ± 205.1 <0.001 55.7 ± 237.7 38.6 ± 59.8 0.065

Major adverse cardiac events b 57 (1.1) 56 (6.6) <0.001 17 (2.4) 56 (7.9) <0.001

New onset arrhythmia 53 (1.0) 24 (2.8) 16 (2.3) 24 (3.4)
Heart failure 2 (0.0) 15 (1.8) 0 (0.0) 15 (2.1)
Acute coronary syndrome 1 (0.0) 12 (1.4) 0 (0.0) 12 (1.7)
Cardiac arrest 1 (0.0) 5 (0.6) 1 (0.1) 5 (0.7)
Cardiovascular death 0 (0.0) 15 (1.8) 0 (0.0) 15 (2.1)

Data are presented as numbers (%) or means ± standard deviations. a Some patients received more than one hyper-
osmolar agent. b Variables are not retained in propensity score matching. APACHE, Acute Physiology and Chronic
Health Evaluation; ICP, intracranial pressure; ICU, intensive care unit; SMD, standardized mean difference.

3.2. Clinical Outcomes

In the overall study population, rates of in-hospital mortality and 28-day mortality
were higher in patients with hs-TnI elevation than in those without hs-TnI elevation (26.7%
vs. 3.1% and 26.3% vs. 2.8%, both p < 0.001) (Table 1). Clinical outcomes in the propensity
score-matched population were similar to those of the entire population. In the propensity
score-matched population, rates of in-hospital mortality and 28-day mortality were also
higher in the elevated hs-TnI group than in the normal hs-TnI group (19.3% vs. 14.4%,
p = 0.019 and 19.0% vs. 13.2, p = 0.004, respectively). MACEs were more common in patients
with hs-TnI elevation than in those without hs-TnI elevation in the overall population and
the propensity score-matched population (6.6% vs. 1.1% and 7.9% vs. 2.4%, both p < 0.001)
(Table 1).

In multivariable analysis of the overall and propensity score-matched population, hs-
TnI elevation was associated with in-hospital mortality (adjusted odds ratio (OR): 2.37, 95%
confidence interval (CI): 1.68–3.33 and adjusted OR: 1.89, 95% CI: 1.28–2.81, respectively). In
addition, hs-TnI elevation was associated with MACES (adjusted OR: 2.73, 95% CI: 1.74–4.29
and adjusted OR: 2.64, 95% CI: 1.60–4.51, respectively) (Table 2).

Table 2. The relationship between elevated high-sensitivity troponin I (hs-TnI) and clinical outcomes
of the overall and propensity score-matched population.

hs-TnI Elevation within 7 Days a Adjusted Odds Ratio (95% CI) p Value

In-hospital mortality

Overall population 2.37 (1.68–3.33) < 0.001
Propensity score-matched population 1.89 (1.28–2.81) 0.002

Major adverse cardiac events

Overall population 2.73 (1.74–4.29) < 0.001
Propensity score-matched population 2.64 (1.60–4.51) < 0.001

a Adjusted for age, sex, comorbidities, cause of ICU admission, utilization of organ support modalities, use of
invasive ICP monitoring device, hyperosmolar therapy, and APACHE II score on ICU admission. CI, confidence
interval; APACHE, Acute Physiology and Chronic Health Evaluation; ICP, intracranial pressure; ICU, intensive
care unit.

In survival analysis, the mortality rates of patients with hs-TnI elevation were signifi-
cantly higher than those of patients without hs-TnI elevation in the overall population and
the propensity score-matched population (p < 0.001 and p = 0.008, respectively) (Figure 2).
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Figure 2. Kaplan–Meier survival analyses in the overall population (A) and the propensity score-
matched population. (B) The mortality rates of the patients with high-sensitivity troponin I (hs-TnI)
elevation were significantly higher compared with those without hs-TnI elevation in the overall
population and the propensity score-matched population (p < 0.001 and p = 0.008, respectively).

4. Discussion

In this study, we investigated whether hs-TnI elevation was associated with mortality
and MACEs in patients admitted to a neurosurgical ICU. Major findings of this study were
as follows. First, elevated hs-TnI level was shown in 14.1% of neurosurgical patients in the
overall population. Second, rates of in-hospital mortality and 28-day mortality were higher
in patients with hs-TnI elevation than in those without hs-TnI elevation in the overall study
population and the propensity score-matched population. Finally, multivariable analysis
revealed that hs-TnI elevation was associated with in-hospital mortality and MACES in the
overall and propensity score-matched populations.

Cardiac troponin is a regulatory protein that can lead to myocardial contraction by
controlling calcium-mediated interaction with actin and myosin [6,25]. Destroyed car-
diomyocytes can release cardiac troponin into the blood that can be detected using a
commercially available immunoassay [6]. Postoperative myocardial injury is an indepen-
dent predictor of cardiovascular complications and mortality within 30 days and 1 year in
patients undergoing orthopedic or abdominal surgeries [1]. In particular, hs-TnI elevation
is associated with worse cardiac outcomes after major surgeries [26]. In addition, elevated
hs-TnI measurements among critically ill patients are associated with increased mortality
and ICU length of stay [26,27].

In patients with subarachnoid hemorrhage, electrocardiographic abnormalities, in-
cluding prolongation of QT interval and repolarization abnormalities, are commonly
detected [15,18]. In particular, cardiac troponin elevation has been found in one-third of
patients with subarachnoid hemorrhage known to be associated with increased mortal-
ity [15,19]. Cardiac troponin elevation is also associated with mortality in patients with
surgically treated intracerebral hemorrhage and traumatic brain injury [15,28]. Under
stressful conditions such as acute brain injury, stimulation of the hypothalamic paraven-
tricular nucleus as the main control center of the hypothalamic–pituitary–adrenal axis can
activate sympathetic output and lead to electrocardiographic abnormalities, arrhythmia,
and myocardial injury [29]. In addition, activation of this axis after acute brain injury
can cause a significant increase in catecholamines. The catecholamine surge hypothesis is
the most widely accepted mechanism of brain–heart interaction [29]. Recent histological
studies have shown that catecholamine-mediated myocardial injury may be a major patho-
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physiology of neurocritical illness [15–17,30] (Figure 3). In particular, the catecholamine
surge leads to activation of cyclic adenosine monophosphate (cAMP) in myocytes. cAMP
activation causes excessive Ca++ influx and altered actin–myosin interaction. The actin–
myosin interaction in cardiac muscle can be prolonged beyond its physical integrity [31].
As a result, the catecholamine stimulation surge can lead to myofibrillar degeneration
and contraction band necrosis [32]. These band necrotic lesions in sub-endocardium are
also associated with malignant arrhythmias by involving the conducting tissue [33]. In
addition, the catecholamine surge can lead to increased potassium outflow through delayed
rectifier channels. These changes lead to shortened and excessive heterogeneity of action
potential duration causing disturbance of rate and rhythm. Eventually, the catecholamine
surge causes myofibril necrosis [31]. Therefore, cardiac injury could be accompanied by
neurosurgical or neurocritical illness. It is known to be associated with clinical progno-
sis [15–17,28,30].
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Neurosurgical patients with severe brain injury are more likely to develop cardiac
injury and MACEs compared to those with benign diseases. Therefore, it is not easy to de-
termine whether elevated hs-TnI itself is associated with a poor prognosis or neurosurgical
patients with elevated hs-TnI will show poor prognosis because of their neurocritical illness.
Therefore, a propensity score matching method was used to adjust for this confounder
in this study. In brief, hs-TnI elevation was significantly associated with poor clinical
outcomes of neurosurgical and neurocritically ill patients. Finally, cardiac injury may also
be a contributing factor of poor clinical outcomes, although most of the morbidity and
mortality could be arising from neurocritical illness [15–17].

This study has several limitations. First, this was a retrospective review of medical
records and data extracted from the Clinical Data Warehouse. The nonrandomized nature
of registry data might have resulted in a selection bias. Second, laboratory tests including
hs-TnI levels were protocol-based for patients with perioperative neurosurgery. They were
performed occasionally by non-protocol methods for neurocritically ill patients without
neurosurgery. Third, the pathophysiology of acute coronary syndrome could not be
determined for a few patients. Cardiac catheterization was not performed in these sick
patients because intrahospital transport was impossible due to severe illness. Finally, the
distribution of neurosurgical diseases differed from that of the general neurosurgical ICU
and the proportion of patients with brain tumors was particularly high.

5. Conclusions

In this study, hs-TnI elevation was associated with in-hospital mortality and MACEs
in neurosurgical and neurocritically ill patients. Eventually, perioperative or neurocritical
illness-associated cardiac injury could be associated with clinical outcomes of neurosurgical
and neurocritically ill patients.
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