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Due to its reversible nature, Takotsubo cardiomyopathy (TTC) is considered an

intriguing and fascinating cardiovascular disease characterized by a transient wall motion

abnormality of the left ventricle, affecting more than one coronary artery territory, often

in a circumferential apical distribution. Takotsubo cardiomyopathy was discovered by

a Japanese cardiovascular expert and classified as acquired primary cardiomyopathy

by the American Heart Association (AHA) in 1990 and 2006, respectively. Regardless

of the extensive research efforts, its pathophysiology is still unclear; therefore,

there are no well-established guidelines specifically for treating and managing TTC

patients. Increasing evidence suggests that sympatho-adrenergic stimulation is strongly

associated with the pathogenesis of this disease. Under acute stressful conditions, the

hyperstimulation of beta-adrenergic receptors (β-ARs) resulting from excessive release of

catecholamines induces intracellular kinases capable of phosphorylating and activating

“A Disintegrin and Metalloprotease 17” (ADAM17), a type-I transmembrane protease that

plays a central role in acute myocardial inflammation and metabolic lipids dysregulation

which are the main hallmarks of TTC. However, our understanding of this is limited; hence

this concise review provides a comprehensive insight into the key role of ADAM17 in

acute myocardial inflammation and metabolic lipids dysregulation during acute stress.

Also, how the synergy of ADAM17-induced acute inflammation and lipids dysregulation

causes TTC is explained. Finally, potential therapeutic targets for TTC are also discussed.
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INTRODUCTION

Takotsubo cardiomyopathy (TTC) is an acute, stress-induced
cardiac syndrome characterized by a transient wall motion
abnormality of the left ventricle, affecting more than one
coronary artery territory, often in a circumferential apical
distribution (1). This condition is also known as; stress
cardiomyopathy, ampulla cardiomyopathy, stress-induced
cardiomyopathy, apical ballooning cardiomyopathy, transient
left ventricular dysfunction, Gebrochenes-Herz-syndrome,
and broken heart syndrome (2). Takotsubo cardiomyopathy
was first described in 1990 by a Japanese cardiovascular
expert (3). In 2006, it was classified as acquired primary
cardiomyopathy by the American Heart Association (AHA)
(4). It is initiated by extreme physical or emotional stress
and can occur in females and males at any age; however,
postmenopausal females are commonly affected. Takotsubo
cardiomyopathy can also be caused by infections, such as
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) (5, 6). The diagnosis of this condition is generally based
on clinical criteria combined with a multi-modality imaging
approach which includes coronary angiography (with left
ventriculography), electrocardiography (ECG), cardiac magnetic
resonance imaging (CMR), and transthoracic echocardiography
(TTE) (7). Takotsubo cardiomyopathy is usually reversible
within a few weeks; hence, its prognosis was initially considered
favorable (8). Nevertheless, research suggests that the long-
term prognosis of TTC is poorer than anticipated (8) since it
accounts for substantial morbidity and mortality worldwide (9).
Regardless of the extensive research efforts, its pathophysiology
is still not clear (8). Due to this, there are no well-established
guidelines specifically for treating and managing TTC patients.
It is, therefore, vital to understand the pathomechanisms that
enhance the development of TTC.

Sympatho-adrenergic stimulation is strongly associated with
the pathogenesis of TTC (10, 11). Indisputably, the histological
alterations in the myocardium during TTC are comparable to
those found in catecholamine-induced cardiotoxicity in humans
and animals (12). Current studies have also revealed that acute
myocardial inflammation and metabolic lipids dysregulation are
implicated in the pathogenesis of TTC (9, 13). However, how
sympatho-adrenergic stimulation leads to TTC characterized by
the latter is still unclear.

Intriguingly, “A Disintegrin and Metalloprotease 17”
(ADAM17) forming part of the 560 proteases encoded in
the human genome has recently emerged as a key regulator
of inflammation and lipids dysregulation following stressful
conditions. “A Disintegrin and Metalloprotease 17” is
ubiquitously expressed in human tissues, including the
brain, heart, kidney, and skeletal muscle (14, 15). Although
ADAM17’s expression is downregulated in physiological states,
several studies have demonstrated its upregulation along
with its substrates [tumor necrosis factor-alpha (TNFα)
and soluble interleukin-6 receptor (sIL-6R)] in dilated
cardiomyopathies (16–19). Hence, this indicates ADAM17’s
essential role in the etiology of TTC. Besides ADAM17 inducing
cardiomyopathies via exacerbating inflammatory responses

and lipids dysregulation, its variants and mutants have been
associated with mild cardiomyopathies and congenital heart
defects, including Tetralogy of Fallot (20, 21).

In acute stress state, the hyperstimulation of beta-adrenergic
receptors (β-ARs) due to excessive release of catecholamines
from sympathetic responses exert negative inotropic and
chronotropic effects on the heart (11), thereby increasing the
activities of intracellular kinases such as receptor-stimulated
p38 mitogen-activated-protein-kinases (p38 MAPKs) and
extracellular signal-regulated kinases (ERKs) (22, 23). These
kinases are well-known activators of ADAM17 via their
intracellular phosphorylation (24). Hyperactive ADAM17
plays a crucial role in acute cardiac inflammation (17) and
myocardial lipids dysregulation (9), which successfully results
in left ventricular abnormalities characterizing TTC. However,
our understanding of this is limited; hence this concise
review provides a comprehensive insight into the key role of
ADAM17 in acute myocardial inflammation and metabolic
lipids dysregulation during acute stress. Also, how the synergy of
ADAM17-induced acute inflammation and lipids dysregulation
causes TTC is explained. Finally, potential therapeutic targets for
TTC are discussed.

ACTIVATION OF ADAM17 DURING ACUTE
STRESS

Acute stress has been recognized as a modifiable risk factor for
several cardiomyopathies (25). The impact of acute stress on
physiological and psychological processes is determined by the
stress stimulus’s characteristics, either emotional or physical.
However, in both, the autonomic nervous system is one of
the central neural pathways activated (26). Thus, in an acute
stress state, the sympathetic system’s hyperstimulation results
in elevated catecholamines (epinephrine and norepinephrine).
Physiologically, epinephrine and norepinephrine serve as
neurotransmitters and hormones necessary for homeostasis
maintenance; however, excessive increase in their levels leads
to the hyperactivation of β-ARs, which are the main receptors
mediating the inotropic and chronotropic function of the
heart (9, 23). Beta-adrenergic receptors are 7-transmembrane, G-
protein coupled receptors (GPCRs) which exist in three subtypes,
namely; β1-AR, β2-AR, β3-AR (27, 28). All are widely expressed
in the heart, with β1-AR having the highest expression and
β3-AR with the least expression (23, 27). β1-AR can only signal
through Gαs when activated while β2-AR and β3-AR can signal
through Gαs or Gαi upon activation depending on the condition
(physiological or pathological) (23, 29). Physiologically, upon
activation, β2-AR signals through Gαs (23) while β3-AR signals
through Gαi (29).

Hyperstimulation of β-ARs under acute stressful conditions,
characterized by an excessive increase in catecholamines, causes
desensitization of β1-AR and hyperactivation of β2-AR coupling
to Gαi. This occurs because, among the three β-AR subtypes, β2-
AR and β3-AR are rarely depleted during acute stress (30, 31). To
prevent cardiac injury caused by acute stress, Gαi signaling via
the non-canonical pathway increases the activities of intracellular
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kinases such as p38 MAPKs and ERKs (22, 23). Interestingly,
studies have revealed that p38 MAPKs and ERKs can positively
influence the activation of ADAM17 via their intracellular
phosphorylation, either directly or indirectly, through the
activation of iRhoms (32, 33). Physiologically, ADAM17’s
expression can be regulated by transcriptional factors such as
nuclear factor kappa B (NF-kB) and ETS Like-1 (Elk-1) (34).
However, post-transcriptional mechanisms such as chromatin
remodeling protein BRG1 affect its expression. Also, subcellular
localization in the perinuclear region has been shown to regulate
the activities of ADAM17 (35). Nonetheless, phosphorylation of
threonine 735 in ADAM17 by active kinases can rapidly activate
its cleavage activity, possibly by triggering and facilitating its
translocation from the Golgi network to the cell surface where
its proteolytic activity is reported (36, 37). Structurally, ADAM17
comprises a prodomain, a catalytic domain, a disintegrin-like
domain, a membrane-proximal domain (MPD), and a short
stalk region, which together form the extracellular part of the
protease and are connected to an intracellular region by a
transmembrane part (38). The stalk region of this protease
contains the CANDIS motif (Conserved ADAM 17 Dynamic
Interaction Sequence), which is found closer to the MPD around
the plasma membrane and is vital for substrate recognition.
(39). Intracellular phosphorylation of ADAM17 induces the
phosphatidylserine exposure at the outer leaflet of the cell
membrane, causing it to bind to the membrane through its
MPD and CANDIS, thereby initiating its activation and cleaving
process (40). Upon activation, ADAM17 cleaves and stimulates
pro-inflammatory cytokines and their cognate receptors (14, 15,
41, 42), resulting in acute inflammation and metabolic lipids
dysregulation in the heart (Figure 1).

ADAM17 IN ACUTE MYOCARDIAL
INFLAMMATION AND LIPIDS
DYSREGULATION

Activation and Signaling of ADAM17’s
Substrates
“A Disintegrin and Metalloprotease 17” has emerged as a chief
regulatory hub in inflammation due to cleavage and activation of
several pro-inflammatory cytokines and their cognate receptors.
The most noticeable examples include; TNFα, tumor necrosis
receptor 1 and 2 (TNFR1 and 2), and IL-6R (14, 15, 41, 42). These
cytokines are widely expressed in the heart as membrane-bound
proteins (43). Excessive increase in their soluble forms following
the cleavage process of ADAM17 can trigger cascades resulting
in acute cardiac inflammation, myocardial lipotoxicity, and low
energy production.

Soluble TNFα (sTNFα), when released under acute stressful
conditions, can signal via TNFR1 or TNFR2 (44, 45), which
are predominantly expressed on myocytes (44). Interestingly,
soluble TNFRs (sTNFR1/2) resulting from ADAM17’s cleavage
process can also bind to membrane TNFα (mTNFα) and act
as antagonistic decoy receptors known as “reverse signaling,”
which is seen chiefly among other TNF family members (46,
47). Interleukin-6 (IL-6) is a pleiotropic cytokine with distinct

pro-and anti-inflammatory properties when released under
stressful conditions. It can signal via two different ways, namely;
(1) Signaling through its membrane-bound receptor, IL-6R,
which is known as “classic signaling” and can only occur on
cell types expressing surface IL-6R, including hepatocytes and
certain leukocytes’ subpopulations (48). (2) Signaling via the
soluble form of its receptor, sIL-6R, which is termed as “IL-
6 trans-signaling” and can occur on all body cells, including
cardiomyocytes, since the IL-6/sIL-6R complex can directly
bind to and activate the ubiquitously expressed glycoprotein-
130 (gp130) without the need of a membrane-bound IL-6R
(43, 48) (Figure 1).

ADAM17’s Substrates in Acute Myocardial
Inflammation and Lipids Dysregulation
The binding of sTNFα and IL-6/sIL-6R complex to TNFR1/2 and
gp130, respectively, can trigger intracellular signaling cascades
leading to acute myocardial inflammation (49, 50) and metabolic
lipids dysregulation (9, 51, 52). The intracellular region of TNFR1
contains a death domain that can directly induce apoptosis
and inflammation when activated (43). However, this domain
is absent in the intracellular region of TNFR2. The activation
of TNFR2 by sTNFα mediates the phosphorylation of the p65
subunit of NF-Kb at ser536 via interaction with the IkB kinase
(IKK), subsequently resulting in the activation of NF-kB dimer
(52, 53). Similarly, the binding of the IL-6/sIL-6R complex to
gp130 is capable of inducing phosphorylation and activation
of NF-kB dimer via gp130/JAK/STAT pathway (49). Following
activation, NF-kB migrates into the mitochondria (54, 55) and
nucleus (56) to induce signaling cascades and up/down-regulate
genes, respectively. According to Liu et al., NF-kB can stimulate
the intrinsic apoptotic pathway in the mitochondria via the
release of cytochrome c (50). In the cytoplasm, cytochrome c
binds to apoptotic protease activating factor 1 (APAF-1), causing
it to undergo conformational changes and oligomerization into
a heptameric wheel-like structure known as apoptosome, which
recruits and activates the initiator caspase-9 (57). Active caspase-
9 cleaves and activates the executioner caspases-3 and −7,
resulting in rapid apoptosis and inflammation in cardiac cells
(50, 57). Additionally, in the nucleus, active NF-kB upregulates
genes of pro-inflammatory cytokines (pro-IL-18 and pro-IL-1β)
and NLR family pyrin domain containing 3 (NLRP3), hence
elevating their protein levels. NLRP3 is an intracellular sensor
that can be triggered under acute stressful conditions, resulting in
the formation and activation of NLRP3 inflammasome (58, 59).
Active NLRP3 inflammasome is known to activate caspase 1,
which in turn cleaves pro-IL-1β and pro- IL-18 to release their
soluble forms, successively inducing necrosis and inflammation
in cardiac cells (60) (Figure 1).

Interestingly, studies have also revealed that the activation
of NF-kB downregulates the activity of peroxisome proliferator-
activated receptor (PPAR)β/δ, α (51, 52) and genes regulating
fatty acid (FA) oxidation in the heart (52). Peroxisome
proliferator-activated receptors (PPARs) are a group of nuclear
receptors that serve as transcription factors regulating the
expression of metabolic genes within cells (61). PPARs comprises
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FIGURE 1 | A schematic diagram illustrating the key roles played by ADAM17 and its substrates in inducing acute myocardial inflammation and metabolic lipids

dysregulation during acute stressful conditions. In an acute stress state, the hyperactivation of beta-adrenergic receptors resulting from the excessive release of

(Continued)
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FIGURE 1 | catecholamines influences the activation of ADAM17 via intracellular phosphorylation by ERKs and p38 MAPKs. Hyperactive ADAM17 cleaves and

activates TNFα and IL-6R to trigger cell signaling cascades, leading to NF-kB activation. Active NF-kB successfully causes acute myocardial inflammation via the gene

elevation of pro-inflammatory cytokines (IL-18, IL-1β) and inflammasomes (NLRP3) in the nucleus, as well as the release of cytochrome c from the mitochondria.

Additionally, the activation of NF-kB causes a reduction in the activity of PPARβ/δ and PPARα, thereby leading to a decreased mRNA and protein levels of key

regulatory enzymes of fatty acid oxidation, which characterizes metabolic lipids dysregulation. Hence, the proposed therapeutic targets for the attenuation of acute

myocardial inflammation and metabolic lipids dysregulation may include; the inhibition of ADAM17 and NF-kB’s activation and enhancing the activities of PPARβ/δ and

PPARα.

three subtypes, namely; PPARα, PPARγ, and PPARβ/δ (61). Fatty
acids are well-known endogenous ligands of the PPAR family
(62). PPARβ/δ and PPARα are widely expressed on cardiac
cells, which serve as transcriptional regulators of myocardial
energy and lipid homeostasis (51). According to Planavila et al.,
activation of NF-kB caused a reduction in the expression of
pyruvate dehydrogenase kinase 4 (Pdk4), a target gene of
PPARβ/δ, which plays a vital role in fatty acid utilization and
palmitate oxidation. The reduction in the activity of PPARβ/δwas
proposed to be caused by the physical interaction between the
p65 subunit of NF-kB and PPAR β/δ during the phosphorylation
and activation of NF-kB (51). Also, a study carried out by Pellieux
et al., revealed that the activation of NF-kB is associated with
the downregulation of PPARα’s activity (52). Physiologically, the
activation of PPARα upregulates themRNA and proteins levels of
key regulatory enzymes of fatty acid oxidation, hence reduction
in its activity due to the activation of NF-kB decreases the levels of
these key enzymes, which includes; fatty acid translocase/cluster
of differentiation 36 (FAT/CD36), carnitine palmitoyltransferase
I (mCPT-I), medium-chain acyl-CoA dehydrogenase (MCAD),
and long-chain-acyl-CoA dehydrogenase (LCAD) (52, 63, 64).
Fatty acid enters the cell via FA transporters on the cell
membrane, including FAT/CD36 (65). Within the cell, the
conversion of long-chain fatty acyl CoA to an acylcarnitine
required for entry into the mitochondria is carried out by
mCPT-I (62). In the mitochondria, MCAD and LCAD play
vital roles in converting FA into energy during β-oxidation
(62, 66). Thus, these enzymes play crucial roles in the uptake
and utilization of FA. In short, activation of NF-kB subsequently
causes a reduction in FA oxidation via downregulation of
FA oxidation pathways. The decrease of FA oxidation in the
heart is accompanied by intramyocardial lipid accumulation
and reduced myocardial energy, characterizing myocardial lipids
dysregulation (9) (Figure 1).

THE SYNERGY OF ADAM17-INDUCED
ACUTE INFLAMMATION AND LIPIDS
DYSREGULATION IN TTC

Studies have shown that acute myocardial inflammation (13)
and lipotoxicity (9) are implicated in the pathogenesis of TTC.
It is well-known that cytokines released during inflammation
exert detrimental effects on the heart. Thus, cytokines like TNF-
α, IL-6, and IL-1ß cause cardiac necrosis and apoptosis (60)
and downregulate the expression of calcium (Ca2+)-regulating
genes, including sarcoplasmic reticulum Ca2+ ATPase (67) and
Ca2+-release channel (68), resulting in a direct negative inotropic

effect on the heart (69, 70). It is well-established that Ca2+

ions are responsible for the electrical activation and mechanical
contraction of the the myocardia (71), hence reduction in
intracellular Ca2+ coupling with cell death following acute
inflammation can lead to abnormalities in the contraction of
the left ventricle. Also, ADAM17-induced lipid dysregulation
under acute stress state is accompanied by intramyocardial lipid
accumulation and reduced myocardial production of adenosine
triphosphate (ATP) (9). Excessive accumulation of lipids in
the myocardia increases levels of toxic intermediates leading
to lipotoxicity (72). Low ATP production and lipotoxicity may
affect left ventricular function via abnormal cardiac contraction
development (72). In a nutshell, acute myocardial inflammation
coupling with lipids dysregulation triggered by active ADAM17
under acute stressful events may be the main inducers of
the transient wall motion abnormalities of the left ventricle
characterizing TTC, which is usually reversible after few days or
may progress to heart failure (Figure 2).

THERAPEUTIC TARGETS FOR TTC

As yet, there are no well-established therapeutic guidelines
specifically for treating TTC patients (73); however, based on
the broad knowledge gained from this concise review, potential
therapeutic targets for the treatment and management of TTC
might lie in the direct inhibition of ADAM17 and NF-kB
or indirectly antagonizing their activation and activities. The
most promising therapeutic inhibitors of ADAM17 includes
tissue inhibitor of metalloproteinase 3 (TIMP3), protein disulfide
isomerases (PDIs), and integrins (43). Remarkably, direct
injection of TIMP3 in the heart has been shown to downregulate
ADAM17’s activity by binding to its catalytic domain, thereby
inactivating it (74, 75). Also, PDIs can directly interact with
the MPD of ADAM17, where it catalyzes the isomerization of
two disulfide bridges, thus downregulating ADAM17’s activity
(76, 77). A study conducted by Bax et al., revealed that the
binding of intergrin α5β1 to ADAM17 via its disintegrin domain,
downregulated its activity by affecting its mediated cell adhesion
and migration (78). Aside from its natural inhibitors, a variety
of miRNAs, including miR-145 (79), miR-124 (80), miR-152
(81), and miR-326 (82), have been proven to downregulate
ADAM17’s expression and reduce its substrate release by directly
binding to the ADAM17 3′-UTR. Regarding NF-kB, there
are several approaches to inhibiting its transduction pathway,
including receptor inhibition, adaptor inhibition, IKK inhibition,
IkB stabilization, cytoplasmic retention, and transcription factor
inhibition (83). NF-kB inhibitors have been grouped into three
categories: biomolecular inhibitors, synthetic chemicals, and
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FIGURE 2 | A schematic representation of how acute myocardial inflammation, in combination with metabolic lipid dysregulation, contributes to takotsubo

cardiomyopathy. Elevated cytokines (TNFα, IL-6, IL-1β) and reduced fatty acid oxidation resulting from ADAM17-induced acute myocardial inflammation and

metabolic lipids dysregulation successfully lead to left ventricular abnormalities characterized by reduced intracellular calcium and adenosine triphosphate (ATP)

production; increased cell death (apoptosis/necrosis) and intramyocardial lipids accumulation (lipotoxicity), which are the main hallmarks of takotsubo cardiomyopathy.

natural products (and their derivatives) (83). Biomolecular
inhibitors include siRNAs, decoy oligonucleotides (containing
the kB site), ribozymes, the IkB super-repressor, interfering
peptides, and dominant-negative molecules (83). Most synthetic
chemicals are molecules engineered against components of the

IKK complex, which plays a central role in NF-kB activation
(84, 85). Natural products include a wide range ofmarine-, plant-,
andmicrobe-derived compounds that target different steps in the
NF-kB pathway (86–88). These natural products are categorized
into three main groups; IKK inhibitors, antioxidants, and
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thiol-reactive compounds that can target several stages of the
NF-kB signaling pathway. Among 19 drugs reported in previous
studies, digitoxin, ectinascidin 743, ouabain, chromomycin A3,
and bortezomib were the most potent NF-kB inhibitors (89). The
inhibition of ADAM17 and NF-kB is key in attenuating acute
myocardial inflammation and lipids dysregulation, which are the
hallmarks of TTC (Figure 1).

Additionally, the usage of pharmacologic agents capable
of enhancing the activities of PPARβ/δ and PPARα might
be a promising target for the treatment and management of
TTC by preventing the reduction of key regulatory proteins
of FA oxidation via two different mechanisms (52). The first
mechanism involves direct activation of the transcription of
target genes by binding to peroxisome proliferator responsive
elements in the promoter region (52). The second mechanism
is a direct interaction with transcription factors involved in the
hypertrophic response, including NF-kB and activator protein 1
(AP-1), which may, directly or indirectly, contribute to reducing
the proteins of FA oxidation (90). Studies suggest that the activity
of PPARα can be enhanced by fibrate hypolipidemic drugs
(91, 92). However, there are currently no commercially available
drugs capable of enhancing the function of PPARβ/δ (92).
The maintenance of optimal levels of key regulatory proteins
of FA oxidation is vital in ameliorating cardiac function via
the attenuation of lipotoxicity and increasing myocardial ATP
production (Figure 1).

CONCLUSIONS AND FUTURE
PERSPECTIVES

Although TTC is considered a unique and interesting
cardiomyopathy due to its reversible nature, it is still

underappreciated among clinicians and researchers. Several

promising pathophysiologic theories have been suggested,
but this condition’s exact underlying mechanistic processes
remain unclear. This concise review has provided some general
insights into this disease’s pathogenesis; however, considering the
prevalence in postmenopausal women, TTC could be linked to
the modulation of acute myocardial inflammation and metabolic
lipids dysregulation by sex hormones and the endocrine system
at large. Thus, much remains to be discovered about TTC.
Hence many areas require further exploration to understand this
multifaceted cardiomyopathy perfectly.
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