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ABSTRACT Here, we report the genome sequences of one Achromobacter and four
Pseudomonas strains isolated from sediments of the River Elbe which are highly
tolerant toward the xenobiotic target compound diclofenac, a nonsteroidal anti-
inflammatory drug (NSAID) and emerging contaminant.

Diclofenac, an over-the-counter medication used in many countries, has a yearly
production volume of about 90 tons in Germany and 800 tons in India. Insufficient

removal by wastewater treatment plants has led to an increasing occurrence of
diclofenac, as well as that of other pharmaceuticals and personal care products (PPCPs),
in surface waters such as the River Elbe in Germany (1). Moreover, its toxic effects
toward microbes as well as higher organisms (2, 3) have converted diclofenac into an
emerging contaminant.

Isolates were obtained from enrichment cultures of sediment samples from the River
Elbe downstream of the Hamburg harbor (4) with 0.5 mM diclofenac as the sole carbon
and energy source. Bacteria growing in the presence of diclofenac were isolated
and identified by sequencing the corresponding 16S rRNA genes. A MIC(s) study with
various concentrations of diclofenac in lysogeny broth (LB) medium showed that the
isolates RW405 and RW409 grew at concentrations greater than 1,500 mg/liter, but
RW407, RW408, and RW410 grew only in a range between 750 and 1,200 mg/liter.

To characterize each isolate, pure cultures of each strain were grown overnight at
30°C in LB medium under agitation. Total genomic DNA was extracted using the Wizard
genomic DNA purification kit (Promega). The quality and quantity of the DNA were
assessed with the Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific). To
obtain the draft genome of each isolate, 300-bp paired-end sequencing libraries were
prepared using the Illumina Nextera XT DNA library version 3 sample preparation kit,
and sequencing was performed with the Illumina MiSeq platform at the Center for
Scientific Instrumentation of the University of Granada (Spain). Sequence reads were
assessed for quality using FastQC (Babraham Bioinformatics, Q � 30), filtered using Trim-
momatic (5), and assembled de novo with Velvet (version 1.2.10) and VelvetOptimiser
(version 2.2.5) (6) within a customized workflow on Galaxy (http://galaxy-mel.genome.edu
.au/galaxy/). The contigs obtained were further annotated with the Rapid Annotations
using Subsystems Technology (RAST) server version 2.0 (7), and for submission to
GenBank, gene annotation was performed using the NCBI Prokaryotic Genome Anno-
tation Pipeline (PGAP) (8).

Genome sizes vary between 5,862 and 7,346 Mbp and GC contents from 61.8 to
67.6% (Table 1). Taxonomy was determined by comparing 16S rRNA gene sequences in
EzBioCloud (9) and the rpoD, recA, and gyrB genes (10) with a BLAST search (11). As
possible mechanisms for diclofenac tolerance, the isolates harbored between 35 and 46
genes related to efflux mechanisms for multidrug resistance and between 143 and 240
genes related to the metabolism of aromatic compounds, which constitute between 0.6
and 0.7% and 2.4 and 3.8% of the total number of genes, respectively. Pairwise
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similarity between the genomes as determined by average nucleotide identity (ANI)
with the OrthoANIu tool (12) ranged between the pseudomonad genomes from 76.6 to
82% and between the pseudomonads and the Achromobacter strain from 69.2 to
70.7%, which are all well below the 95 to 96% species threshold (13).

Data availability. The whole-genome sequences have been deposited in DDBJ/ENA/
GenBank under the accession numbers listed in Table 1. The versions described in this
paper are the first versions.
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TABLE 1 Characteristics and accession numbers of genomes of the diclofenac-tolerant bacterial isolates

Isolate Bacterial speciesa
Genome
size (bp)

No. of
contigs N50 (bp)

Total no.
of genes

G�C
content
(%)

No. of genes
related to
efflux systemsb

No. of genes related
to metabolism of
aromatic compoundsb

GenBank
accession no.

RW405 Pseudomonas putida 5,862,946 33 127,964 5,612 61.8 35 152 QHJD00000000
RW407 Pseudomonas citronellolis 7,346,097 108 38,667 6,724 67.4 37 256 QGSL00000000
RW408 Achromobacter xylosoxidans 6,532,250 49 57,962 6,060 67.6 44 143 QHHO00000000
RW409 Pseudomonas chlororaphis 7,154,805 42 130,324 6,555 62.5 46 171 QHHP00000000
RW410 Pseudomonas aeruginosa 6,529,102 74 120,648 6,289 66.2 42 166 QGSM00000000
aStrain identification by �99% similarity with 16S rRNA and �97% with the rpoD, recA, and gyrB genes.
bAccording to annotation with the RAST server.
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