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Abstract: Breast density has been recognised as an important biomarker that indicates the risk of
developing breast cancer. Accurate classification of breast density plays a crucial role in developing
a computer-aided detection (CADe) system for mammogram interpretation. This paper proposes
a novel texture descriptor, namely, rotation invariant uniform local quinary patterns (RIU4-LQP),
to describe texture patterns in mammograms and to improve the robustness of image features.
In conventional processing schemes, image features are obtained by computing histograms from
texture patterns. However, such processes ignore very important spatial information related to the
texture features. This study designs a new feature vector, namely, K-spectrum, by using Baddeley’s
K-inhom function to characterise the spatial distribution information of feature point sets. Texture
features extracted by RIU4-LQP and K-spectrum are utilised to classify mammograms into BI-RADS
density categories. Three feature selection methods are employed to optimise the feature set. In our
experiment, two mammogram datasets, INbreast and MIAS, are used to test the proposed methods,
and comparative analyses and statistical tests between different schemes are conducted. Experimental
results show that our proposed method outperforms other approaches described in the literature,
with the best classification accuracy of 92.76% (INbreast) and 86.96% (MIAS).

Keywords: breast density classification; mammography; local quinary patterns; spatial distribution
analysis; texture features

1. Introduction

Mammography screening is the most reliable and widely used method for observing
breast lesions and evaluating breast health, and has been demonstrated to be effective for
preventing breast cancer in its early detection stage. Breast density classification relates to
measuring the amount of radiodense tissue (i.e., fibroglandular tissue) in mammograms
and producing an important biomarker for indicating the risk of developing breast cancer
in the future. Related clinical work shows that women with dense breast could face four-
to six-fold higher risk than other women with low density [1]. Different metrics have
been proposed and used to classify breast density, including six-class-categories (SCC) [2],
Wolfe’s four categories [3], and breast imaging-reporting and data system (BI-RADS) [4].
BI-RADS criterion proposed by the American College of Radiology (ACR) has been widely
used in clinical applications and includes four density categories: fatty (i.e., BI-RADS I),
scattered density (i.e., BI-RADS II), heterogeneously dense (i.e., BI-RADS III), and extremely
dense (i.e., BI-RADS IV). However, current clinical workflow heavily depends on radiolo-
gists’ subjective visual assessment, which is known to cause both inter- and intraobserver
disagreements [5].

AI-driven classification algorithms have the potential to contribute to radiologists’
workflow by offering a secondary perspective of evaluating breast density. An automated
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breast density estimation method usually contains the following key steps: (1) extracting
discriminative image features related to target density labels, (2) feature selection and
parameter optimisation, (3) training a machine-learning-based classification model, and
(4) predicting density labels for test images. As such, extracting effective features in
mammograms plays an important role in obtaining accurate classification results. For
breast density classification, relevant features can be broadly grouped into three types:
heterogeneous features, deep-learning-based features, and texture descriptors.

Methods using heterogeneous features try to collect multiple image features, including
image intensity, morphological features, entropy, texture features, etc., and combine them
into one feature vector for classifying mammograms. Mario et al. [6] extracted mammo-
gram image features based on image intensity, histograms, and grey-level co-occurrence
matrix (GLCM). They also used Wrappers to select relevant features for improving the
classification accuracy. Li et al. [7] extracted 137 pixel-level features containing intensity,
GLCM, and morphological features, to group pixels into fatty or dense classes. In [8],
intensity, texture, and morphological features were combined to develop a binary classifica-
tion framework similar to that given in [7]. Statistical features including mean, standard
deviation, smoothness, third moment, uniformity, and entropy were extracted in [9] to
classify mammographic density into three groups. Qu et al. [10] proposed a fuzzy–rough re-
fined image processing method to enhance local image regions and extracted GLCM-based
statistical features for classifying breast density. Tzikopoulos et al. [11] extracted image
features based on intensity and fractal texture, and SVM was used to classify mammograms
into three categories. A multiresolution histogram method was used to analyse texture
features in [12], and mammograms were classified into three density categories using a
directed acyclic graph (DAG)–SVM classifier. In [13], different texture feature sets were
investigated separately, including LBP, local grey-level appearance (LGA), textons (MR8
texton and image-patch texton), and basic image features (BIF). Their experimental results
indicated that image-patch texton features performed better for four BI-RADS density
categories classification. A lattice-based approach [14] was proposed to extract statistical
and structural features for analysing parenchymal texture in mammograms.

Deep-learning methods have been used recently to analyse medical images for both
classification and segmentation tasks with promising results. For evaluating breast den-
sity, convolutional neural networks (CNN) were applied to manage binary classification
tasks. An AlexNet-based CNN model was proposed in [15] to distinguish two BI-RADS
categories (‘scattered density’ and ‘heterogeneously dense’). Ahn et al. [16] designed a
CNN architecture to extract features from mammogram patches and to classify them into
dense and fatty groups. In [17], a fully convolutional network (FCN) was used to segment
breast region and fibroglandular areas, based on which a percentage density was estimated.
A deep convolutional neural network (DCNN) was used to classify mammographic pixels
into fatty or dense class in [7]. Li et al. [18] proposed a CNN-based radiomics method
combined with dilated convolutions and attention mechanisms to extract high-throughput
features that were used to classify mammograms into four BI-RADS density categories. One
limitation of applying deep-learning methods for mammogram classification task is that
they require a huge number of training images with accurate annotations by clinicians [19].

Recent study using texture descriptors such as local binary patterns (LBP) and their
variants have shown promising classification performance with over 80% accuracy. The
local binary patterns (LBP) method was first proposed in [20] to describe image texture
patterns. Owing to its simplicity and efficiency, LBP has been studied widely and new
variants were proposed for extracting texture features and classifying medical images.
In [21], LBP was extended to elliptical LBP (ELBP) and mean-elliptical LBP (M-ELBP) by
considering various neighbourhood topologies and different local region scales. M-ELBP
presented a desirable classification result (77.38 ± 1.06) on an MIAS dataset. Tan et al. [22]
proposed local ternary patterns (LTP) using a three-value encoding approach compared to
two-value encoding of LBP. Then, Rampun et al. [23] extracted LTP-based texture features
to classify MIAS mammograms into four BI-RADS categories. Nanni et al. [24] proposed



Sensors 2022, 22, 2672 3 of 25

local quinary patterns (LQP) by extending LBP from a binary encoding system to a five-
value encoding system, and used three different medical image classification tasks to
test this new texture descriptor. Subsequently LQP was investigated and extended with
multiresolution and multiorientation schemes in [25] to classify mammographic density.
Their experimental results have shown that the use of LQP-based texture features helps
improve the overall classification accuracy. In a recent study, Rampun et al. [26] tried the
local septenary patterns (LSP) method by using seven-value encoding approach to further
improve the classification performance. Their experimental results demonstrated that
classification accuracy was slightly improved by using LSP compared to LQP (80.5 ± 9.2 vs.
80.1 ± 10.5 on INBreast), but this improvement was not statistically significant (p = 0.45).

Through reviewing relevant feature extraction methods above, we can find that mul-
tilabel (three or four) classification is challenging work with only a few reported results
surpassing 80% accuracy. The work in [11,12,21] reported accuracy around 77% for clas-
sifying MIAS mammograms into three density categories; experimental results in [6,13]
showed 79% and 75% accuracy for four categories classification on the same dataset. A
recent study based on texture analysis using LBP variants has shown promising classifi-
cation performance with over 80% accuracy. LTP, LQP and LST were used in [23,25,26]
and obtained the accuracy of 82%, 86%, and 83%, respectively, with four density categories
classification on MIAS. When testing the INbreast dataset, classification accuracy of 82.02%
and 80.10% were seen by using LQP-based texture features [25,26].

However, the use of LBP and its variants for feature extraction have some limitations
that can affect the accuracy of results: (1) For capturing more local texture information,
increasing the number of neighbouring pixels and a multiscale scheme are usually used, but
they lead to an exponential increase in the number of features (i.e., high feature dimension-
ality). (2) The conventional rotation invariant uniform method (i.e., ‘RIU2’) can reduce the
high feature dimensionality, but it also suppresses some important/distinguishing features
and lowers the accuracy of classification results. (3) Most approaches in the literature ex-
tract texture information by computing histograms. Histograms offer quantity information
of features but ignore their spatial distribution characteristics, which may contain other
important and complementary information related to mammographic density. (4) Related
work in this field did not give much attention to feature optimisation after collecting the
initial feature set, while a proper feature selection method could optimise the feature vector
and improve the accuracy of results.

Motivated by relevant work and a comparison of their performance characteristics, this
study chooses LQP as the base feature extraction method, and two improvement schemes
called RIU4-LQP and K-spectrum are proposed to develop a more robust and efficient
texture descriptor for mammogram analysis. Focusing on the breast density classification
task, the main contributions of this paper include:

1. A novel texture descriptor, namely, rotation invariant uniform local quinary patterns
(RIU4-LQP), is proposed by developing a uniform rotation invariant version of LQP
and considering a higher number of bit transitions while computing the invariant
descriptors. To the best of our knowledge, this is the first study that extends the
uniform encoding technique by using the transition number of four.

2. In addition to LQP feature histograms, we address a spatial feature extraction frame-
work using Baddeley’s K-inhom function, which outputs a new feature vector called
K-spectrum.

3. A new feature space is proposed by concatenating RIU4-LQP histograms and K-
spectra and is used in the mammographic density classification model.

4. Machine-learning-based feature selection methods are employed to optimise the initial
texture feature set, which does not only reduce the high feature dimensionality but
also lead to a better classification performance.

5. We empirically proved the effectiveness of the proposed classification model on two
publicly available mammogram datasets. Experimental results indicate that the extra
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spatial distribution features considered in this work are beneficial to the improvement
of the classification accuracy.

The remaining part of this paper is organised as follows. Section 2 introduces the
datasets used in this study. Research methods including the development of pre-processing
methods, feature extraction schemes, feature selection algorithms, and the classification
model are described in Section 3. Parameter optimisation is introduced in Section 4.
Experimental results and discussion are given separately in Sections 5 and 6. Section 7
summarises the paper.

2. Materials

To test the proposed methods, two mammogram datasets INbreast [27] and MIAS [28]
containing different image types and using different density classification criteria, are used
in our experiments.

INbreast [27] is a full field digital mammogram (FFDM) dataset and consists of 410 im-
ages from 115 cases, including bilateral mediolateral oblique (MLO) and craniocaudal (CC)
views. Each image is saved in the DICOM format and in size of 3328 × 4084 or 2560 × 3328
pixels, depending on the compression plate used in the acquisition. This dataset offers
carefully associated ground truth (GT) annotations made by a specialist in the field and
validated by a second specialist. For each mammogram, its density is labelled as one out of
four BI-RADS categories (BI-RADS I-IV). Images distribution with their density labels are
as follows: 136 (BI-RADS I), 146 (BIRADS II), 99 (BI-RADS III), and 28 (BI-RADS IV).

MIAS [28] is a scan field mammograms (SFM) dataset, containing 322 images taken
from 161 women, with only MLO views on both sides from the UK National Breast
Screening Programme. Each mammogram is at 50 micron resolution in portable grey map
(PGM) format. All images are associated with density ground-truth labels of three classes:
fatty (F), fatty-glandular (G), and dense-glandular (D). There are 106 images belonging to
fatty group, 104 and 112 images to the fatty-glandular and dense-glandular classes. Figure 1
shows sample images belonging to each density category from the two datasets.
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3. Methodology

This paper proposes a novel texture descriptor called rotation invariant uniform local
quinary patterns (RIU4-LQP) to describe texture patterns in mammograms. In addition to
histogram information, this study further explores richer statistical information extracted
from the RIU4-LQP feature set by using Baddeley’s K-inhom method [29]. A new feature
vector called K-spectrum is developed based on the extracted spatial information, which
offers supplementary and important image features. Histograms and K-spectra are first
extracted and tested separately and then are combined together to create a new texture
feature space. A novel feature selection step is considered carefully in this study for
removing redundant image features. An overview of the workflow using our proposed
methods is shown in Figure 2, and more details are given in the following sections.
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3.1. Pre-Processing

This pre-processing step contains breast area segmentation, denoising operation, and
resizing the image. Breast segmentation is first applied to remove nonbreast areas such
as background region, pectoral muscle, and label artefacts. A multifractal-method-based
feature-enhanced image [30] is used to highlight the contrast between image background
and the breast tissue region. The intensity thresholding method and morphological op-
erations [31] are used to separate breast region and artefacts from the background. The
label artefacts can be removed by keeping only the largest connected area (breast region).
K-means algorithm and polynomial fitting approach [32] are employed to eliminate pectoral
muscle from the breast region in MLO view mammograms. A median filter of 3 × 3 size is
used to reduce noise. Finally, mask images are obtained, which are used to extract image
features only from the region of interest (breast area) in the following steps. As relative
work [16,17] reported promising classification results using resized mammogram images,
this study applies the bicubic interpolation method to resize processed images with a
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scale factor s [33], resulting in a resized image that is s times the size of original image.
Figures 3 and 4 show some examples of segmenting breast region from image background
using INbreast and MIAS mammograms, respectively. For the MIAS dataset that only
contains MLO view images, relative work [21,34] demonstrated that using a cropped square
region of interest (ROI) produces a better classification result. This study therefore uses a
similar method as that in [34] to obtain the ROIs in MIAS. Figure 5 illustrates ROI extraction
in MIAS mammograms. A detailed introduction of this pre-processing stage can be found
in Supplementary Materials.
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3.2. Local Quinary Patterns (LQP) and RIU4-LQP

Ojala et al. [20] proposed LBP to describe local image structure and to extract texture
features. Nanni et al. [24] proposed LQP by extending LBP from a binary value encoding
scheme to a 5-value encoding algorithm. LQP uses values −2, −1, 0, 1, and 2 to describe
the relations between the intensity values of a central point and its neighbours. Each LQP
code can be split to 4 LBP patterns, capturing more detailed texture information. Thus,
for analysing medical images such as mammograms that contain regions of subtle texture
differences, texture features extracted by LQP are more informative to be used to improve
the classification accuracy. To implement the LQP operator, two threshold values {τ1, τ2}
are required for generating a 5-value encoding pattern. The calculation of LQP code can be
described as follows:

LQPi(c, R, P) =
P−1

∑
p=0

si(Ip − Ic)2p, i = 1, 2, 3, 4 (1)

s1(x) =
{

1, i f d(x) = 2
0, otherwise

(2)

s2(x) =
{

1, i f d(x) = 1
0, otherwise

(3)

s3(x) =
{

1, i f d(x) = −1
0, otherwise

(4)

s4(x) =
{

1, i f d(x) = −2
0, otherwise

(5)

d(x) =



2,τ2 ≤ x

1,τ1 ≤ x < τ2

0,−τ1 ≤ x < τ1

−1,−τ2 ≤ x < −τ1

−2,x < −τ2

(6)

where R denotes the radius of a circular neighbourhood of the centre pixel c and P is the
number of neighbourhood pixels used to calculate LQP code. Ip and Ic are intensity values
of the pth neighbour pixel and the centre pixel c, respectively. From a specific position
(usually the top-left corner) the binary values given by si(x) are gathered in a specific
sequence (usually in clockwise order) to obtain the LQPi codes. Figure 6 illustrates how the
LQP operator works in a local region with R = 2 and P = 16. After obtaining the 5-value
pattern, it is split into 4 binary patterns by si(x) in Equations (2)–(5).

LQP produces a high feature dimensionality given by 2P+2, which increases exponen-
tially with P. A large feature space cannot be utilised efficiently to train a classification
model, and information redundancy in the feature set can have a negative impact in the
final classification performance. To resolve the high dimensionality problem, one option
is to use a rotation invariant strategy to extend LQP to rotation invariant uniform LQP
(RIU2-LQP) [35]. However, RIU2-LQP suppresses too much texture information (from
2P + 2 to 4× (P + 2)) which may in turn reduce the final classification performance (Figure 6).
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Under the consideration discussed above, this paper extends LQP to RIU4-LQP by
analysing the transition number in a wider range. RIU4-LQP allocates different codes to
binary patterns with two ‘1’-contiguous segments (e.g., patterns 2–4 in Figure 6), which
captures richer image representations of texture patterns compared to RIU2-LQP. The
proposed RIU4-LQP encoding scheme can be formulated by following equations:

LQPriu4
i (c, R, P) =


∑P−1

p=0 si(Ip − Ic), i f Ti(LQP(c, R, P)) ∈ {0, 2}
P + index, i f Ti(LQP(c, R, P)) = 4⌈

P2+11
4

⌉
− 1, otherwise

(7)

Ti(LQP(c, R, P)) = |si(IP−1 − Ic)− si(I0 − Ic)| +
P−1

∑
p=1

∣∣si(Ip − Ic)− si(Ip−1 − Ic)
∣∣ (8)

index =

{
∑X−1

n=1 (P− 3− 2(n− 1)) + (Y− X + 1), i f X ≥ 2
Y− X + 1, i f X = 1

(9)

where i ∈ {1, 2, 3, 4}; Ti(·) is defined as the number of spatial transitions (bitwise 0/1 changes)
in patterns. X and Y denote the number of occurrences of ‘1’ (defined by si(x)) in two distinct
contiguous segments when T = 4 (e.g., Figure 6, pattern 2–4). We impose a restriction with
respect to the relationship between X and Y: X always denotes the shorter ‘1’-contiguous
segment, i.e., X ≤ Y, for example, the pattern-3 in Figure 6: X = 2, Y = 3. Equation (7)
contains three parts to correspond to different bit transitions (i.e., the value of T) for
recognising and encoding texture patterns. The first part (i.e., the first row of Equation (7))
is same with RIU2-LQP for distinguishing texture patterns that have none or only one
‘1’-contiguous segment (e.g., the pattern-1 in Figure 6). The second part of Equation (7)
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aims to encode texture patterns with two ‘1’-contiguous segments (e.g., patterns 2–4 in
Figure 6). As the encoding values from 0 to P have been allocated with the condition of
T ∈ {0, 2}, the output code starts from P and adds the value of index, which counts from
1 using Equation (9). The value of index is used to recognise and label those texture patterns
when T = 4, for example, index = 1 with the pattern of X = 1, Y = 1; index = 2 with the pattern
of X = 1, Y = 2; and so on. The third part of Equation (7) uses a unified code to denote all
the other texture patterns. By using the proposed RIU4-LQP encoding method, RIU4-LQP
codes are allocated to different texture patterns shown in Figure 6.

3.3. Rotation Invariant Property of RIU4-LQP and Its Utilisation

The basic LQP method is not rotation invariant. When the processed image is rotated,
the neighbour pixels Ip will correspondingly move along the perimeter of the circle around
Ic (Figure 7). Since the binary coding sequence of LQP always begins from a pre-designated
and fixed position, e.g., to the top-left of Ic, rotating a particular binary pattern naturally
results in a different LQP code.
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Figure 7. Different local texture structures are described by LQP variants using 8 neighbour pixels
Ip with the central pixel Ic marked in red. Black points represent ‘0’ in the circular bit patterns and
white points represent ‘1’. (a) Microstructures of spots and edges can be captured by both RIU2-LQP
and RIU4-LQP. (b) Microstructures of thin stripes are effectively represented by RIU4-LQP but not by
RIU2-LQP.

To remove the effect of rotation, the function Ti(·) that measures bit transitions is used
in Equation (8) for defining uniform patterns. In our proposed variant, the uniform patterns
refer to circular structures that contain extended spatial transition conditions (i.e., T = 0,
2, 4, or others), such as patterns shown in Figure 6 with T = 2 or 4. By using Ti(·) and
Equation (7), the encoding system works by recognising different ‘1’-sequence patterns
without considering a fixed binary order, thus achieving rotation invariance. For example,
when T = 2, the binary sequences ‘00111100’ and ‘00001111’ share the same RIU4-LQP
code of 4, presenting a microstructure of an edge, while in the basic LQP, they have two
different code values of 60 and 15. Similarly, when T = 4, the sequences of ‘11001110’ and
‘11101100’ share the same RIU4-LQP code of 15, as the related ‘1’- sequence patterns are
same (with X = 2, Y = 3 using Equation (9)). In addition, under the condition of T = 4,
some microstructures presenting thin stripe shapes with two-sided edges are captured
by RIU4-LQP, but failed to be represented by LQP or RIU2-LQP. In mammograms, such
local structures are commonly observed in regions with fibroglandular tissues that relate
to breast density. Figure 7 illustrates the typical texture structures captured by RIU4-LQP.
Based on this design, we assume that the proposed RIU4-LQP possibly captures more
structural details for mammographic images, and this argument is tested and demonstrated
in the following experiments.
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The proposed RIU4-LQP reduces the feature dimensionality from 2P + 2 to P2 + 11.
Meanwhile, compared to RIU2-LQP, more texture patterns are included in the extracted
features by considering a higher number of bit transitions. Figure 6 gives the comparison
between RIU2-LQP and RIU4-LQP codes on same patterns. Figure 8 shows RIU4-LQP
images in different texture pattern channels by substituting corresponding RIU4-LQP codes
for pixel intensities and their histogram-based feature vectors.
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3.4. Baddeley’s K-Inhom Function

In conventional applications of texture descriptors [21,25,26,34], image texture features
are represented by histogram information that counts the quantity of feature points but
ignores their spatial distribution characteristics (Figure 9). This study employs Baddeley’s
K-inhom method [29] to extract spatial information based on RIU4-LQP feature points. The
K-inhom method is a variant of Ripley’s K function [36], and both are statistical analysis
schemes used for studying qualitative or quantitative characteristics of spatialised data.
Generally, K-inhom function for one-dimensional data can be described as follows:

Kinhom(r) =
1
D ∑

i
∑
j 6=i

1
{
‖xi − xj‖ ≤ r

}
λ̂(xi)λ̂(xj)

c(xi, xj; r) (10)

D =
1
|W|∑i

1
λ̂(xi)

(11)

c(xi, xj; r) =
1{bi > r}

∑
j
(1
{

bj > r
}

/λ̂(xj))
(12)

where 1{||xi−xj|| ≤ r} denotes an indicator that takes a value 1 if the distance between
point xi and point xj is less than or equal to r or 0; otherwise, r is a distance measure; c(xi;
xj; r) corresponds to the correction of edge effects and W to the region of interest; and bi
is the distance from xi to the boundary of W. The function c(xi; xj; r) is implemented as
in [37] for border corrections. λ(xi) denotes an intensity function around point xi, which
is defined by the number of neighbour points (xj) expected in a small area (using the
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radius of r) with xi in the centre, but λ(xi) is not known in practice. Instead, ‘λ̂(xi)’ is
used in Equations (10) and (11) as the estimation of λ(xi), which is implemented by a
nonparametric method [29]. More details concerning Baddeley’s K-inhom function and
its implementation can be found in [29,38]. The ‘spatstat’ package [38] in R is used to
implement Baddeley’s K-inhom method. Values of Kinhom(r) are calculated with different
distance measurements (r), which result in a Kinhom curve by connecting all the observed
values of Kinhom(r) (Figure 10). In [37,38], an expected reference value Kpois(r) = πr2 (the red
dotted line in Figure 10) obtained based on an inhomogeneous Poisson process, is used to
compare with the observed Kinhom(r) value. If the Kinhom curve is located below the reference
curve (i.e., Kinhom(r) < Kpois(r)), it indicates that corresponding points scatter regularly in
the region of interest. By contrast, if the Kinhom curve is located above the reference curve
(i.e., Kinhom(r) > Kpois(r)), the distribution of points tends to be more aggregated. Therefore,
the Kinhom curve can be used to describe the spatial distribution characteristics of a point
set. As this paper focuses on mammogram image analysis, we use the segmented breast
region as the region of interest W (Figure 10). The pixels decomposed by RIU4-LQP code
values (Figure 9) constitute feature point sets in different code channels, which produce
their Kinhom curves separately and show corresponding spatial characteristics.
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found in [29,38]. The ‘spatstat’ package [38] in R is used to implement Baddeley’s K-inhom 
method. Values of Kinhom(r) are calculated with different distance measurements (r), which 
result in a Kinhom curve by connecting all the observed values of Kinhom(r) (Figure 10). In 
[37,38], an expected reference value Kpois(r) = πr2 (the red dotted line in Figure 10) obtained 
based on an inhomogeneous Poisson process, is used to compare with the observed 
Kinhom(r) value. If the Kinhom curve is located below the reference curve (i.e., Kinhom(r) < Kpois(r)), 
it indicates that corresponding points scatter regularly in the region of interest. By con-
trast, if the Kinhom curve is located above the reference curve (i.e., Kinhom(r) > Kpois(r)), the dis-
tribution of points tends to be more aggregated. Therefore, the Kinhom curve can be used to 
describe the spatial distribution characteristics of a point set. As this paper focuses on 
mammogram image analysis, we use the segmented breast region as the region of interest 
W (Figure 10). The pixels decomposed by RIU4-LQP code values (Figure 9) constitute fea-
ture point sets in different code channels, which produce their Kinhom curves separately and 
show corresponding spatial characteristics. 

 

Figure 9. Decomposition of the RIU4-LQP1 image in Figure 8 based on each encoding channel. The
positions of pixels in each RIU4-LQP1 code channel considered are marked by white points in the
black breast region background.
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3.5. K-Spectrum of RIU4-LQP

This paper proposes a new texture feature vector called K-spectrum that is based
on the Kinhom curve representing the spatial distributions of texture feature point sets in
mammograms. The RIU4-LQP operator is used to produce a RIU4-LQPi code set {code-1,
code-2 , . . . , code-k}. Subsequently, pixels in breast region W are decomposed into k different
point sets {X1, X2, . . . , Xk} by corresponding RIU4-LQPi code values (Figure 9). Baddeley’s
K-inhom function is adopted to output a Kinhom curve for each point set Xi, which reflects
how these points are scattered in the breast region with respect to a specific distance measure
(r). As introduced in the last section, a reference curve Kpois(r) is used for comparing with
the observed Kinhom curve. Therefore, this study uses a deviation (d) between the observed
Kinhom(r) value and the reference value Kpois(r) under the radius r and its mean (d) on a valid
r range to evaluate the spatial distribution information of point sets. The deviation d and
the mean d are computed as follows:

d(r) = Kinhom(r)− Kpois(r) (13)

Kpois(r) = πr2 (14)

di =
∑s

r=1 di(r)
s

, i = 1, 2, . . . , k. (15)

All the means (d1, d2, . . . , dk) are concatenated to form a new feature vector called
‘K-spectrum’. Figure 11 shows how the K-inhom function works in mammogram images
with the proposed procedures and generates the K-spectrum.
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3.6. Feature Selection

As introduced in the first section, the initial feature space usually is too large to be
used efficiently, and it is quite likely that some redundant features are contained within it.
Therefore, a feature selection step is necessary to optimise the initial feature set. This study
investigates three feature selection methods: dominant patterns set (DPS) [39], recursive
feature elimination (RFE) [40], and feature importance ranking (FIR) [41].

Guo et al. [39] proposed a dominant patterns set (DPS) method to construct a subset
of the initial feature set for filtering the most frequently occurring feature patterns. This
feature selection method has been used in [25,26] for reducing feature dimensionality.
In DPS, a set of dominant patterns of an image is defined as a minimum set that can
cover n% (0 < n < 100) of all patterns. To produce a subset, a bin-wise summation for all
the histograms of image features in a training set is performed first and this results in a
histogram (H) with U bins. Then, all the bins of histogram (H) are sorted in descending
order, and top M bins are selected using Equation (16):

argmin
M

M
∑

i=1
H(i)

U
∑

j=1
H(j)

≥ n% (16)

where U is the bins number in H and n is a threshold value by which M dominant patterns
are selected from H.

The RFE [40] method recursively removes features and builds a model on remaining
features. The model accuracy is used to identify which features contribute more than others
for predicting the target classes. The estimated best feature is assigned a rank score ‘1’, and
the least related features have the highest rank sores.

The FIR method [41] uses ensembles of decision trees (e.g., random forest) to compute
the relative importance of each attribute. An importance score is given for each feature to
indicate that certain features play more important roles than others in the class prediction.

All feature selection methods produce a new sequence of features ranked according
to their relevance/importance. The top (best) N features in this sequence can be selected
and used to test the corresponding classification performance with the training set, and an
N-feature set with the highest accuracy is the final feature vector used for the test set.

3.7. Classification

As related work [9,11,23,25,26] reported their best classification results by using SVM
to predict target labels of mammographic density, SVM is used in this study for training
the classification model and producing classification results on test images. Since this
classification work aims to classify mammograms into multiple density categories (three or
four), a multiclass SVM that is implemented by the one against all (OAA) method is used
in this model. To obtain the optimum classification results, the three kernels used most
often, RBF, Poly, and Sigmoid, are tested in this work. The grid-searching method is used
to find the best combinations of parameters (gamma, C, and degree).

4. Parameter Optimisation

The methods used in the proposed classification model involve several parameters that
affect the classification results differently. This section summarises the relevant parameters
in different processing steps and addresses the test and optimisation methods.

4.1. Relative Parameters

The parameters and the range of their initial values are listed in Table 1. In the pre-
processing stage, a scaling parameter s is selected from a set of {1, 1/2, 1/4, 1/8, and
1/16} by testing different mammogram datasets. Comparative analysis is conducted in our
previous work [33] and the same settings of s are used. When using RIU4-LQP to extract
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the feature set, a multiscale strategy is used for capturing richer image representation.
Referring to related work in [25], three pairs of (R, P) with corresponding settings shown
in Table 1 are used. The LQP-based method needs two extra threshold values {τ1, τ2} in
its encoding system, which requires manual determination. An automatic approach is
proposed in [42] by considering central pixel’s intensity (Ic). Similarly, we introduce the
following empirical rules for adaptively deciding τ1 and τ2: τ1 = Ic × 2% and τ2 = Ic × 7%.
For calculating the K-spectrum feature vector, different values of the distance measure (r)
are used to produce the Kinhom curve (i.e., the Kinhom curve in Figure 10). Valid r values
rely on the region of interest (W) (i.e., the segmented breast region), which does not have a
uniform size among different mammograms. After comparing the observed r-ranges on
all images in the dataset, a maximum valid r-range 1~25 is found and used to generate
K-spectra. In the feature selection step, as the concrete values of (Ri, Pi) of RIU4-LQP are
designated in Table 1, the feature dimensionality (n1 and n2) of feature sets can be obtained
by Equations (7)–(9).

Table 1. Parameters and their value ranges used in different steps.

Method Related Parameters

Image pre-processing 1. Resizing scale s = 0.125 (on INbreast) and 0.5 (on MIAS)
2. Median filter size: 3 × 3

RIU4-LQP
In multiscale method, three pairs of (R, P) are used:

1. (R1 = 2, P1 = 10), (R2 = 4, P2 = 14), (R3 = 8, P3 = 18)
2. Threshold values {τ1, τ2} are decided by an adaptive method

K-inhom function 1. Valid r-range: 1~25

Features selection
Initial features number:

1. n1 = 656 (histogram or K-spectrum features)
2. n2 = 1312 (concatenated features)

SVM classifier

For grid-searching:
1. Kernel candidates: RBF/Poly/Sigmoid

2. γ searching range: [10−4, 103]
3. C searching range: [10−3, 104]

4. Degree (only Poly kernel) searching range: {1, 2, 3, 4, 5, 6}

4.2. Selection of r-Range in K-Spectrum

As shown in Table 1, the maximum valid r value range 1~25 is extracted when applying
Baddeley’s K-inhom method in mammograms. Since there is no guarantee of the maximum
range that is most effective for K-spectrum features, we narrow this maximum r-range by
five-unit intervals, and five subranges are generated and tested for obtaining the optimal
K-spectrum. Figure 12 shows that the highest classification accuracy (CA) is 0.83 and the
highest AUCROC is 0.95 by using the r-range of 1~10 on INbreast dataset. Therefore, we
use this r value range as the optimum distance measurement for producing K-spectrum in
the following experiments.
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4. Degree (only Poly kernel) searching range: {1, 2, 3, 4, 5, 6} 
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4.3. Grid-Searching Results for SVM Classifier

We consider three kernels (RBF, Sigmoid, and Poly) and different value ranges of other
parameters (gamma, C, and degree) for the SVM classifier, as given in Table 1. The best
combination of the kernel and parameters are found by grid-searching on two datasets
(Figure 13).

Sensors 2022, 22, x FOR PEER REVIEW 16 of 27 
 

 

4.3. Grid-Searching Results for SVM Classifier 
We consider three kernels (RBF, Sigmoid, and Poly) and different value ranges of 

other parameters (gamma, C, and degree) for the SVM classifier, as given in Table 1. The 
best combination of the kernel and parameters are found by grid-searching on two da-
tasets (Figure 13). 

 
Figure 13. Heatmaps of grid-searching results using training sets on two datasets. 

5. Experiment and Results Analysis 
As mentioned earlier, two mammogram datasets, INbreast and MIAS, are used to 

test the proposed classification model. To give a comprehensive and objective evaluation 
towards the classification performance, different measure criteria are used. For each test 
method, classification accuracy (CA) and area under the ROC curve (AUCROC) are cal-
culated as the main performance indices. Since this study investigates the effectiveness of 
different feature selection methods, the final selected features number (N) is considered. 
We also conduct two different test methods: leave-one-woman-out test [11,13] and 10-fold 
cross validation [21,23,25]. 

5.1. Classification Results Using Histogram Information 
A histogram-based feature vector that contains 656 RIU4-LQP features is tested first 

on two datasets. Three feature selection methods (Section 3.6) re-sort the feature vector 
based on their importance. For each test iteration, a feature subset containing the first N 
features {f1, f2, …, fN} (N ≤ 656) is sent to the classifier for producing the classification result. 
Then, N is increased and the test procedure enters the next iteration, finally obtaining the 
curves of CA vs. N. Figure 14 shows the classification results on two datasets in which the 
highest CA is 88.16% and 81.06% on INbreast and MIAS, respectively. Meanwhile, we can 
also notice that different feature selection methods affect the classification results differ-
ently. For INbreast, RFE reduces the feature number N to 161 and obtains the highest 
AUCROC value (0.95 ± 0.02); for MIAS, the highest AUCROC value is 0.91 ± 0.03 when 
using FIR with N = 214. 

Figure 13. Heatmaps of grid-searching results using training sets on two datasets.



Sensors 2022, 22, 2672 16 of 25

5. Experiment and Results Analysis

As mentioned earlier, two mammogram datasets, INbreast and MIAS, are used to
test the proposed classification model. To give a comprehensive and objective evaluation
towards the classification performance, different measure criteria are used. For each
test method, classification accuracy (CA) and area under the ROC curve (AUCROC) are
calculated as the main performance indices. Since this study investigates the effectiveness
of different feature selection methods, the final selected features number (N) is considered.
We also conduct two different test methods: leave-one-woman-out test [11,13] and 10-fold
cross validation [21,23,25].

5.1. Classification Results Using Histogram Information

A histogram-based feature vector that contains 656 RIU4-LQP features is tested first on
two datasets. Three feature selection methods (Section 3.6) re-sort the feature vector based
on their importance. For each test iteration, a feature subset containing the first N features
{f 1, f 2, . . . , fN} (N ≤ 656) is sent to the classifier for producing the classification result. Then,
N is increased and the test procedure enters the next iteration, finally obtaining the curves
of CA vs. N. Figure 14 shows the classification results on two datasets in which the highest
CA is 88.16% and 81.06% on INbreast and MIAS, respectively. Meanwhile, we can also
notice that different feature selection methods affect the classification results differently.
For INbreast, RFE reduces the feature number N to 161 and obtains the highest AUCROC
value (0.95 ± 0.02); for MIAS, the highest AUCROC value is 0.91 ± 0.03 when using FIR
with N = 214.
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5.2. Classification Results Using K-Spectrum

K-spectra are extracted in mammograms in two datasets and used as texture features
in the classification model. As the extraction of K-spectra are based on the same RIU4-LQP
operator and multiscale method used for collecting histogram information, the K-spectrum-
based feature vector also contains 656 features. Classification performance is shown in
Figure 15, with the highest CA of 82.89% and 73.60% obtained on two datasets.



Sensors 2022, 22, 2672 17 of 25Sensors 2022, 22, x FOR PEER REVIEW 18 of 27 
 

 

 
Figure 15. Classification accuracy (first row) and AUCROC values (second row) on two datasets 
using the feature vector based on K-spectra. 

5.3. Classification Results Using Concatenated Features 
The histogram and K-spectrum features are further concatenated to create a new hy-

brid feature space. In this step, feature selection procedure becomes more important, as 
the concatenation operation doubles the feature dimensionality from 656 to 1312. Figure 
16 shows the classification results using the hybrid feature vector. A higher CA value 
92.76% on INbreast and 86.96% on MIAS are obtained using RFE when N = 80 and N = 
127, respectively, exceeding the best CA using only histogram or K-spectrum features. 
The AUCROC values are 0.95 ± 0.03 and 0.95 ± 0.02 on two datasets (Figure 17). Since the 
classification accuracy is improved significantly on both datasets after combining two fea-
ture sets, we can conclude that features extracted from K-spectra are complementary to 
histogram features and further improve the classification accuracy. 

Figure 15. Classification accuracy (first row) and AUCROC values (second row) on two datasets
using the feature vector based on K-spectra.

5.3. Classification Results Using Concatenated Features

The histogram and K-spectrum features are further concatenated to create a new
hybrid feature space. In this step, feature selection procedure becomes more important, as
the concatenation operation doubles the feature dimensionality from 656 to 1312. Figure 16
shows the classification results using the hybrid feature vector. A higher CA value 92.76%
on INbreast and 86.96% on MIAS are obtained using RFE when N = 80 and N = 127,
respectively, exceeding the best CA using only histogram or K-spectrum features. The
AUCROC values are 0.95 ± 0.03 and 0.95 ± 0.02 on two datasets (Figure 17). Since the
classification accuracy is improved significantly on both datasets after combining two
feature sets, we can conclude that features extracted from K-spectra are complementary to
histogram features and further improve the classification accuracy.
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5.4. Methods Comparison on the INbreast Dataset

In this section, different feature extraction methods are compared for the INbreast
dataset. As INbreast has not been used widely with the breast density classification task in
the literature, the only available experimental results based on this dataset are 86% and
80.5%, as reported in [25,26], with half images (MLO views) of the dataset tested. We com-
pare five progressive transformations of LBP/LQP methods and implement corresponding
algorithms to classify INbreast mammograms, performing comparative analysis based
on their classification results. We use RIU4-LQP-K and RIU4-LQP-HK to denote texture
feature sets based on the K-spectra and the combination of histograms and K-spectra.
Classification performance is evaluated by classification accuracy (CA), AUCROC, Kappa
coefficient, and F1 score. In addition, a statistical hypothesis test is conducted. The ‘10-fold
cv t-test’ method in [43] with a significance level of 0.05 (i.e., alpha = 0.05) is employed
between RIU4-LQP-HK and every other method to calculate p-value, which shows the
statistical difference between them. Table 2 shows that our proposed method outperforms
other approaches, with the highest CA (91.87 ± 6.28), Kappa (0.89), and F1 score (0.92). In
the t-test, all other methods present low p-values (<0.05), which means the difference in
classification performance is statistically significant.

Table 2. Classification performance comparison on INbreast using different methods.

CA (%) AUC (%) Kappa F1 MCC p-Value

RIU2-LBP 78.75 ± 9.35 94.93 ± 1.97 0.71 0.79 0.79 0.0002
RIU2-LQP 83.75 ± 7.50 94.09 ± 2.19 0.78 0.84 0.78 0.0002
RIU4-LQP 85.62 ± 12.20 95.79 ± 2.07 0.80 0.86 0.80 0.0251

RIU4-LQP-K 84.38 ± 8.03 95.37 ± 2.02 0.79 0.85 0.79 0.0028
RIU4-LQP-HK 91.87 ± 6.28 95.36 ± 2.52 0.89 0.92 0.90 -

5.5. Methods Comparison on MIAS Dataset

Since MIAS has been used in several research works with the breast density classifi-
cation task, we first compare the five progressive transformations of LBP/LQP methods
on it, and then our proposed method is compared with other approaches in the literature.
In Table 3, we can see that the proposed RIU4-LQP-HK method provided the best classifi-
cation performance on the MIAS dataset, with the highest CA (90.61 ± 4.87), AUCROC
(94.39 ± 2.88), Kappa (0.86), and F1 score (0.90). In addition, we notice that the classification
accuracy obtained can be affected by a few factors, such as the image number used in the
test, the results evaluation method, and target categories. Therefore, when comparing our
method with other approaches, these factors are considered for presenting an objective and
fair comparison. In Table 4, the CA values are compared between different methods, and we
can see that the proposed RIU4-LQP-HK method is very competitive with state-of-the-art
approaches, providing the highest CA when testing all images in the MIAS dataset.
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Table 3. Classification performance comparison on MIAS using different methods.

CA (%) AUC (%) Kappa F1 MCC p-Value

RIU2-LBP 69.38 ± 7.68 84.14 ± 4.54 0.57 0.70 0.57 <10−4

RIU2-LQP 72.73 ± 7.55 85.60 ± 4.56 0.59 0.72 0.60 <10−4

RIU4-LQP 80.91 ± 8.89 90.72 ± 3.53 0.71 0.81 0.71 0.0099
RIU4-LQP-K 73.33 ± 6.03 87.39 ± 4.15 0.60 0.73 0.60 <10−4

RIU4-LQP-HK 90.61 ± 4.78 94.39 ± 2.88 0.86 0.90 0.86 -

Table 4. Classification results comparison on the MIAS dataset.

Methods Image Used Results Evaluation Method Results CA (%) Density Categories

Intensity-based features + SVM [11] 322 Leave-one-image-out 85.7 3 (F, G, D)
Intensity-based features + KNN [11] 322 Leave-one-image-out 78.6 3 (F, G, D)
Intensity-based features + SVM [11] 322 Leave-one-woman-out 77.0 3 (F, G, D)
Intensity-based features + KNN [11] 322 Leave-one-woman-out 76.4 3 (F, G, D)

GLCM + KNN [6] 322 Leave-one-image-out 82.0 3 (F, G, D)
LQP + SVM [25] 322 10-fold cross validation 86.13 4 (BI-RADS)

LBP + Bayesian Network [21] 321 10-fold cross validation 69.4 ± 0.92 3 (F, G, D)
ELBP + Bayesian Network [21] 321 10-fold cross validation 75.4 ± 1.05 3 (F, G, D)

u-ELBP + Bayesian Network [21] 321 10-fold cross validation 73.3 ± 0.64 3 (F, G, D)
M-ELBP + Bayesian Network [21] 321 10-fold cross validation 77.4 ± 1.06 3 (F, G, D)

LDP + Bayesian Network [21] 321 10-fold cross validation 76.0 ± 0.96 3 (F, G, D)
RIU2-LBP + SVM [26] 322 5-fold cross validation 73.8 ± 10.6 4 (BI-RADS)
RIU2-LTP + SVM [26] 322 5-fold cross validation 81.0 ± 9.5 4 (BI-RADS)
RIU2-LQP + SVM [26] 322 5-fold cross validation 82.1 ± 7.1 4 (BI-RADS)
RIU2-LSP + SVM [26] 322 5-fold cross validation 83.3 ± 8.8 4 (BI-RADS)

RIU4-LQP-HK + SVM 322 Leave-one-woman-out 86.96 3 (F, G, D)
RIU4-LQP-HK + SVM 322 Leave-one-image-out 93.21 3 (F, G, D)
RIU4-LQP-HK + SVM 322 10-fold cross validation 90.61 ± 4.78 3 (F, G, D)
RIU4-LQP-HK + SVM 322 5-fold cross validation 86.25 ± 5.24 3 (F, G, D)

5.6. Effect of Feature Selection

Three feature selection methods are used and compared in all experimental analyses
in this paper. In related work [25,44], the DPS method was used to optimise texture features
for analysing mammograms and other texture images. However, there was no comparative
analysis including other feature selection methods. To bridge this gap, we use the selection
results by DPS and corresponding classification accuracy as the base line in this work, and
use two other feature selection methods, RFE and FIR, to repeat the feature selection and
breast density classification procedures. Comparisons are given in Table 5, from which we
can see that RFE works better than the other two methods, with a low number of features
used and higher classification accuracy obtained.

Table 5. The number (N) of features selected by different methods and corresponding CA values.

Dataset Feature Selection
Methods

Histograms-Based
Feature Vector

K-Spectra-Based
Feature Vector

Combined
Texture Features

N Best CA N Best CA N Best CA

INbreast
RFE 161 88.16 28 82.89 80 92.76
FIR 164 83.55 47 75.66 473 84.87
DPS 260 80.92 538 49.34 581 84.21

MIAS
RFE 156 79.19 422 73.60 127 86.96
FIR 214 81.06 37 71.43 127 86.65
DPS 152 78.26 263 69.57 109 77.95
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5.7. Running-Time Comparison

This section compares running-time cost using the proposed classification model.
Note that the time cost is recorded for the 10 run 10-fold cross validation in which one
fold images are used as the test set and remaining images are used to train the classifier
for each iteration. The total time is divided by the number of training and testing images
separately in a dataset, and we obtain the average time for processing one image. The
methods outlined in this paper are implemented in Matlab R2017b on a desktop computer
with Intel core i7 3.6 GHz CPU, 16 GB memory. In Table 6, we can see that the RIU2-LQP-
and RIU4-LQP-based methods have similar time cost, requiring around 13~15 ms per
image for training. By contrast, the use of LQP costs around 50 times longer time than the
other methods on the two datasets due to its high feature dimensionality.

Table 6. Time cost for training and classifying procedures by using different methods.

Dataset
Average Time for Classifying Images (Milliseconds per Image)

LQP RIU2-LQP RIU4-LQP RIU4-LQP-
HK + RFE

RIU4-LQP-
HK + FIR

RIU4-LQP-
HK + DPS

INbreast Training 715.26 13.96 14.03 13.62 13.93 14.25

Test 176.71 3.67 3.97 2.90 3.77 4.19

MIAS Training 717.05 14.85 14.78 14.63 14.23 14.35

Test 181.34 3.71 3.99 3.56 3.47 3.49

6. Discussion

This paper introduces two improvements of the basic LQP method. The first is the
RIU4-LQP, which is an extension of the LQP. The second is a novel spatial feature extraction
method based on Baddeley’s K-inhom function.

The proposed RIU4-LQP decreases the high feature dimensionality of LQP from 2P + 2

to P2 + 11, as discussed in Section 3.2. The significantly reduced dimension of the feature
space makes it possible to consider a larger neighbourhood of pixels (i.e., higher value
of P) when computing local texture patterns, while avoiding the exponential rise of the
number of features. From the running-time cost shown in Table 6, we can see that the
RIU4-LQP-based method only uses around 2% of the time consumed by the basic LQP
method. In addition, the proposed RIU4-LQP is rotation invariant, and more texture
information related to microstructures can be captured by it as wider spatial transition
numbers (T) are considered. As discussed in Section 3.3, the texture feature discrimination
capability is improved in RIU4-LQP, based on which we assume that a better classification
performance for grouping mammogram images can be obtained. The experimental results
in Tables 2 and 3 support this argument: comparing to RIU2-LQP, the classification accuracy
is improved by 2% on the INbreast dataset and 8% on the MIAS dataset. Such improvement
shows empirical evidence that the proposed RIU4-LQP indeed captures more texture
features effectively and helps classify mammograms with higher accuracy.

For the design of a spatial feature extraction method, our main consideration is that
every pixel in an image has its own RIU4-LQP code related to the local texture structure.
Previous work in this area used the histogram to represent texture features that only
gave the frequency of each code and ignored their spatial distribution characteristics. In
Sections 3.4 and 3.5, we address a novel spatial feature extraction framework using Badde-
ley’s K-inhom function to collect spatial distribution information based on RIU4-LQP. Here,
we assume that the extra spatial features provide complementary information about image
texture structures that are not obtained from histograms. From experimental results in
Sections 5.4 and 5.5, we can see that the classification accuracy using only RIU4-LQP-based
K-spectrum (i.e., RIU4-LQP-K) does not surpass the results by RIU4-LQP-based histograms,
with the CA of 84.38% vs. 85.62% on INbreast and 73.33% vs. 80.91% on MIAS. Meanwhile,
we observe that the ability of RIU4-LQP-K for the mammogram classification task is similar
to RIU2-LQP: 84.38% vs. 83.75% on INbreast and 73.33% vs. 72.73% on MIAS. This indicates
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that the spatial features extraction using our proposed method performs well, yielding
slightly higher performance than RIU2-LQP. Therefore, we further concatenate RIU4-LQP
and RIU4-LQP-K to construct a new feature set, RIU4-LQP-HK, which contains both his-
togram statistics and the spatial distribution features. As shown in Tables 2 and 3, the
improvement on classification performance is significant: taking the RIU4-LQP results as
the baseline, CA is improved by 6.25% on INbreast and 9.70% on MIAS. Such improvement
is the result of adding the extra spatial features (i.e., RIU4-LQP-K), thus supporting the
argument that spatial distribution characteristics can offer some supplementary features
that are ignored by histogram statistics. Note that a recent work [18] using a CNN model to
classify mammograms reached 88% of accuracy on a large clinical dataset containing 1985
images, but obtained 70% of accuracy on INbreast. The authors in that work argue that the
reason comes from the use of a small dataset for training deep CNNs (Figure S2). This also
indicates that when training data are limited, our proposed texture feature descriptor is
competitive to produce better results, even comparing to neural network models.

Regarding the choice of classification model, various classifiers have been used in
the literature, including SVM [8,9,23,25], KNN [6,13], RF [10], Bayesian [21], and MLP [26].
SVM was commonly used and produced higher classification accuracy than others [11,26].
This study therefore uses SVM to process the final feature set, and the grid-search method to
select the optimum parameters for it. By contrast, feature selection was not considered and
analysed carefully in related work. Some work [8–13,23] did not design a feature selection
step, instead directly input initial extracted features into a classifier, while others [21,25,26]
selected features prior to using a classifier but did not present a comparative analysis. Note
that feature selection discussed in this paper refers to the removal of redundant features
and compressing feature space for presenting the best classification accuracy. Redundant
features that do not closely relate to the target density category can increase the complexity
of the classification model and decrease its classifying accuracy. The work reported in this
paper particularly gives attention to this point by imposing three feature selection methods
and comparing their influences on classification performance.

As shown in Figures 14–16, our experimental results provide detailed comparisons
when applying different feature selection schemes to two mammogram datasets. From
these results, the influence on classification accuracy caused by using different methods
is apparent. For example, the CA results on INbreast in Figure 15, the accuracy exceeds
80% when using the top 30 features selected by the RFE method, while it declines to less
than 10% after using more than 250 features. This finding also demonstrates that the initial
extracted feature space contains some redundant features that do not closely relate to the
target class properties (e.g., mammographic density categories in this work). Therefore,
removing those redundant features and only keeping the target-related features in the
final feature vector is important for producing desirable classification performance. Our
analysis on different feature selection methods and feature descriptors are displayed in
Table 5, based on which we conclude that for the breast density classification work the RFE
performs better than the other two approaches after testing two mammogram datasets. RFE
is not used in past work, and we suggest that this can be an important factor to improve
the classification results.

As the RFE and other two feature selection methods, work by re-sorting the extracted
features to position the most powerful features ahead and redundant features back, it is
unclear of how much proportion the spatial features account for in the final selected feature
set. We therefore investigate how different features contribute to the final classification
results by tracking their orders in the selection procedure. Table 5 shows that there are
80 features in the final feature vector used to obtain the best CA on INbreast, and we
find out that 42% of features (i.e., 34 out of 80) contributed by spatial characteristics and
the remaining are from histograms: for MIAS, K-spectrum spatial features account for
48% (i.e., 61 out of 127) of the optimised feature set. This gives further evidence that the
spatial features extracted by our proposed method create an important and complementary
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feature set compared to the commonly used histograms, thus improving the capacity of
representing image texture features.

Some inconsistent result patterns between the two mammogram datasets are noticed.
For example, in Figure 14, while presenting the classification accuracy vs. selected features
based on RIU4-LQP histogram features, the RFE method gave the highest CA on INbreast,
while the FIR led to the best result on MIAS. Figure 15 shows different CA trends along with
the feature number when using RIU4-LQP-K: for INbreast, CA curves saw a significant
fall after peak points observed with RFE and FIR methods, while for MIAS, CA curves did
not slide too much, but remained comparatively flat until the maximum feature number
was used. Such inconsistency between the two datasets can be ascribed to the difference
in image types and their classification criteria. As introduced in Section 2, mammograms
in INbreast are FFDM images and MIAS is an SFM dataset, with different image qualities.
INbreast mammograms are classified based on four BI-RADS density categories, while
MIAS uses a three-class (i.e., F-G-D) standard. However, when we test the datasets using
the concatenated feature set in Figure 16, a trend in consistent results is seen, with the best
performance obtained using the RFE and the worst produced by the DPS.

The sensitivity of machine-learned solutions developed as diagnostic aids must be
valid and applicable in clinical practice. The proposed method is based on a novel texture
feature descriptor that extracts image microstructure patterns from mammograms. This
procedure will not be affected by diagnostic ability of radiologists. However, our method
needs a training set with radiologists’ annotations for breast density, based on that a
classifier is trained and used to predict the density labels for unseen mammograms. The
proposed model was tested on two mammogram datasets that used different density
classification criteria and ground truth annotated by different radiologists. Experimental
results show that the method maintains good sensitivity on both datasets. Note that
the mammogram images in the two datasets were carefully interpreted and annotated
by at least two radiologists, and if there was a disagreement, a diagnosis from the third
radiologist was required. As such, a comparatively accurate ground-truth set could be built
for training the classification model, which guarantees the sensitivity of the method. If the
annotations were given by only one radiologist who poses different diagnostic ability, this
could lead to some inconsistent density labels compared to other radiologists’ diagnoses
and cause a variation in the sensitivity of the classification method.

The proposed method has some distinct advantages. Firstly, the proposed texture fea-
ture descriptor is found to be more powerful than the basic LBP/LQP methods in capturing
local texture patterns. Secondly, our method, similar to LBP, is easily adaptable to similar
applications requiring texture feature extraction. Finally, a novel aspect of this approach is
the spatial distribution analysis of texture features, which is important but ignored in past
work. Experimental results demonstrate that spatial distribution characteristics provide
supplementary image features and effectively improve the classification performance.

In addition to the state-of-the-art classification results obtained, there are some limita-
tions using the proposed methods. The proposed method requires a number of parameters
(listed in Table 1) to be optimised first for achieving the best classification results. This is a
one-off task which is not repeated in training or testing cycles. In addition, this work was
initially inspired by related work of breast density classification, so we continue it with two
improvement designs based on the LQP method. Our experimental settings also focus on
the mammogram dataset test and its results analysis. We have not tested the effectiveness
of the proposed methods on other image datasets. Although we have demonstrated that the
proposed RIU4-LQP is rotation invariant and is powerful to capture more microstructures,
different image types should be used to test it and give more evidence. We shall address
this part of the research in future work.

7. Conclusions

This paper presents a robust texture feature descriptor for analysing mammograms
and classifying breast density. Based on the conventional LQP operator, the rotation
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invariant method and different transition number conditions are considered to develop
the novel texture descriptor, RIU4-LQP. This paper employs Baddeley’s K-inhom function
to capture spatial distribution information of texture feature points, which is used to
construct a new feature vector called K-spectrum. After concatenating the histogram
and K-spectrum information, this paper also investigates three different feature selection
schemes for optimising the initial feature set and improving the classification result. An
SVM classifier is trained and used to predict the density labels for test images. Classification
results are evaluated by classification accuracy (CA) and AUC, and statistical analysis is
conducted between different methods. Two mammogram datasets, INbreast and MIAS, are
used to test the proposed methods in our experiments. Experimental results demonstrate
that the proposed method extracts robust and effective texture features in mammograms,
which improve the classification performance significantly. Comparing with state-of-the-art
methods, the classification accuracy by using our proposed approaches is competitive,
reaching the best CA of 92.76% and 86.96% on INbreast and MIAS datasets.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s22072672/s1, Figure S1: Challenging cases with inaccurate mask images generated and
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in [18] (DC: dilated convolutions. CA: channel-wise attention). References [45,46] are cited in the
Supplementary Materials.
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