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Abstract

Background: Cell-free plasma mitochondrial DNA (mtDNA) levels are associated with endothelial dysfunction and
differential outcomes in critical illness. A substantial alteration in metabolic homeostasis is commonly observed in
severe critical illness. We hypothesized that metabolic profiles significantly differ between critically ill patients
relative to their level of plasma mtDNA.

Methods: We performed a metabolomic study with biorepository plasma samples collected from 73 adults with
systemic inflammatory response syndrome or sepsis at a single academic medical center. Patients were treated in a
20-bed medical ICU between 2008 and 2010. To identify key metabolites and metabolic pathways related to plasma
NADH dehydrogenase 1 (ND1) mtDNA levels in critical illness, we first generated metabolomic data using gas and
liquid chromatography-mass spectroscopy. We performed fold change analysis and volcano plot visualization based on
false discovery rate-adjusted p values to evaluate the distribution of individual metabolite concentrations relative to
ND1 mtDNA levels. We followed this by performing orthogonal partial least squares discriminant analysis to identify
individual metabolites that discriminated ND1 mtDNA groups. We then interrogated the entire metabolomic profile
using pathway overrepresentation analysis to identify groups of metabolite pathways that were different relative to
ND1 mtDNA levels.

Results: Metabolomic profiles significantly differed in critically ill patients with ND1 mtDNA levels ≥ 3200 copies/μl
plasma relative to those with an ND1 mtDNA level < 3200 copies/μl plasma. Several analytical strategies showed that
patients with ND1 mtDNA levels ≥ 3200 copies/μl plasma had significant decreases in glycerophosphocholines and
increases in short-chain acylcarnitines.

Conclusions: Differential metabolic profiles during critical illness are associated with cell-free plasma ND1 mtDNA
levels that are indicative of cell damage. Elevated plasma ND1 mtDNA levels are associated with decreases in
glycerophosphocholines and increases in short-chain acylcarnitines that reflect phospholipid metabolism dysregulation
and decreased mitochondrial function, respectively.
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Background
Mitochondrial function is a major determinant of outcome
in critical illness. Circulating mitochondrial damage-as-
sociated molecular patterns (DAMPs), such as cell-free
mitochondrial DNA (mtDNA), contain unmethylated CpG
and formylated peptides that activate immune responses
through Toll-like receptor 9 and formyl peptide receptors,
respectively [1–4].
Plasma mtDNA is measurable in critically ill patients,

with increasing levels associated with sepsis, sepsis disease
severity, and mortality [5–7]. The primary factors in the
extracellular release of mtDNA are cell stress and necrosis
[3]. Experimental data published in abstract form showed
an increase in extracellular mtDNA by induction of
endothelial cell necroptosis following transfusion [8].
Mitochondria-related DAMPs from damaged, dying, or
dead cells appear to be important for the early systemic
endothelial response to sepsis [9]. mtDNA is shown to
increase endothelial cell permeability, either directly or
through interactions with endothelial cells and polymorpho-
nuclear leukocytes [9]. These findings suggest that plasma
mtDNA levels could reflect the level of injury and may also
reflect the level of dysfunction or damage that mitochondria
undergo in response to physiologic stress [10].
Because metabolic homeostasis is often disrupted in

critical illness, substantial alterations of several intrinsic
pathways can be expected in septic patients [11]. To
date, a number of metabolomic studies have been pub-
lished in experimental sepsis models [12], pediatric sepsis
[13], and adult critically ill patients [14–17]. Circulating
metabolic signatures showing alteration in fatty acids,
lipids, and tryptophan pathways are prominent in cohorts
of septic patients [14–17].
Existing data support that mtDNA is related to the

activation of inflammation and organ dysfunction [18].
However, there is limited understanding of the metabolic
alterations associated with elevated mtDNA levels in crit-
ical illness. Therefore, we analyzed metabolite profiles with
regard to NADH dehydrogenase 1 (ND1) mtDNA levels in
a prospective study of adult patients with systemic inflam-
matory response syndrome (SIRS) and sepsis [19]. The
ND1 protein is a subunit of NADH dehydrogenase found
in the inner membrane of mitochondria [20]. We hypothe-
sized that the metabolomic profile of critically ill patients
near intensive care unit (ICU) admission differs in patients
with elevated ND1 mtDNA levels and that this difference
can illuminate important biologic pathways related to the
response to mitochondrial DAMPs.

Methods
Study design and patients
The Registry of Critical Illness (RoCI) is a registry of
adult medical ICU patients based at the Brigham and
Women’s Hospital (Boston, MA, USA), created to record

patient data and store samples for plasma, RNA/DNA
analysis, and protein isolation. The protocol for patient
recruitment has been previously described at length [19].
Between September 2008 and May 2010, 90 medical
ICU patients had metabolic profiling performed; of these,
29 patients satisfied SIRS criteria, 30 patients satisfied cri-
teria for sepsis, and 31 patients satisfied criteria for sepsis
and acute respiratory distress syndrome [15]. Cases were
not selected with regard to risk of death or any known
metabolic feature. We conducted a subanalysis involving
73 RoCI patients who had been selected for metabolic
profiling [15] and in whom cell-free plasma ND1 mtDNA
levels were determined in a prior study of mtDNA [5].

Exposure of interest and comorbidities
The exposure of interest was cell-free circulating plasma
ND1 mtDNA assessed by measuring copy number of the
ND1 gene using qRT-PCR [5]. ND1 mtDNA level was
assessed as a binary variable (ND1 mtDNA ≥ 3200 copies/μl
plasma vs. ND1 mtDNA level < 3200 copies/μl plasma). The
cut point of ND1 mtDNA level of 3200 copies/μl plasma
was determined in our prior study to maximize the AUC for
the prediction of 28-day mortality [5]. The preparation
and quantification of plasma ND1 mtDNA is outlined
in Additional file 1. Demographic and physiologic data
were collected from the clinical record as described
previously [19]. In addition to data collected by the
RoCI, supplemental data on all patients were compiled
through a hospital-based computerized data registry [21]
as outlined in Additional file 1.
Metabolomic profiling identified 411 metabolites for

the complete RoCI cohort (N = 90 plasma samples
within 72 h of ICU admission) using Metabolon, Inc.
(Morrisville, NC, USA) [15]. Gas and liquid chromatog-
raphy mass spectroscopy (GC-MS, LC-MS) were performed
as described previously [22, 23]. We removed metabolites
with the lowest IQR of variability in the RoCI data, leaving
308 metabolites. This strategy is commonly used to reduce
baseline noise by removing constant or very weak variables
[24, 25]. All metabolite concentrations were log2-trans-
formed to normalize the data that were used for all of the
models and all of the metabolite data analyses. Details on
metabolomic sample processing have been described at
length previously and are outlined in Additional file 1 [15].
We used MetaboAnalyst 4.0 software (www.metaboa-

nalyst.ca) to identify key metabolism alterations related
to ND1 mtDNA level [26]. Univariate tests, including
fold change analysis and volcano plot visualization based
on false discovery rate (FDR)-adjusted p values, were
performed to evaluate the distribution of individual
metabolite concentrations in individuals with elevated
ND1 mtDNA levels (≥ 3200 copies/μl plasma) relative to
those with ND1 mtDNA levels < 3200 copies/μl plasma
[5]. Cross-sectional correlations were calculated using
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Pearson’s product-moment correlation (r) between me-
tabolites and ND1 mtDNA levels. For data visualization
purposes, a bipartite graph was generated of metabolites
that were significantly changed (increased or decreased)
with elevated ND1 mtDNA level (≥ 3200 copies/μl
plasma). Significant features were further identified by
significance analysis of microarrays (SAM) [27], in which
the FDR was determined by running multiple tests on
high-dimensional data that distinguish between patients
with ND1 mtDNA ≥ 3200 copies/μl plasma relative to
those with ND1 mtDNA < 3200 copies/μl plasma, with a
q value (upper limit of FDR) < 0.01 considered to be
significant.
We performed logistic regression with ND1 mtDNA ≥

3200 copies/μl plasma as the exposure and 28-day mortal-
ity as the outcome, after adjustment for Acute Physiology
and Chronic Health Evaluation II (APACHE II) score and
sepsis. Linear regression was performed with ND1 mtDNA
≥ 3200 copies/μl plasma as the exposure and acylcarnitine
metabolites as the outcome after adjustment for age, sex,
race, and APACHE II score. Linear regression was also
performed with ND1 mtDNA copies/μl plasma as the
exposure and individual metabolites as the outcome ad-
justed for age, sex, race, and APACHE II score. STATA
14.1/MP software (StataCorp, College Station, TX, USA)
was used for all regression analyses.
Orthogonal partial least squares discriminant analysis

(OPLS-DA), a supervised method, was used to select
variables representing the greatest contribution to classi-
fication of the ND1 mtDNA groups [28]. The quality of
the multivariate model developed was described by R2
and Q2, which corresponded to the model’s goodness of
fit and predictive performance, respectively. Permutation
testing was performed to validate the OPLS-DA model
[29, 30]. Sevenfold cross-validation analysis of variance
(CV-ANOVA) was applied to determine OPLS-DA model
significance [30]. Variables that contributed the most to
ND1 mtDNA group recognition were identified with
SIMCA (Umetrics, Umeå, Sweden) using variable import-
ance in the projection (VIP) scores. VIP scores > 1 are con-
sidered to be important for the explanatory/predictive ability
of an OPLS-DA model [31]. We used an S-plot to visualize
the variable influence between ND1 mtDNA groups in the
OPLS-DA model by combining the contribution/covariance
and reliability/correlation loading profiles [28]. A correlation
coefficient of ± 0.410 was adopted as a cutoff value to select
the variables that are most correlated with the OPLS-DA
discriminant scores.
For pathway overrepresentation analysis of case-control

metabolite data, metabolomic pathway analysis (MetPA)
[32] was used. MetPA was used to evaluate a list of the
308 metabolites and their log-normalized concentration
data in the 73 samples by comparing patients with ND1
mtDNA ≥ 3200 copies/μl plasma (cases) with those with

ND1 mtDNA < 3200 copies/μl plasma (controls). Metab-
olite set enrichment analysis was performed by mapping
the metabolite data onto the Human Metabolome Data-
base (HMDB) [33]. Metabolites were evaluated for path-
way enrichment using the “Homo sapiens” library with the
default parameters (“Global Test” and “Relative Between-
ness Centrality”) specified as the algorithms for pathway
enrichment and topological analysis, respectively. The
resulting metabolic networks were represented as directed
graphs, and centrality measures of a metabolite within a
given network were then applied to estimate the relative
importance of that metabolite in the network. Fisher’s
exact test p values were adjusted for multiple testing using
the Holm-Bonferroni method [34].

Results
Table 1 shows demographic characteristics of the study
cohort. Most patients were male (53%) and white (78%).
The mean (SD) age at ICU admission was 54 (15) years.
The mean (SD) APACHE II score was 26 (10), and 70%
of the cohort patients were diagnosed with sepsis. The
28-day mortality within the cohort was 37%. Significant
differences existed in patients with and without ND1
mtDNA ≥ 3200 copies/μl plasma in regard to APACHE
II, sepsis, and 28-day mortality (Table 1). Patients with
ND1 mtDNA ≥ 3200 copies/μl plasma had a sixfold
higher odds of 28-day mortality following adjustment for
APACHE II and sepsis compared with patients with
ND1 mtDNA < 3200 copies/μl plasma (OR, 6.4; 95% CI,
1.8–22.9; p = 0.004), similar to what was reported in the
parent ND1 mtDNA study [5].

Primary outcome
Metabolomic profiles significantly differed in critically
ill patients with ND1 mtDNA ≥ 3200 copies/μl plasma
relative to those with ND1 mtDNA < 3200 copies/μl
plasma (Additional file 2 Table S1). To illustrate metabolite
modules that are potentially biosynthetically linked, a
correlation matrix derived from the log-transformed
metabolite concentration is shown in Fig. 1. A large cluster
of correlated glycerophosphocholine metabolites is present

Table 1 Patient characteristics

Characteristics ND1 mtDNA copies/μl plasma p Value

< 3200 ≥ 3200

No. of patients 35 38

Age, years, mean (SD) 53.6 (16.2) 55.2 (13.7) 0.64

Male sex, n (%) 19 (48.7) 20 (51.3) 0.89

White race, n (%) 27 (77.1) 30 (79.0) 0.92

APACHE II score, mean (SD) 21.8 (9.8) 29.2 (9.3) 0.0015

Sepsis, n (%) 17 (33.3) 34 (66.7) < 0.001

28-Day mortality, n (%) 5 (14.3) 22 (57.9) < 0.001

Johansson et al. Critical Care          (2018) 22:360 Page 3 of 9



in patients with ND1 mtDNA < 3200 copies/μl plasma
and present but less correlated in those with ND1
mtDNA ≥ 3200 copies/μl plasma (Fig. 1a, b). A small
cluster of short-chain acylcarnitines, including propionyl-
carnitine (C3), isobutyrylcarnitine (C4), and isovalerylcar-
nitine (C5), are accentuated in patients with ND1 mtDNA
≥ 3200 copies/μl plasma (Fig. 1b).
The volcano plot in Fig. 2 graphically shows the data

presented in Additional file 2: Table S1, highlighting the
relationship between the FDR-adjusted p values and the
magnitude of the fold change difference in metabolite
concentrations with respect to ND1 mtDNA levels.
Notable is the significant increase of short-chain acyl-
carnitines (C4–C6) and the decrease in both glyceropho-
sphocholines and long-chain acylcarnitines (C16–C18) in
those with elevated ND1 mtDNA level (≥ 3200 copies/μl
plasma) (Fig. 2). A bipartite graph of notable volcano plot
metabolites significantly changed (increased or decreased)
with ND1 mtDNA ≥ 3200 copies/μl plasma illustrates
the prominence of increase of short-chain acylcarni-
tines and the decrease of both glycerophosphocholines
and long-chain acylcarnitines (Fig. 3). Adjusted linear
regression of ND1 mtDNA as a continuous exposure

with individual metabolites as the outcome showed a
similar prominence of increase of short-chain acylcarnitines
and the decrease of glycerophosphocholines (Additional
file 2: Table S2). The observed acylcarnitine ester metabol-
ite pattern of notable volcano plot metabolites relative to
ND1 mtDNA level was maintained following multivariable
linear regression (Additional file 3: Figure S1). SAM [27]
further identified metabolite features in patients with ND1
mtDNA ≥ 3200 copies/μl plasma relative to those with
ND1 mtDNA < 3200 copies/μl plasma (Additional file 2:
Table S3). The SAM included significant increases in the
short-chain acylcarnitines and decreases in both glycero-
phosphocholines and long-chain acylcarnitines in patients
with ND1 mtDNA ≥ 3200 copies/μl plasma.
For the OPLS-DA, a supervised multivariate analysis,

the robustness and reliability of the model were marginal
(Table 2). In addition to the R2 and Q2 metrics, the
response permutation test (with n = 200) was used to val-
idate the predictive capability of the computed OPLS-DA
models [35]. Though the OPLS-DA model had marginal
predictability, the permutation test confirmed the stability
and robustness of the model (Q2 intercept, − 0.26; p ≤
0.05) with a negative permutation Q2 intercept indicating

Fig. 1 Hierarchical clustering of correlated metabolites relative to NADH dehydrogenase 1 (ND1) mitochondrial DNA (mtDNA) group level.
Correlation matrix of the 49 major differential metabolites from Additional file 2: Table S1. Cross-sectional correlation colors represent Pearson
correlation coefficients of log-transformed metabolites by ND1 mtDNA levels. a ND1 mtDNA < 3200 copies/μl plasma. b ND1 mtDNA ≥ 3200
copies/μl plasma. Glycerophosphocholine and short-chain acylcarnitines are marked in bold. Red and blue indicate positive and negative
correlations, respectively. Metabolites with marked differences in the degree of intercorrelation between ND1 mtDNA groups were the
glycerophosphocholines (1-stearoylglycerophosphocholine, 2-stearoylglycerophosphocholine, 1-palmitoylglycerophosphocholine) and the short-chain
acylcarnitines (isovalerylcarnitine, propionylcarnitine and isobutyrylcarnitine). This analysis allows for the identification and clustering of metabolite
modules of related function in patients with low mtDNA and how those correlations are altered in patients with high mtDNA
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Fig. 3 Circos plot of differential metabolites. Bipartite graph of metabolites significantly changed (increased or decreased) with NADH
dehydrogenase 1 (ND1) mitochondrial DNA (mtDNA) ≥ 3200 copies/μl plasma. Graph connects response to ND1 mtDNA ≥ 3200 copies/μl plasma
with individual increased or decreased metabolites. Width of curves indicates strength of the significance (−log10(p) value). AA Amino acid
metabolites, BILE Bile acids, CARB Carbohydrates, GPC Glycerophosphocholines, GPE Glycerophosphoethanolamines, LCAC Long-chain
acylcarnitines, LIPID Lipid metabolites, NUC Nucleotide metabolism, SCAC Short-chain acylcarnitines, TYR Tyrosine metabolites

Fig. 2 Volcano plot of differential metabolites. In the volcano plot, differential metabolites (red) and nondifferential substances (blue) were determined
under the conditions of fold change ≥ 2 and false discovery rate-adjusted p value threshold≤ 0.05. The p values are transformed by −log10 so that the
more significantly different metabolites (with smaller p values) are higher on the y-axis. The fold change is log-transformed so that negative values
represent a decrease in metabolite levels and positive values represent an increase in metabolite levels. Red and blue indicate notable and nonnotable
metabolites, respectively. GPC Glycerophosphocholine, SC Short-chain acylcarnitine
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model validity [29, 30] (Table 2). The cross-validation pro-
cedure showed that the two ND1 mtDNA groups were
significantly separated (CV-ANOVA p value = 0.00013).
By combining the VIP values in the loadings plot, 34
metabolites with VIP > 1 were selected as differentially
accumulated metabolites (Additional file 2: Table S4). Me-
tabolites with VIP > 1 included short-chain acylcarnitines
and glycerophosphocholines. At the correlation coefficient
cut point of ±0.410, the S-plot identified differential
metabolites between ND1 mtDNA groups. These differ-
ential metabolites included increases in the short-chain
acylcarnitines and decreases in both glycerophospho-
cholines and long-chain acylcarnitines in patients with
ND1 mtDNA ≥ 3200 copies/μl plasma (Additional file 2:
Table S5).
We next sought to identify differential biologically

meaningful metabolite pathways in the cohort with regard
to ND1 mtDNA status. Two hundred thirty-four of the
308 metabolites mapped to the HMDB. An HMDB-path-
way match was absent for 46 metabolites, and a lack of an
HMDB assignment was present for 28 metabolites. The
acylcarnitine metabolites did not map to the HMDB and
thus were not included in the MetPA output. The
MetPA-identified metabolites most significantly enriched
in patients with ND1 mtDNA ≥ 3200 copies/μl plasma
were related to glycerophospholipid metabolism (FDR-
adjusted p < 0.001; pathway impact score, 0.138) and
tryptophan metabolism (FDR-adjusted p = 0.018; path-
way impact score, 0.249) (Table 3).

Discussion
In the present study, our goal was to determine if metab-
olite signatures in critically ill patients would be distinct
relative to cell-free plasma ND1 mtDNA levels. Using
high-resolution metabolomics, we demonstrated substantial

differences in glycerophospholipid and acylcarnitine family
member metabolism based on the level of ND1 mtDNA
liberated in the plasma. Specifically, patients with high
levels of plasma ND1 mtDNA, indicative of cellular
damage, have very low levels of multiple glycerophospho-
choline esters and increased levels of several short-chain
acylcarnitines.
In cohorts of septic patients, alterations in circulating

kynurenines, fatty acids, lysophosphatidylcholines, and/or
carnitine esters [14–17] indicate a substantial disturbance
in energy and lipid homeostasis that occurs with increasing
severity of illness. Large decreases in glycerophosphocho-
lines are demonstrated in patients with experimental
infection with Bacillus anthracis spores [36], bacteremia
[37], and sepsis [17] and appear to correlate with sepsis
mortality [38]. Glycerophosphocholines are water-soluble
compounds formed in the breakdown of phosphatidylcho-
line via phospholipase A1 and phospholipase A2 activities,
and they are degraded by glycerophosphodiester phos-
phodiesterases [39]. Glycerophosphocholines are essen-
tial components of biological membranes that modulate
membrane trafficking and control cell viability [39].
Glycerophosphocholines function in glycerophospholipid,
prostaglandin, and leukotriene metabolism; are important
in energy storage, signal transduction, and membrane
physiology; provide mitochondrial support; and are
neutrophil-activating factors [36].
The observed substantial decreases in glycerophospho-

cholines during sepsis may be related to increased glycero-
phosphocholine hydrolysis [37]. Circulating phospholipase
A2 activity is found in sepsis [40]. Additionally, endothe-
lial cells secrete the phospholipase endothelial lipase (EL)
involved in phospholipid homeostasis [41, 42]. EL is pro-
duced by macrophages in addition to the endothelium in
response to plasma inflammation markers [43]. In human
experimental models of low-dose endotoxemia, significant
augmentation of plasma EL concentrations has been
shown [44]. The combination of circulating phospholipase
A2 and EL activity may be responsible for the low glycero-
phosphocholine metabolites observed in our study.
Lipidomic alterations are prominent in sepsis and

critically ill patients [45–48]. We have shown that carnitine

Table 2 Cross-validation and permutation

OPLS-DA Permutation (n = 200)

R2X R2Y Q2 R2 intercept
(x-axis, y-axis)

Q2 intercept
(x-axis, y-axis)

0.190 0.333 0.226 (0.00, 0.283) (0.00, − 0.264)

Table 3 Metabolomics pathway analysis

Pathway name Total no. of
metabolites

No. of overlapping
metabolites

Unadjusted
p value

FDR-adjusted
p value

Pathway
impact score

Glycerophospholipid metabolism 39 6 0.00003 0.00090 0.139

Pyrimidine metabolism 60 6 0.00018 0.00351 0.028

Galactose metabolism 41 6 0.00086 0.01146 0.020

Lysine degradation 47 3 0.00149 0.01438 0.024

Starch and sucrose metabolism 50 6 0.00240 0.01739 0.119

Tryptophan metabolism 79 6 0.00279 0.01797 0.249

FDR False discovery rate
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esters, important for immune response to pathogens [49],
are the most pronounced metabolites that differed between
sepsis nonsurvivors and survivors [17]. Alterations of
acylcarnitines are found in studies of severe sepsis/septic
shock [45], the prediction of death in sepsis [17], and an
integrative omics study in primates that was validated also
in human patient cohorts [50].
In critical illness, metabolic pathways are altered to

preferentially catabolize fatty acids and amino acids.
Substantive literature demonstrates that an early indicator
of critical illness outcomes is mitochondrial biogenesis
[51–54]. Elevated short-chain acylcarnitines found in
plasma are due to incomplete mitochondrial fatty acid
β-oxidation downstream of carnitine palmitoyltransferase
I and are suggestive of impaired mitochondrial function
[55–57]. The increase in plasma short-chain acylcarnitines
with elevated ND1 mtDNA in our study may reflect less
efficient fatty acid β-oxidation, potentially thorough wors-
ening of mitochondrial bioenergetics.
Accelerated tryptophan catabolism along the kynurenine

pathway occurs with sepsis. The enzyme responsible for
kynurenine production is upregulated by bacterial
products and is critically involved in CD4+ and CD8+

effector T-cell suppression as well as in generation and
activation of regulatory T cells [58, 59]. We and others
have found that modulation of kynurenine is associated
with 28-day mortality in sepsis [14, 15]. Increased produc-
tion of kynurenine has been proposed to contribute to
hypotension in sepsis [60] and has been associated with
dysregulated immune response and impaired microvascu-
lar reactivity [61].
Strengths of the present study include using cell-free

plasma for ND1 mtDNA measurement. Because platelets
secrete their mitochondria following activation during
inflammation and sepsis, they may serve as a source of
extracellular mtDNA [62]. Using cell-free plasma allowed
us to draw the inference that the source of ND1 mtDNA is
more likely the endothelium. Further, we employed several
types of statistical procedures, and data visualization
processes were used to identify differential metabolites,
including Student’s t test [63], Pearson correlation,
volcano plot, bipartite graph, SAM [27], OPLS-DA, and
MetPA [32].
The present study is not without potential limitations.

Metabolites were measured early in the ICU course of
severe critical illness, from a relatively small number of
patients, at a single time point, and from a single biofluid
(plasma). Our assumption that plasma is an integrative
biofluid may not account for tissue- or organ-specific
metabolism. Our observational study included patients
who were critically ill for various reasons, creating a
heterogeneous study sample with high severity of illness.
Further, selection bias may be present because we ana-
lyzed only a subset of patients of the RoCI cohort who

had ND1 mtDNA determined. We are unable to account
for the impact of race on metabolic profiles because our
cohort was mostly white. Because our study was performed
on a convenience sample and not replicated in other co-
horts, our results may not be generalizable to all critically
ill patients. Our bioinformatics approaches, while robust,
are not without risk of introducing sources of bias. Single–
time point metabolomics provides important information
but does not capture the dynamic changes over time [64].
We were not able to determine the stability of metabolites
over storage time [65]. Although OPLS-DA is well-suited
for metabolomic data with much larger numbers of predic-
tors than observations and multicollinearity, it is prone to
overfitting; however, permutation testing indicated a low
likelihood of seeing results this strong by chance (p ≤ 0.05)
[29, 30]. Like in our study, mapping the metabolite data
onto the HMDB [33] does not always result in HMDB
number assignment to each metabolite. Finally, we cannot
fully account for potential confounding, reverse causation,
and the lack of a randomly distributed exposure [66].

Conclusions
In summary, elevated levels of cell-free plasma ND1
mtDNA are associated with differential metabolic profiles
in early severe critical illness. Glycerophospholipids, which
are important in phospholipid metabolism and mitochon-
drial support, are significantly depressed in patients with
high plasma ND1 mtDNA. Short-chain acylcarnitines
indicative of mitochondrial dysfunction are increased
with high plasma ND1 mtDNA. These data, although
observational, provide an important window into the
metabolite signatures of cell stress and necrosis in response
to sepsis.
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Additional file 2: Table S1. Metabolites identified via volcano plot with
significant differences in patients with ND1 mtDNA ≥ 3200 copies/μl
plasma relative to those with ND1 mtDNA < 3200 copies/μl plasma.
Table S2. Linear regression of significant metabolites relative to every
100 ND1 mtDNA copies/μl plasma analyzed as a continuous exposure.
Table S3. Metabolites identified by SAM with significant differences in
patients with ND1 mtDNA ≥ 3200 copies/μl plasma relative to those with
ND1 mtDNA < 3200 copies/μl plasma. (DOCX 33 kb)

Additional file 3: Figure S1. Acylcarnitine association plot. Logistic
regression results of 13 acylcarnitine esters in 73 patients. Each dot is a
single acylcarnitine ester detected. Color indicates the relative
acylcarnitine ester association with ND1 mtDNA ≥ 3200 copies/μl plasma
(red increased, blue decreased) after adjustment for age, sex, race,
malignancy, and APACHE II score. y-Axis is (−log10(p) value). x-Axis is
acylcarnitine chain length C3 to C18. (DOCX 38 kb)
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