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We discuss an explicit algorithm for solving the
Wiener–Hopf factorization problem for matrix
polynomials. By an exact solution of the problem, we
understand the one constructed by a symbolic
computation. Since the problem is, generally
speaking, unstable, this requirement is crucial
to guarantee that the result following from the
explicit algorithm is indeed a solution of the original
factorization problem. We prove that a matrix
polynomial over the field of Gaussian rational
numbers admits the exact Wiener–Hopf factorization
if and only if its determinant is exactly factorable.
Under such a condition, we adapt the explicit
algorithm to the exact calculations and develop the
ExactMPF package realized within the Maple
Software. The package has been extensively tested.
Some examples are presented in the paper, while the
listing is provided in the electronic supplementary
material. If, however, a matrix polynomial does not
admit the exact factorization, we clarify a notion of
the numerical (or approximate) factorization that can
be constructed by following the explicit factorization
algorithm. We highlight possible obstacles on the
way and discuss a level of confidence in the final
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result in the case of an unstable set of partial indices. The full listing of the package ExactMPF
is given in the electronic supplementary material.

1. Introduction and motivation
The factorization problem has proven to be an extremely efficient tool in mathematics (for
example, in the theory of linear operators [1,–3]) and instrumental in various branches of physics,
mechanics and engineering (see, for example, [4,–8]).

Unfortunately, in contrast with the scalar problems, factorization of arbitrary matrix functions
remains an unresolved problem [9,10] (especially, when one speaks of its effective applications).
We start with definitions, preliminary results and than formulate the problem considered in this
paper.

Let Γ be a simple piecewise smooth closed contour in the complex plane C bounding the
domain D+. We can assume that 0 ∈ D+. The complement of D+ ∪ Γ in the closed complex plane,
C = C ∪ {∞}, is denoted by D−. Let a(t) be p × p matrix function on Γ . In what follows we assume
that a(t) is continuous and invertible on Γ .

The representation of a matrix function a(t)

a(t) = r−(t)dR(t)r+(t), t ∈ Γ , (1.1)

is called the right Wiener–Hopf factorization of the matrix function [1]. Here, r±(t) are continuous and
invertible matrix functions on Γ that admit analytic continuation into D± and their continuations
r±(z) are invertible into the respective domains; matrix function dR(t) = diag [tρ1 , . . . , tρp ], where
integers ρ1, . . . , ρp are called the right partial indices of a(t). It is always possible to assume that
ρ1 ≤ . . . ≤ ρp. Moreover, ρ1 + · · · + ρp = �, where � = ind det a(t) is the winding number (or the
Cauchy index) of the determinant of the matrix a(t).

Similarly, the left Wiener–Hopf factorization of a(t) is the representation [1]

a(t) = l+(t)dL(t)l−(t), t ∈ Γ ,

where l±(t) have the same properties as r±(t), dL(t) = diag[tλ1 , . . . , tλp ], and λ1 ≥ · · · ≥ λp are called
the left partial indices of the matrix function a(t) (λ1 + · · · + λp = �). Note that, if the factorizations
exist, their left and right indices are usually different sets of integers and constructions of the
right and left factorizations are usually considered as two separate problems. On the contrary, a
method proposed in this work requires simultaneous considerations of both factorizations.

In general, a matrix function a(t) with continuous entries does not admit the Wiener–Hopf
factorizations with factors in the same class. It is known that if the elements of a(t) satisfy the
Hölder condition on Γ or belong to the Wiener algebra W(T), where T is the unit circle in the
complex plane, then the Wiener–Hopf factorizations exist (see [1]).

The scalar factorization problem for a non-singular function a(t) can always be solved
explicitly, see, for example, [11] and [12]. Unfortunately, explicit formulae for the factors r±(t),
l±(t) and the partial indices of an arbitrary matrix function do not exist at present.

Fortunately, there are classes of matrix functions for which an explicit (or constructive) solution
to factorize the problem have been found. By this, we understand that there are explicit formulae
allowing us to formally construct the partial indices and the factors of the matrix function
a(t). For example, the problem for matrix polynomials has been solved explicitly [–1,13,15]. For
meromorphic matrix functions, there also exits an explicit solution [13]. A detailed review of
constructive methods for the factorization problem is presented in the work [10] (see, also [16]).

Unfortunately, the factorization problem for matrix functions is generally speaking unstable.
More precisely, if the difference between the larger and the smaller partial indices is greater than
one, then the set of the partial indices can change with an arbitrary small perturbation of the
initial matrix [12,17]. Moreover, if left (right) factorization appears to be stable, this does not mean
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that the right (left) preserves that property [1]. There is also a technical difficulty embedded into
the problem as the factors r±, l± are not found uniquely, while how to properly normalize the
algorithm to guarantee the uniqueness in the chosen class is still open. On the other hand (see,
for example, [18], theorem 6.15), if two matrix functions a(z) and ã(z) are close enough, and their
partial indices coincide, then it is always possible to find a factorization of ã(z) for which factors
ã±(z) are close enough to the factors of a±(z). Recently, a few constructive approximate techniques
for factorization of specific matrix functions have been proposed [19,–22], under the condition that
their sets of partial indices are known in advance. Accompanied stability analysis has also been
performed in the case of unstable partial indices.

Therefore, the key step in construction of any (exact or approximate) factorization of a
given matrix function (if the factorization exists) is to provide a procedure/formula allowing
for calculation of the partial indices. However, even having an explicit route to achieve
the goal, it often requires a numerical realization. And here, one may meet with a hidden
unexpected obstacle: the procedure can again be unstable. Below we discuss two simple examples
highlighting the issue.

Consider two matrix polynomials (the only elements p11(z) are slightly different there):

P1(z) =
(

2z2 − z + 1
4 −4z2 + 2z − 1

z z3 + z2 + z + 4

)

and P2(z) =
(

2z2 − z + 1
2 −4z2 + 2z − 1

z z3 + z2 + z + 4

)
.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(1.2)

To factorize explicitly the polynomials by the method developed in [14], we need first to factorize
their determinants. For the first matrix function, we have

detP1 = 2z5 + z4 + 21
4

z3 + 21
4

z2 − 11
4

z + 1 (1.3)

and the factorization of this polynomial can only be done approximately. Hence, all subsequent
steps for the explicit factorization P1(z) may be unstable. To apply the effective criterion of
stability for partial indices [23], we have to verify that a certain matrix with float point entries,
built using the matrix P1(z), has the full rank. In turn, this is an ill-condition problem itself if
the condition number of the matrix is large enough ([24], ch. 2). Thus, within the framework of
this particular and well-developed explicit method, we cannot always even determine for sure
whether the partial indices are stable or not. All other methods for matrix polynomials known in
the literature [15] have the same obstacle when used to factorize the matrix P1(z).

A completely different situation arises with the polynomial P2(z). Now the determinant

detP2 = 2z5 + z4 + 11
2

z3 + 11
2

z2 − 5
2

z + 2 (1.4)

also has its roots that can be found only numerically (and thus, approximately). However, it can be
presented as a product of irreducible polynomials detP2 = (2z2 − z + 1/2)(z3 + z2 + 3z + 4) and
all roots of 2z2 − z + 1/2 lie in an interior of the unit circle, while all roots of the polynomial
z3 + z2 + 3z + 4 lie in the domain exterior. We can verify these statements without calculating the
roots themselves by using Schur’s test (see §3). Hence,

detP2(z) =
(

2 − 1
z

+ 1
2z2

)
z2(z3 + z2 + 3z + 4) (1.5)

is the Wiener–Hopf factorization of the determinant, detP2, over the field of the Gaussian rational
numbers Q(i), since the coefficients of the matrix polynomial P2(z) belong to this field. In what
follows, we show that all steps of the explicit factorization algorithm can be performed in the exact
arithmetic and, as a result, the instability issue does not arise in this case.
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These examples demonstrate that

(i) existence of an explicit procedure for a particular matrix factorization does not guarantee
that it can be successfully used in practice;

(ii) knowledge of exact values of zeros of the polynomial is not an essential feature (useful
though) for execution of the exact factorization;

(iii) the notions of explicit, exact and numerical factorizations should be clearly distinguished.

By the explicit (or constructive) solution of the factorization problem, we understand a clearly
defined algorithmic procedure that should definitely terminate after a finite number of steps.
However, when one implements a specific explicit factorization algorithm, each consequent step
can be executed exactly or approximately (numerically).

To avoid the difficulties associated with possible instability, one can chose the input data
belonging to the field Q(i) and perform all steps of the explicit algorithm in the exact arithmetic. In
such a case, we find that there exists an exact solution of the factorization problem. Unfortunately,
as has been discussed above, this resolution is not always available even when in possession of a
few different explicit algorithms.

If a factorization problem does not admit the exact solution, the only choice that remains is
to construct a numerical (approximate) factorization. The latter, in view of possible instability, may
represent a real challenge for execution and all computations should be done with special care and
supplemented by accurate analysis of the partial indices preservation and a numerical stability.

Thus, the key question arising during the factorization of a matrix function is: how to compute the
partial indices with a full confidence?

There are classes of matrix functions for which the partial indices are known in advance.
For example, positive definite matrix functions [12] have all their partial indices equal to zero,
while, for matrix functions not containing zero in their numerical ranges [25], they are equal
(but not necessarily zeros). Such sets of the partial indices are stable with respect to small
perturbation of the matrix functions [12], and, as a result, the remaining task in the factorization
process (computation of the factors) is less problematic and any appropriately chosen numerical
algorithm can be performed and justified by standard techniques.

In this study, we discuss factorization of matrix polynomials on the unit circle T with particular
attention to all these details. The structure of the paper is as follows. In §1, we describe a
well-known explicit method for constructing a factorization of a matrix polynomial [14]. We
formulated this method algorithmically in order to indicate explicitly all the steps that must be
taken to construct the factorization. This will be convenient for further attempts to implement
our method numerically. However, in this section, we do not consider computational problems
related to our method. Therefore, no analysis of the accuracy (forward/backward error) of the
explicit algorithm is carried out in this section. The basic tool for this factorization is a method of
essential polynomials [26].

In §3, we show that all steps of the explicit algorithm for factorization of a matrix polynomial,
a(z), over the Gaussian rational field Q(i) is implemented in the exact arithmetic if and only if its
determinant, det a(z), allows exact factorization in this field. The solution of the latter is presented
in theorem 3.1. We used representation a scalar polynomial as the product of its irreducible factors
and the Schur algorithm to test whether each factor has its roots siting inside (or outside) the unit
circle. Further, all steps of the explicit matrix factorization can be performed in the exact arithmetic.
The algorithm for exact evaluation of the essential polynomials is a foundation stone of theorem
3.2 which is the main result of this section. The formal description of this algorithm is rather
complicated and will be presented in the separate work.

In §4, we implemented the exact factorization algorithm as the package ExactMPF in the
computer algebra system Maple.1 This package consists of the following basic procedures:
SchurTest, SolverExactPF, ExactMLC, seqTk, NumRank, ExactFEP. The main procedure is

1https://www.maplesoft.com/.

https://www.maplesoft.com/.


5

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20210941

..........................................................

SolverExactMP. The purposes of these procedures are shortly described in the same section,
while the full listing of the package ExactMPF is given in the electronic supplementary material.
Several examples of the exact factorizations performed with use of the package ExactMPF are
presented in §5 with the aim to demonstrate the package abilities and to study peculiarities of
the factorization for special classes of matrix functions. Other tests are used to analyse stability
of the computations (see examples 5.1 and 5.2). All those and other examples are included in the
electronic supplementary material with more details.

In the general case, the explicit algorithm can only be realized approximately. This poses a
real challenge for users due to the instability of the problem. Our numerical experiments with
ExactMPF have demonstrated that even in the case of unstable sets of partial indices there is a
good chance to obtain an approximate factorization. Namely, to accelerate the work of ExactMPF,
we provide an option ‘symnum’ into the SolverExactMP. If this option is turn on, the package
calculates the ranks of matrices by the singular value decomposition (SVD) method [24,27].
These numerical ranks are used to find partial indices of the initial matrix polynomial. Further
calculations are performed in the exact arithmetic. This allows for a verification of the partial
indices finding by SVD versus the exact ones: (are the sets of the partial indices the same or
not?). It turned out that for many examples, even with unstable sets of the partial indices, such a
numerical approach leads to correct results. The partial indices found with the SVD method
are called partial τ -indices of the polynomial. However, the question whether or when they do
coincide remains open. The opportunity to use SVD for numerical calculations of partial indices
in a more general context is discussed in §6. Finally, in the Conclusion, we underline the advances
made in this paper and discuss further possible developments and applications.

2. An explicit Wiener–Hopf factorization for matrix polynomials
In this section, following the results of the work [14], we present an explicit algorithm for the
factorization of matrix polynomials. In accordance with our understanding of the notion of explicit
solution (see the Introduction), we describe below those finite numbers of steps that, after their
execution, allows one to construct a factorization. We focus on the algorithmic structure of this
explicit procedure that should be implemented within a respective numerical code. We would
like to emphasize here that this section is not devoted to any study of possible computational
problems that may appear during the algorithm implementation into a specific environment.

We start with Input data, that is, a matrix polynomial of a degree n, a(z) =∑n
j=0 ajzj,

represented by the set of its consecutive coefficients, aj ∈ Cp×p, j = 0, . . . , n, and p ∈ N defines the
matrix size. We assume that the matrix polynomial, a(z), is invertible on the unit circle T.

Step 1. Construction of the Wiener–Hopf factorization of the scalar polynomial det a(z).We
denote �(z) = det a(z). Since �(z) �= 0, |z| = 1, the determinant admits the Wiener–Hopf
factorization

�(z) = �−(z)z��+(z) and �−(∞) = 1, (2.1)

relative to T, that is unique with the additional condition at infinity for the polynomial
�−(z). In the sequel, we use, in fact, only one of the factors, namely,

�−(z) = 1 + �−
1 z−1 + · · · + �−

� z−� , � = indT det a(z). (2.2)

It should be noted that any explicit factorization algorithm will use the calculation of the
determinant of the factorizable matrix function. The authors realize that the complexity
for computing the determinant of a matrix of order n is n!. Fortunately, in applications
this happens for matrix function of a small order. Moreover, in §3, we use the matrix
determinant in conditions of the exact calculations.
Here, � is the Cauchy index of det a(z). There is Gakhov’s formula for this, which is
convenient for numerical calculations. However, in our case, we can find this index by
the exact calculations (see theorem 3.1).
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Step 2. Evaluation of a finite set of Laurent coefficients of the matrix function �−1− (z)a(z).
Laurent coefficients of the auxiliary rational matrix function �−1

− (z)a(z) are computed in
terms of matrix coefficients aj of the original matrix polynomial, a(z), and the coefficients
of the scalar polynomial, �−(z), defined on the previous step. The rational function
�−1

− (z) is analytic in a domain |z| > r for some r < 1. Let us expand �−1
− (z) and �−1

− (z)a(z)
in the Laurent series

�−1
− (z) =

∞∑
j=0

δj

zj
and �−1

− (z)a(z) =
n∑

j=−∞
cjz

j (2.3)

in this domain. Coefficients δj ∈ C and cj ∈ Cp×p, in the series above, can be found from
the following relations:

δ0 = 1, δ1 = −�−
1

δj =
⎧⎨⎩−�−

j −∑j−1
k=1 δj−k�

−
k , 2 ≤ j ≤ �,

−∑�
k=1 δj−k�

−
k , � + 1 ≤ j ≤ � + n,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.4)

and

cj =
{∑n

k=0 δk−jak, j ≤ 0,∑n
k=j δk−jak, 0n,

(2.5)

where the factor �−(z) has been computed on the previous step in (2.2). In what follows,
we need only a finite number of the coefficients, ck, for k = −�, . . . , 0, . . . , �.
Let c�−� := {c−� , . . . , c0, . . . , c�} be the finite sequence of complex p × p matrices which
are the Laurent coefficients of �−1

− (z)a(z). We form a finite family of the block Toeplitz
matrices of finite sizes

Tk = ||ci−j||i=k,k+1,...,�
j=0,1,...,�+k

, −� ≤ k ≤ �. (2.6)

The next step is a corner stone in implementation of the explicit algorithm proposed
in [14].

Step 3. Finding the ranks and the null spaces for of block Toeplitz matrices Tk.
Let kerR Tk (kerL Tk) be the right (left) kernels of the matrices Tk. Recall that the right and
left kernels of a complex block matrix A ∈ C(n+1)p×(m+1)p consisting of p × p blocks are
defined by the relations kerR A = {x : Ax = 0}, kerL A = {y : yA = 0}.

Let us represent an element R ∈ kerR A in a block form R =

⎛⎜⎜⎜⎜⎝
r0
r1
...

rm

⎞⎟⎟⎟⎟⎠ , rj ∈ Cp×1, and define a

column-valued generating polynomial in z related to R as R(z) = r0 + r1z + · · · + rmzm.
By NR

k , −� ≤ k ≤ �, we denote the space of generating vector polynomials for vectors in
kerR Tk. Put NR

−�−1 := {0} and let NR
�+1 be (2� + 2)p–dimensional space of all column-

valued polynomials whose degrees are not greater than 2� + 1.
Repeating the same line of reasoning, we define the space N L

k , −� ≤ k ≤ � of the row-
valued generating polynomials in z−1 for the rows from kerL Tk.
As a result of this step, the set of ranks of the matrices Tk defined in (2.6), and bases of the
spaces NR

k , N L
k , −� ≤ k ≤ �, has been computed. All those elements, values and sets are

of finite dimensions.
In general, computing rank and calculation of basis elements of the null-spaces are
unstable processes. In our work, we will find the rank and null-space of a matrix with
the help of calculation in the exact arithmetic.
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Step 4. Computation of indices and factorization essential polynomials.
The main tools for computations of the partial indices and factors in the factorization of
matrix functions are the so-called indices and essential polynomials of the sequence c�−�

(see [14,26]). Below we give necessary definitions and discuss how to compute them.
By dR

k , we denote a dimension of the right kernel NR
k and introduce the following integers:

�R
k = dR

k − dR
k−1 for −� ≤ k ≤ � + 1. A sequence c�−� is called regular if �R−� = 0 and �R

�+1 =
2p. For a regular sequence, we have (see [14,26])

0 = �R
−� ≤ �R

−�+1 ≤ · · · ≤ �R
� ≤ �R

�+1 = 2p. (2.7)

Since a monotone integer sequence is piecewise constant, then there are 2p integers μ1 ≤
· · · ≤ μ2p such that

�R−� = · · · = �R
μ1

= 0,
. . . . . . . . . . . . . . . . . . . .

�R
μi+1 = · · · = �R

μi+1
= i,

. . . . . . . . . . . . . . . . . . . .
�R

μ 2p+1 = · · · = �R
�+1 = 2p.

(2.8)

The absence of the jth row here means that μj+1 = μj.

Definition 2.1. The integers μ1, . . . , μ2p defined by the relations (2.8) are the indices of
the sequence c�−� .

It turns out that (see [14,26])
2p∑

j=1

μj = 0. (2.9)

Furthermore, we define the right essential polynomials of the sequence c�−� . Note that NR
k

and zNR
k are subspaces of NR

k+1 as it follows from the definition of the spaces NR
k . The

dimension, hR
k+1, of the complement HR

k+1 of NR
k + zNR

k in NR
k+1 is equal to �R

k+1 − �R
k .

Then, equations (2.8) imply that hR
k+1 �= 0 if and only if k = μj, j = 1, . . . , 2p. Moreover, in

this case, hR
k+1 is equal to the multiplicity, �j, of the index μj. Therefore, for k �= μj, we have

NR
k+1 =NR

k + zNR
k ,

and for k = μj

NR
k+1 = (NR

k + zNR
k ) ⊕ HR

k+1. (2.10)

Definition 2.2. Any polynomials Rj(z), . . . , Rj+�j−1(z) forming a basis for a complement
HR

μj+1 are called right essential polynomials of the sequence c�−� corresponding to the
index μj.

As a result, we have defined 2p indices μ1, . . . , μ2p and 2p right essential polynomials
R1(z), . . . , R2p(z) for any regular sequence c�−� . Similarly, we can define the left essential
polynomials L1(z), . . . , L2p(z) of the sequence c�−� .
By theorem 3.1 from [14], the sequence c�−� defined in equation (2.5) is regular and there
exist respective essential polynomials R1(z), . . . , R2p(z); L1(z), . . . , L2p(z) such that

(1) (i) the constant terms of the polynomials R1(z), . . . , Rp(z) are equal to zero,
(2) (ii) the leading terms of the polynomials Lp+1(z), . . . , L2p(z) are equal to zero.

Definition 2.3. The essential polynomials R1(z), . . . , R2p(z); L1(z), . . . , L2p(z) satisfying
the conditions (i)–(ii) are called the factorization essential polynomials of the sequence.

Step 5. Construction of the factorization of the initial matrix polynomial, a(z).
Now we are in a position to deliver a final result on the explicit Wiener–Hopf factorization
of a matrix polynomial a(z) (see theorem 3.2 in [14]). It is crucial to note here that, in
contrast to any other methods, if it exists for a particular matrix function, our approach
requires simultaneous consideration of both the right and the left factorizations.
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Theorem 2.4. Let μ1, . . . , μ2p be the indices and R1(z), . . . , R2p(z) (L1(z), . . . , L2p(z)) are the
right (left) factorization essential polynomials of the sequence c�−� . Let us introduce the p × p
matrix functions

R1(z) =
(

R1(z) . . . Rp(z)
)

and L2(z) =

⎛⎜⎜⎝
Lp+1(z)

...
L2p(z)

⎞⎟⎟⎠ (2.11)

and

dL(z) =

⎛⎜⎜⎝
z−μ1 . . . 0

...
. . .

...
0 . . . z−μp

⎞⎟⎟⎠ and dR(z) =

⎛⎜⎜⎝
zμp+1 . . . 0

...
. . .

...
0 . . . zμ2p

⎞⎟⎟⎠ .

Then the left (λ1 ≥ · · · ≥ λp) and right (ρ1 ≤ · · · ≤ ρp) partial indices and the factors (l±(z), r±(z))
of the respective factorizations of the matrix polynomial a(z) are defined by the formulae

λ1 = −μ1, . . . , λp = −μp ρ1 = μp+1, . . . , ρp = μ2p, (2.12)

l−(z) = z�+1�−(z)d−1
L (z)R−1

1 (z) l+(t) = z−�−1�−1
− (z)a(z)R1(z) (2.13)

and r−(z) = �−(z)L−1
2 (z) r+(z) = �−1

− (z)d−1
R (z)L2(z)a(z). (2.14)

�

In the statement of this theorem, we have corrected the misprints appearing in the
formulae for the factors l+(z), r+(z) in theorem 3.2 of [14].
It follows from this theorem that the indices of the sequence c�−� , in addition to (2.9),
satisfy conditions

p∑
j=1

μj = −� and
2p∑

j=p+1

μj = �. (2.15)

Those five steps above represent an explicit algorithm, since their implementation requires only
using the linear algebra tools for objects of finite dimensions.

Remark 2.5. The main difficulty in the practical implementation of the aforementioned
formulae is that the sequence c�−� can be found, in general cases, only numerically (and thus, the
result is computed with some accuracy). Therefore, in such cases, the algorithm would produce
the factorization of a matrix polynomial ã(z) close enough to the original matrix polynomial a(z)
with all consequences of such replacement (possible instabilities as discussed above).

Remark 2.6. If, by any means, one believes that the partial indices of a matrix polynomial in
question are stable, some computations from Step 4 can be avoided (see example in §6).

3. An exact realization of the explicit algorithm
The analysis of the algorithm, carried out in the previous section, shows the reason for the
instability of the factorization problem for matrix polynomials. The explanation is in the
instability of the problems of finding the rank and null-space of a matrix. Since finding the rank
is the key problem for our algorithm (and also for the Gohberg–Lerer–Rodman algorithm [15]),
in the general case, an explicit algorithm cannot be implemented numerically.

However, if Steps (1)–(5) can be carried out in exact arithmetic, i.e. the error-free calculations
are used, problems with the factorization instability, with the accuracy of calculation and rounding errors
do not arise. It should be noted that symbolic calculations have the significant drawback that
they often require significant computational resources. In our case, an increase in the size of the
matrix function and the degree of the matrix polynomial can lead to a significant slowdown in
the algorithm. Fortunately, in most of the applications, matrix functions of the second or third
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Table 1. Execution time, tk , (in seconds) for factorization of thematrix polynomial Ck(z), defined in (5.4). The letter ‘F’ indicates
a failure occurred during the execution,while the symbol ‘–’ highlights that the computations, performed in the symbolicmode,
were unable to complete the task within 1 h.

tk (symnum)

k nk pk �k �2 (T0) tk (sym) digits= 5 digits= 10 digits= 15

1 4 6 3 1.10 × 10 0.28 0.4 0.31 3.44
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 8 12 6 7.95 × 10 0.81 1.0 0.61 0.62
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 12 18 9 6.04 × 102 2.62 1.4 1.77 1.80
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 16 24 12 5.78 × 103 7.19 F 2.94 2.95
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 20 30 15 5.90 × 104 23.78 F 7.95 8.83
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 24 36 18 5.95 × 105 55.11 F 10.66 13.26
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 28 42 21 5.66 × 106 147.23 F 35.80 38.11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 32 48 24 5.13 × 107 288.67 F 44.89 42.19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 36 54 27 4.65 × 108 644.03 F F 135.55
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 40 60 30 4.44 × 109 1103.06 F F 150.59
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 44 66 33 4.53 × 1010 2204.62 F F 453.78
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 48 72 36 4.66 × 1011 — F F 444.05
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 52 78 39 4.57 × 1012 — F F F
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

order mainly appear, and the only reason for a possible slowdown is a large degree of the matrix
polynomial. In table 1, we illustrate this feature in detail.

The main result is formulated in theorem 3.2. It gives a necessary and sufficient condition
for the exact factorization of a matrix polynomial a(z) ∈ Q(i)[z], relying on the same property of
its determinant, det a(z). Below, we discuss a practical implementation of those five steps of the
explicit algorithm in this particular arithmetic.

Input data. A matrix polynomial a(z) =∑n
j=0 ajzj, aj ∈ Cp×p, of degree n that is invertible on the

unit circle T. The entries of the matrix coefficients aj belong to the field Q(i).
Step 1. In order to construct the Wiener–Hopf factorization of the scalar polynomial det a(z)

in exact arithmetic, it is sufficient to require that all roots of det a(z) belong to the field Q(i).
However, this condition is not necessary. There exists a weaker necessary and sufficient condition
allowing exact Wiener–Hopf factorization of det a(z) over the field Q(i). The idea here is to factorize
the polynomial as a product of irreducible factors, testing (for example, with help of the Schur
algorithm) whether the roots of each factor lie in the interior or exterior of the unit disk.

First, we give the criterion in terms of coefficients of the irreducible factors of the polynomial.
As has been mentioned above, we assume that no zero lies on the unit circle. Note that, in the
opposite case, the Schur test fails during the execution stage. This fact explains why we have not
concentrated on how to verify the condition det a(z) �= 0 on the first step of the algorithm.

Let Q(z) = q0 + q1z + · · · + qNzN be a polynomial with complex coefficients, qN �= 0. We denote
Q∗(z) = q̄N + q̄N−1z + · · · + q̄0zN , where q̄j is the complex conjugate of qj.

For the given Q(z), we define the triangular Toeplitz matrices

UQ :=

⎛⎜⎜⎝
qN · · · q1
...

. . .
...

0 · · · qN

⎞⎟⎟⎠ and LQ :=

⎛⎜⎜⎝
q0 · · · 0
...

. . .
...

qN−1 · · · q0

⎞⎟⎟⎠
and form the Hermitian N × N matrix CQ := U∗

QUQ − LQL∗
Q. Here, U∗

Q (L∗
Q) is Hermitian conjugate

of UQ (LQ).
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Let p(z) be a polynomial over the field Q(i). It can be represented as a product of irreducible
monic polynomials [28]:

p(z) = p0Q1(z) · · · Qm(z), 0 �= p0 ∈ Q(i). (3.1)

Theorem 3.1. The polynomial p(z) admits the exact Wiener–Hopf factorization if and only if, for every
polynomial Qj(z), j = 1, . . . , m, one of the matrices CQj or CQ∗

j
is positive definite.

Suppose these conditions are fulfilled. Denote by p1(z) the product of those irreducible factors Qj(z)
in decomposition (3.1) for which the matrices CQj are positive definite. Then, the polynomial p2(z) is the
product of the remaining irreducible factors and p0. Let us define: � = deg p1(z), p−(z) = z−�p1(z) and
p+(z) = p2(z). Then the exact Wiener–Hopf factorization of the polynomial p(z) is

p(z) = p−(z)z�p+(z). (3.2)

Proof. It is clear that the polynomial p(z) admits the exact Wiener–Hopf factorization if any
of the irreducible factors has all its roots lying inside or outside the unit circle. By the criterion
Schur–Cohn [29,30], the polynomial Qj(z) has all its roots lying inside the unit circle if and only if
the matrix CQj is positive definite. Similarly, Qj(z) has all roots lying outside the unit circle if Q∗

j (z)
has all its roots lying inside the unit circle, that is CQ∗

j
is positive definite. The representation (3.2)

is the Wiener–Hopf factorization that is normalized by the condition p−(∞) = 1. �

For practical computation, it is more convenient to use the Schur test [31] instead of checking
the positive definiteness of matrices. This test states (see, for example, [29]) that

a polynomial Q(z) = q0 + q1z + · · · + qNzN has all its roots lying inside the unit circle if and only if

(i) |q0| < |qN|, and
(ii) the polynomial Q̃1(z) determined from the equality Q̃1(z) = z−1(q̄NQ(z) − q0Q∗(z))

possesses the same property.

Since deg Q̃1(z) < deg Q(z), then in a finite number of steps, we arrive at a polynomial of degree
0 or find that the polynomial Q(z) does not have the required property.

In order to verify that all roots of Q(z) lie outside the unit circle, it is necessary to apply
the Schur test to the polynomial Q∗(z). Note that the above algorithm automatically verifies the
invertibility of the matrix polynomial a(z) on the unit circle T.

Step 2. Since the polynomial det a(z) admits the exact factorization det a(z) = �−(z)z��+(z), the
coefficients of the polynomial �−(z) in z−1 belong to the field Q(i). The function �−1

− (z) is analytic
in the domain |z| > r, for some r < 1. Its Laurent coefficients δj ∈ Q(i) are obtained by equation (2.4)
in exact computations. Since only a finite number (2� + 1) of the coefficients are needed and all
operations are arithmetic, Step 2 is therefore performed in the exact manner.

Step 3. The matrices c−� , . . . , c� defined in equation (2.5) have the entries belonging to Q(i),
i.e. the sequence c�−� is exactly computed. In Step 3 of the explicit algorithm, we find ranks
and null spaces of block Toeplitz matrices Tk(c�−� ) for −� ≤ k ≤ �. This step can be realized by
Gaussian elimination. Since entries of the matrices belong to Q(i), the Gaussian elimination can
be implemented in exact arithmetic [28].

Step 4. Obtaining the indices and the factorization essential polynomials of the sequence c�−� ,
defined in (2.8) and (2.11), is a foundation stone of the method. Since the ranks of the matrices
Tk(c�−� ) have been calculated exactly, the differences, �k, and hence the indices, μj, are also found
exactly.

To determine the essential polynomials, we need bases of the complements HR
μj+1, j = 1, . . . , 2p,

(see equation (2.10) and definition 2.2) and the factorization essential polynomials (see definition
2.3). It is intuitively clear that these polynomials can be found exactly using the methods of linear
algebra. However, a rigorous proof of this fact is rather complicated and requires a careful study
of all steps of the algorithm for determination of the factorization essential polynomials. It will be
presented in the separate work.

Step 5. The main result of this section is the following.
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Theorem 3.2. Let a(z) be a matrix polynomial over the field of Gaussian rationales Q(i). Then a(z)
admits exact Wiener–Hopf factorization if the polynomial det a(z) is exactly factorable over Q(i).

Proof. If a(z) admits the exact left Wiener–Hopf factorization a(z) = l+(z)dl(z)l−(z), then det a(z) =
det l+(z)zλ1+···+λp det l−(z) is the exact factorization of det a(z).

Conversely, if the polynomial det a(z) admits the exact factorization then all preliminary Steps
1–4 can be carried out exactly. It remains to use the formulae (2.12)–(2.14). �

4. Implementation of the exact algorithm in Maple’s code: ExactMPF package
The exact factorization algorithm has been realized in the computer algebra system Maple using
its linear algebra utilities as the package ExactMPF. The package can work in the version Maple
11 or higher. Clearly, one can do this in any other suitable software (for example, Mathematica2 ).
The main procedure of the package is SolverExactMPF. During the execution, it calls a number of
subroutines. We list the basic ExactMPF’s procedures:

— SchurTest verifies whether all polynomial roots lie in the unit circle (see §3, Step 1).
— SolverExactPF verifies whether a scalar polynomial admits the exact Wiener–Hopf

factorization and builds it (see §3, Step 1).
— ExactMLC computes the matrix Laurent coefficients c−� , . . . , c0, . . . , c� for the rational

matrix function �−1
− (z)a(z) (see equation (2.5) and §3, Step 2).

— seqTk builds the sequence of the matrices Tk(c�−� ), −� ≤ k ≤ � (§3, Step 3).
— ExactFEP finds indices and factorization essential polynomials of the sequence c�−� .

The main procedure SolverExactMPF finds the exact factorizations of a p × p Laurent matrix
polynomial a(z) =∑n

k=−m akzk. It also checks and validates the input entered into the procedure.
The following validations are performed:

— are elements of the matrix a(z) polynomials in z, z−1?
— are these polynomials over the field Q(i)?
— does det a(z) admit the exact Wiener–Hopf factorization?

If the validation fails, the program is interrupted.
To access ExactMPF use the commands.

> read("ExactMPF.txt");

> with(ExactMPF);

> with(LinearAlgebra);

To obtain the factorizations of a(z), we run the procedure SolverExactMPF with argument a(z).

> lplus, dl, lminus, rminus, dr, rplus := SolverExactMPF(a):

The procedure SolverExactMPF returns the factors lplus, dl, lminus of the left factorization and
the factors rminus, dr, rplus of the right factorization.

This procedure also automatically performs a few tests for the constructed factorization

(i) it finds the sum of the partial indices,
(ii) checks whether the factors l+(z), r+(z) (l−(z), r−(z)) are matrix polynomials in z (in z−1)

and
(iii) whether (�±(z))−1 det l±(z), (�±(z))−1 det r±(z) are constants.

2https://www.wolfram.com/mathematica/.

https://www.wolfram.com/mathematica/.
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A very peculiar option symnum is also built into the procedure SolverExactMPF. It can be
evaluated by the command:

> lplus, dl, lminus, rminus, dr, rplus := SolverExactMPF(a,"symnum"):

In this mode, SolverExactMPF converts the matrices Tk(c�−� ) to matrices with floating point
entries to the precision given by the global variable digits. Then, SolverExactMPF uses the
procedure NumRank included in the package ExactMPF.

NumRank finds a numerical rank of a N × M matrix A with float point entries. A good practice
is to use a numerical rank, which is defined with the help of the SVD method [24,27]. Recall some
necessary definitions.

Let A be a N × M matrix and σ1 ≥ · · · ≥ σs ≥ 0, s = min{N, M}, its singular numbers. In the case
of exact computation, if rank A = r, then σr �= 0 and σr+1 = · · · = σs = 0. The number k2(A) = σ1/σr

is called the spectral condition number of the rectangular matrix A [27,32].
It is known that perturbations of the singular values are of the same order of magnitude as the

perturbations of the matrix entries. Thus, computation of the singular values is a stable procedure
and this property has led to the definition of a numerical τ -rank (see [24,27]).

A numerical τ -rank of the matrix function A(z) is the number of singular values greater
than some tolerance τ , i.e. the singular values that are less than or equal to τ considered as
perturbations of the zero singular values.

Thus, the tolerance τ specifies a way of separating the non-zero singular numbers from those
assumed to be zero before the perturbation. Hence, the notion of τ -rank is useful when there exists
a well-defined gap between non-zero and zero singular values of the matrix. Even for a matrix
of the full rank, this requirement may not be fulfilled (if the matrix is ill-conditioned related to
the spectral condition number). Choice of the parameter τ may be very sensitive and thus it is
the most delicate and difficult task to decide upon in calculation of the numerical τ -rank. In the
procedure NumRank, a default value of the tolerance is τ (A) = max{N, M} · σ1(A) · 10−digits.

Further, τ -ranks of the block Toeplitz matrices Tk are used to define τ -indices of the sequence
c�−� instead of the exact indices of this sequence. All remaining calculations are performed in the
exact arithmetic. If the output is validated successfully, the replacement of the indices by τ -indices
may be considered as justified. Using this mode, one can significantly speed up the calculations.
Moreover, this mode allows us to perform numerical experiments to test a coincidence of the
partial indices and the partial τ -indices that were found by τ -indices of the sequence c�−� . In the
next section, we perform such experiments.

After this short description of the ExactMPF package, we come back to matrix polynomials
P1(z) and P2(z) discussed in the Introduction and try to factorize them exactly using the package.

Example 4.1. Consider first the matrix function a(z) =P1(z) defined in (1.2) and execute

> SolverExactMPF(a):

‘Failure: The exact polynomial factorization doesn’t exist’
‘The factorization process is interrupted’

Example 4.2. Consider the second matrix polynomial a(z) =P2(z) from (1.2) that allows for the
exact factorization of its determinant over the field Q(i). The procedure SolverExactMPF gives in
this case the following expressions for the factors of a(z):

> lplus; dl; lminus;

⎡⎣ −4z − 1099
116 2z − 43

29

z2 + 93
58 z + 48

29
2
29 z + 32

29

⎤⎦ ,

⎡⎣z 0

0 z

⎤⎦ and

⎡⎣ − 2
29z 1 − 35

58z

1 + 3
29z

1051
232z

⎤⎦ ,
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> rminus; dr; rplus;

⎡⎣ 0 −4 + 2
z − 1

z2

35
22

3
2 + 3

4z + 4
z2

⎤⎦ ,

⎡⎣1 0

0 z2

⎤⎦ and

⎡⎣ 44
35 + 121

140 z + 33
70 z2 11

70 z − 11
35 z2 + 22

35 z3

− 1
2 1

⎤⎦ .

The execution time is 0.265 s.

Note that the left and right partial indices do not coincide. Moreover, the set of partial indices in
the left factorization is stable, while that for the right factorization is unstable. In the next section,
we carry out more extensive numerical experiments with ExactMPF.

5. Examples of matrix factorization using the ExactMPF package
All computations have been performed on a home desktop computer HP with Intel(R)
Core(TM)i3-415T CPU, 3.00 GHz, 4G RAM, operating the system Windows 10.

The package ExactMPF can be used for study of the explicit factorization of matrix polynomials.
In the electronic supplementary material, we include numerous tests performed with use of the
ExactMPF package, containing solutions of all examples from the main body of the paper.

(a) Factorization of triangular matrices
First, we consider factorization of triangular matrix functions. In [33], the right factorization of
triangular 2 × 2 matrix functions A(t) is studied in detail and the stability analysis of this problem
is carried out. It has been proven that, for a non-trivial case, the factorization of A(t) is reduced to
the factorization of the following Laurent matrix polynomial

P(t) =
⎛⎝ tν1 0∑ν2−1

j=ν1+1 ajtj tν2

⎞⎠ , (5.1)

where ν2 ≥ ν1 + 3. If aj ∈ Q(i), factorization of such a matrix can be naturally constructed with the
help of our package.

Example 5.1. Consider

P(z) =
⎛⎝ 1

z3 0

− 1
z2 − 4

5z + 1 − z2 + z3 z4

⎞⎠ .

Then, after execution of SolverExactMPF, we get

> rminus, dr, rplus;

⎡⎣1 + 4
z + 21

5z2 + 16
5z3

1
z2 + 1

z3 + 1
z4

− 104
25 − 169

25z − 16
5z2

1
5 − 4

5z − 9
5z2 − 1

z3

⎤⎦ ⎡⎣1 0

0 z

⎤⎦

and

⎡⎣ −5z −5z2 − 5z − 5

5z2 + 15z + 1 5z3 + 20z2 + 21z + 16

⎤⎦ ,

> lplus, dl, lminus;
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⎡⎣0 1

1 −z − 4
5 z2 + z3 − z5 + z6

⎤⎦ ,

⎡⎣z4 0

0 z−3

⎤⎦ and

⎡⎣0 1

1 0

⎤⎦ .

The execution time is 0.547 s. We note that in this case, the left factorization can be easily
constructed without the package, but with another order for the left partial indices⎡⎣ 1 0

−z − 4
5 z2 + z3 − z5 + z6 1

⎤⎦ ⎡⎣z−3 0

0 z4

⎤⎦ and

⎡⎣1 0

0 1

⎤⎦ .

As is clear from the presented example, the indices of the diagonal elements in the triangular
matrix do not always coincide with its partial indices [33].

The factorization of triangular matrix functions of an arbitrary order requires considerations of
a number of special cases, depending on the relation between the indices of the diagonal elements
[34]. The procedure SolverExactMPF can be useful for experimenting with such matrices.

Example 5.2. Let

A(z) =

⎛⎜⎜⎜⎝
z − 1

2 0 0

0 z2 + 13z + 15
z2 0

z − 1 z−1 1

⎞⎟⎟⎟⎠ .

Here, the indices of diagonal elements are �1 = 1, �2 = −2, �3 = 0. SolverExactMPF returns the
following data:

> lplus, dl, lminus;

⎡⎢⎢⎢⎣
2 1 0

0 0 z2 + 13z + 15

2 2 z

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
z 0 0

0 1 0

0 0 z−2

⎤⎥⎥⎥⎦ and

⎡⎢⎢⎢⎣
1
2 0 − 1

2z

− 1
2 0 1

0 1 0

⎤⎥⎥⎥⎦
Since the expression for the right factors r±(z) are cumbersome (see the electronic supplementary
material for full details), we present only the middle factor

> dr

⎡⎢⎢⎢⎣
z−1 0 0

0 z−1 0

0 0 z

⎤⎥⎥⎥⎦ .

The executing time is 0.563 s.

Again, both the left and right partial indices of this matrix function do not coincide with the
indices of the diagonal elements.

(b) Factorization of a matrix polynomial with complex coefficients
In the following example, we construct the exact factorization of a matrix polynomial with
complex coefficients.
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Example 5.3.

B(z) =
⎛⎝2iz2 − z + 1/2 − z−1 −1

z2 − iz + 2 + 4iz−1 z3 − iz2 + 2z + 4i

⎞⎠ .

Then, we get

> lplus, dl, lminus, dr;

⎡⎣2i −1

0 z3 − iz2 + 2z + 4i

⎤⎦ ⎡⎣z2 0

0 1

⎤⎦ ,

⎡⎣1 + (i/2)z−1 − (i/4)z−2 0

z−1 1

⎤⎦ and

⎡⎣z 0

0 z

⎤⎦ .

The execution time is 0.438 s.

For the same reason as above, we present the factors only for the left factorization.

(c) Experiments with the τ -factorization of matrix polynomials
As have been already underlined, the main unsolved problem in the approximate factorization of
matrix polynomials is a verification whether its partial τ -indices coincide with the partial indices
of the original matrix (both left and right ones). Since it has been impossible so far to prove any
definite result theoretically, we carry out here numerical experiments using our designed solver
SolverExactMPF in its symbolic-numeric mode symnum for the cases when exact factorization
can be performed.

In the next example, we introduce a sequence of exact factorizable matrix polynomials with
increasing degrees. We use the full capability of SolverExactMPF in both its modes (exact and
symbolic-numeric) to calculate their partial indices and the partial τ -indices (see §4). Then
we carry out all subsequent calculations in the exact arithmetic. If the obtained factors l±(z),
r±(z) and the partial indices pass all the necessary verifications, then the factorizations are
constructed correctly and the replacements of the ranks by their numerical τ -ranks is justified.
Moreover, using option symnum mode gives an additional bonus: it significantly speeds up the
computations.

The purpose of our experiments is to test applicability of the notion of the τ -rank for the
factorization of matrix polynomials. A priori, it is clear that the method is ineffective if the task
of computation of the τ -ranks for the sequence of block Toeplitz matrices T−� , . . . , T0, . . . , T� is
extremely ill-conditioned. Let us define an analogue of the condition number for this task.

As usual, if A is a rectangular matrix, then �2(A) = σ1/σr, r = rankA, is the condition number
of A with respect to the spectral matrix norm. We say that K2 = max−�≤j≤� �2(Tj) is the condition
number of the matrix sequence {Tj}�j=−�

.
Since the τ -rank can be found only numerically, we are able only to estimate the value of K2.

It is easy to verify that rank T0 = �(p − 1) + p. Hence, we can explicitly calculate �2(T0) and can
find a lower bound for K2 ≥ �2(T0). As has been mentioned above, a choice of parameter τ , to be
used in τ -factorization, is not trivial. We use in our analysis the value τ (Tj) = maxsize(Tj) · σ1(Tj) ·
10−digits as it is the same as the default tolerance in MATLAB’S rank command. We can prove that

maxsize(Tj) ≤ (2� + 1)p, σ1(Tj) = ||Tj||F ≤ ||T� ||F =
√

|c−� |2 + · · · + |c� |2,

− � ≤ j ≤ �,

⎫⎬⎭ (5.2)

where || · ||F is the Frobenius norm of a matrix.
Taking into account (5.2), we see that

τ ≤ (2� + 1)p
√

|c−� |2 + · · · + |c� |2 · 10−digits, (5.3)

chosen as the tolerance τ is controlled by the value of parameter digits.
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In the next example, we will see how the correctness of such an approach depends on the
choice of the parameter digits.

Example 5.4. The matrix polynomial

C(z) =
(

5iz2 − 3z + 1 −10iz2 + 6z − 2
z z4 + z3(−1 − i) + 2z2 − 13z

2

)
(5.4)

admits the exact factorization. Let us consider matrix polynomials Ck(z) = Ck(z) and denote
nk = deg Ck(z), pk = deg det Ck(z), �k = ind det Ck(z) = k�. We also record the execution time, tk,
required by the package to compute factorization of the matrix polynomial Ck(z). Three different
machine precisions: digits = 5, 10 or 15 are used for the testing.

The results of the numerical experiment are shown in table 1. Expressions for the factors l±(z),
r±(z) are very cumbersome and are omitted.

The test has demonstrated that the symbolic part of the ExactMPF package is able to deliver
the results in reasonable time for 1 ≤ k ≤ 11 and the matrix polynomials Ck(z) have the stable sets
of their partial left and right indices. Those are

λ1 = λ2 = ρ1 = ρ2 = k�
2

, k is even,

λ1 = ρ2 = k� + 1
2

, λ2 = ρ1 = k� − 1
2

, k is odd.

⎫⎪⎪⎬⎪⎪⎭ (5.5)

From table 1, we can also see that the executions in the sym-mode, when the ranks are calculated
in exact arithmetic, become very slow for large values of k and the use of symbolic-numeric
calculation (symnum-mode) can greatly accelerate the computations.

In the cases indicated by the letter F in table 1, the procedure NumRank has found the ranks
of Tk incorrectly (the validation of the sum of the indices for the sequence c�−� fails), and the
ExactMPF package interrupts computations because of the failure. The reason for this is that the
condition number K2 was too large. In this case, increasing parameter digits (that decreases the
threshold for numerical tolerance, τ ) makes it possible to continue correct calculations. Note that
the partial indices computed for k = 12 with use of the τ -factorization follow the same rule as in
(5.5). Unfortunately, this fact does not formally allow us to conclude (with 100% confidence) that
the exact partial indices would be the same.

The next example shows that symnum mode is able to correctly calculate the partial indices
even in unstable cases.

Example 5.5. Let us consider a matrix polynomial

A =
(

36z2 + 17z − 14 0
−z2 + 3z z2 + 13z + 15

)
.

The exact computations using SolverExactMPF give λ1 = λ2 = 1 and ρ1 = 0, ρ2 = 2. Moreover, in
this case, �2(T0) = 5.294083.

Next, let us construct another matrix polynomial B = A8. For this one, SolverExactMPF returns
the following values of the partial indices: λ1 = 14, λ2 = 2 and ρ1 = 0, ρ2 = 16. In the symnum
mode with the parameter digits=10, the package was unable to find the correct values since the
tests on the sums of indicies are not successful and the factorization process is interrupted. In this
case, �2(T0) = 6.465447 × 1010 and, as a result, the condition number K2 ≥ 6.465447 × 1010 is too
large. If, however, we set digits = 15, the package returns, in the symnum mode, the correct values
of the partial indices.

Thus, our numerical experiments with several matrix polynomials (see electronic
supplementary material) have shown that, for the case of not too large condition numbers,
calculations with use of both the symbolic and numeric options of the ExactMPF package give
identical partial indices and partial τ -indices, even in the unstable cases. This fact gives hope for
a stable construction of an approximate factorization but requires a solid theoretical proof.
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6. On numerical realization of the explicit algorithm
In previous sections, we considered the problem of the Wiener–Hopf factorization for matrix
polynomial over the field Q(i). In this case,

(i) the input data are given with infinite precision, and
(ii) there is a possibility to use the exact (error-free) calculations.

As a result, we have constructed the ExactMPF package for the exact solution of the factorization
problem, that returns the solution under condition that the determinate of the matrix polynomial
is exactly factorizable or, in the opposite case, interrupts the computations. In this case, the
stability and accuracy problems do not arise. However, a natural question arises: can we deliver
an approximate (numerical) factorization of such a matrix? If the conditions for the existence
of the exact factorization are not fulfilled, then it is not yet possible to build any algorithm for
the factorization problem that satisfies the entire canon of computational mathematics (with
carrying stability analysis, obtaining forward/backward errors and accuracy for approximate
factorization).

Here, we highlight possible obstacles when implementing the explicit algorithm (Steps 1–5)
numerically without relating the steps to the ExactMPF package, in the case, when, at least, one of
the conditions (i), (ii) is not fulfilled.

Input data. We consider a matrix polynomial a(z) of the degree n and size p × p that is invertible
on the unit circle T. The entries of the matrix coefficients, aj, belong to the field C. They can be
represented by floating point numbers with the accuracy 10−q (finite precision) or the entries
belong to the field Q(i) (infinite precision).

Step 1. Since one of the conditions (i), (ii) is not fulfilled, we can solve the factorization problem
for the function �(z) = det a(z) only approximately. If the input data are given with infinite
precision we convert them in the floating point format with a desired accuracy 10−q.
A standard way for the factorization of a scalar polynomial, recommended by all explicit
methods, suggests using approximate values of the polynomial roots. However, those
roots are, in general, not well-conditioned functions of polynomial coefficients (see,
e.g. [35]), and vice versa, the coefficients of a polynomial are also not well-conditioned
functions of their roots [36]. The latter means that searching numerically for zeros of the
polynomial to construct its factorization (2.1) may lead to the algorithm instability.
In order to solve the factorization problem for scalar polynomials over the field C, a
dedicated package PolynomialFactorization (in the Maple Software) has been developed
by Adukov [37]. It factorizes an input polynomial p(z) based on the indices and essential
polynomials technique. Input data for its main procedure SolverPF is a scalar polynomial
p(z) and the accuracy 10−q of the polynomial coefficients. SolverPF returns factors p−(z),
p+(z) of the Wiener–Hopf factorization of p(z) and their guaranteed accuracy ε. The
accuracy, ε, calculated by the procedure SolverPF depends on a type of polynomial and
the accuracy of the input data.
Note, that the PolynomialFactorization package is not included in the ExactMPF package,
and is different from the standard ‘Factoring a Polynomial’ Maple command Factor.3 Its
main feature is: it does not rely on computation of the polynomial’s roots.

Step 2. Now we can calculate the Laurent coefficients δj of �−1
− (z) using given matrix coefficients

aj of a(z) and taking into account their accuracy.Hence, we can find the sequence
c−� , . . . , c� with some accuracy as described in §2. This step does not contain any technical
difficulties. Note that, if the input data are given with infinite precision, i.e. belong to the
field Q(i), then we can calculate cj with any reasonable accuracy. Otherwise, the accuracy
is restricted by finite accuracy of input data.

3https://www.maplesoft.com/support/help/maple/view.aspx?path=Task/FactoringAPolynomial.

https://www.maplesoft.com/support/help/maple/view.aspx?path=Task/FactoringAPolynomial.
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Step 3. This is a crucial point in the factorization problem. In the exact arithmetic, the respective
calculations do not meet any problem (except of computational time). However, if the
entries of the matrices are known only approximately, evaluations of the ranks and null
spaces of Tk might be unstable. This is a reason for the instability of the factorization
problem itself.
In §4, we have discussed the procedure NumRank from ExactMPF in detail. It uses the
SVD method for finding a numerical rank of matrices with floating point entries. The
procedure can also be used in this case.
For definition of the essential polynomials, we need a method for evaluation of a basis of
the null space for matrices with floating point entries. This can also be done with the SVD
method [24,27]. Computation practice shows that this method is the most reliable way to
numerically find the rank and the basis for the null space of a matrix. Here, however, the
main problem is how to select the computational tolerance τ . Unfortunately, in general,
there is no rigorous way to do this. As an initial choice, we can recommend using τ (A) =
max{N, M} · σ1(A) · 10−digits, if one works in the Maple environment.

Step 4. Since entries of the matrices Tk (−� ≤ k ≤ �) are, in general, floating point numbers, we
need to compute the numerical τ -rank of the sequence c�−� instead of exact. The indices of
the sequence c�−� found by τ -ranks are respectively called τ -indices.
Next, to construct an approximate Wiener–Hopf factorization of the matrix polynomial,
we need to find the factorization essential polynomial of the sequence c�−� . In §3, we
describe an algorithm for construction of these polynomials and prove that, for input
data with infinite precision, the algorithm can be realized in the exact arithmetic. An
open problem, however, is how to adapt the algorithm for input data with a finite
precision. In such cases, we may use a basis of null space for matrix Tk (−� ≤ k ≤ �) via the
SVD method with the tolerance τ (τ -bases). The factorization essential polynomials,
constructed with the help of τ -bases, are called factorization essential τ -polynomials.

Step 5. For the fixed tolerance τ > 0, the integers λτ
1 , . . . , λτ

p , ρτ
1 , . . . , ρτ

p , computed by formulae
(2.12) with the help of τ -indices of the sequence c�−� are called partial τ -indices of the
matrix polynomial a(z). The factorization of a(z) constructed by formulae (2.12)–(2.14)
with the help the partial τ -indices and the factorization essential τ -polynomials will be
called τ -factorization of the matrix polynomial a(z).

The key question here remains open:
Does the τ -factorization of a matrix polynomial a(z) with a chosen τ represent an approximate

factorization of a(z) (preserving the same set of the partial indices) with a certain accuracy?

To solve this problem, we must find answers to the following basic questions:

(i) does a tolerance τ exist such that the partial τ -indices of a(z) coincide with the matrix
partial indices? How can this tolerance be found?

(ii) can the algorithm for constructing factorization essential polynomials from §3 be adapted
to find the factorization essential τ -polynomials?

In order to carry out numerical experiments, we should develop a new appropriate software.
At the present time, we have in our hands the package PolynomialFactorization from [37] and
the procedure NumRank from this EXACTMPF package. Since the procedure for finding the
factorization essential τ -polynomials is still unavailable, in the following example, we restrict
ourselves to the evaluation of partial τ -indices only.

We consider the matrix polynomial P1(z) from the Introduction in (1.2). Note that the
input data have infinite precision, while the determinant detP1(z) can be factorized only
approximately. Let us first construct a factorization of p(z) = detP1(z) with the help of the package
PolynomialFactorization to obtain

p1(z) = 1.00000000z2 − 0.4572987z + 0.1301582
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and

p2(z) = 2.0000000z3 + 1.9145973z2 + 5.8652264z + 7.6829597,

with a precision ε = 0.0000034. This precision was returned by the package PolynomialFactorization
proceeded under the Maple value of digits= 15 and accuracy 10−q = 10−15.

Thus, an approximate factorization (2.1) has been constructed with the index � = detP1 =
deg p1 = 2, and the factors �−(z) = z−2 p1(z) and �+(z) = p2(z).

The Laurent coefficients of �−1
− (z) are found directly from the recurrence formulae (2.4)

δ0 = 1, δ1 = 0.4572986, δ2 = 0.0789639, δ3 = −0.0234111,

δ4 = −0.0209836 and δ5 = −0.0065486.

Calculation of the matrix Laurent coefficients by formulae (2.5) gives the following result:

c−2 =
(

0.001184 −0.041851
−0.023411 0.264908

)
and c−1 =

(
−0.011461 −0.205726
0.078963 1.863760

)
and

c0 =
(

−0.049372 −0.401256
0.457298 4.512850

)
, c1 =

(
−0.085404 0.170808
1.000000 1.536260

)

and c2 =
(

2.000000 −4.000000
0.000000 1.45730

)
.

In order to verify the stability criterion for matrix polynomials (theorem 3.1 in [23]), we need
to compute the τ -ranks of matrices

T−1 =

⎛⎜⎜⎜⎝
c−1 c−2
c0 c−1
c1 c0
c2 c1

⎞⎟⎟⎟⎠ and T1 =
(

c1 c0 c−1 c−2
c2 c1 c0 c−1

)
.

This can be done with use of the function SingularValues(A) of the MAPLESOFTWARE that
returns the singular values of a matrix A. For the 8 × 4 matrix T−1, it gives the following singular
values:

σ1 = 7.449916, σ2 = 4.432173, σ3 = 1.349779,

σ4 = 0.737172 and σ5 = σ6 = σ7 = σ8 = 0.0.

and, therefore, τ (T−1) ≈ 6.0 × 10−14 for digits = 15.
Since the gap between σ4 and σ5 is much larger than the above tolerance, we can conclude that

τ -rank(T−1) = 4. Since k2(T−1) = σ1/σ4 ≈ 10.11, it appears that T−1 is a well-defined matrix of the
full τ -rank.

Similarly, the 4 × 8 matrix T1 has the following non-zero singular values:

σ1 = 7.052308, σ2 = 4.295688, σ3 = 3.050511 and σ4 = 0.130922,

while τ (T1) ≈ 5.64 × 10−14 and k2(T1) ≈ 53.87. Hence, T1 also is a well-defined matrix of the full
τ -rank.

Let us represent � = ind detP1 in the form � = sp + r, where s and 0 ≤ r < p are integers. In
this case � = p = 2, i.e. s = 1, r = 0. Then, by the above-mentioned theorem 3.1 from [23], the left
(right) partial indices of P1(z) are stable if and only if rank T−s = (� + 1)p − �(rank Ts = (� + 1)p −
�), that is: rank T−1 = 4 (rank T1 = 4). Thus, we can conclude that τ -indices are λτ

1 = λτ
2 = 1 and

ρτ
1 = ρτ

2 = 1. Finally, since the matrices T−1, T1 are well-conditioned, we can expect that the partial
indices of P1(z) are also stable and equal to those computed numerically. But this needs anyway
a rigorous proof.
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7. Conclusion
We have used the explicit algorithm for the exact Wiener–Hopf factorization of a matrix
polynomial a(z) with rational coefficients and with exact factorizable det a(z) and described the
main steps in its realization within the ExactMPF package. Its listing is included into the electronic
supplementary material.

A message delivered by this paper is twofold: (a) the existence of an explicit algorithm does not
necessarily guarantee that the factorization can be effectively performed; and, on the other hand,
(b) in contrast to the general opinion, it is indeed possible to find sometimes exact values of the
partial indices and then to perform exact factorization, even though the indices are not stable.

One of the main results of this paper is the necessary and sufficient condition for existence of
the exact factorization for matrix polynomials whose coefficients are matrices with entries from
the Gaussian rational field Q(i). It turns out that a matrix polynomial a(z) admits the exact Wiener–
Hopf factorization if and only if the polynomial det a(z) is exactly factorable.

The second (and extremely useful) result of the paper is the development of the package
ExactMPF in the Maple software that realizes factorization algorithm exactly for a matrix
polynomial with the coefficients from the Gaussian rational field Q(i) and the exact factorizable
determinant.

The use of the ExactMPF package is manyfold. The authors confidently declare that

— it can be used for symbolic or symbolic-numeral factorization of matrix polynomials.
— to analyse stability of the partial indices of matrix polynomials.
— to make tests and experiments for verification of proved statements and for a motivation

to formulate hypothesis or conjectures for further theoretical development of the theory.

They also believe that it may be useful with additional efforts

— in some cases to build an approximate factorization of a given matrix polynomial with
arbitrary complex coefficients and

— to solve real life problems as a computational tool. We shall demonstrate this in
the accompanying paper dealing with solving of a discrete analogue of nonlinear
Schrödinger equation by the inverse scattering transform method.
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