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Abstract

Summary: Advances in single-cell technologies have enabled the investigation of T-cell phenotypes and repertoires
at unprecedented resolution and scale. Bioinformatic methods for the efficient analysis of these large-scale datasets
are instrumental for advancing our understanding of adaptive immune responses. However, while well-established
solutions are accessible for the processing of single-cell transcriptomes, no streamlined pipelines are available for
the comprehensive characterization of T-cell receptors. Here, we propose single-cell immune repertoires in Python
(Scirpy), a scalable Python toolkit that provides simplified access to the analysis and visualization of immune reper-
toires from single cells and seamless integration with transcriptomic data.

Availability and implementation: Scirpy source code and documentation are available at https://github.com/icbi-lab/
scirpy.

Contact: francesca.finotello@i-med.ac.at

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

B and T lymphocytes are equipped with a vast repertoire of immune
cell receptors that can recognize a wealth of different antigens.
High-throughput sequencing technologies have enabled the study of
these immune repertoires at unprecedented resolution (Finotello
et al., 2019; Hackl et al., 2016) and are advancing our understand-
ing of adaptive immune responses in cancer (Valpione et al., 2020),
as well as in autoimmune (Hanson et al., 2020) and infectious
(Schober et al., 2020) diseases.

Novel single-cell sequencing technologies now allow the joint
profiling of transcriptomes and T-cell receptors (TCRs) in single
cells. However, while the study of single-cell transcriptomes is facili-
tated by tools like Seurat (Butler et al., 2018) and Scanpy (Wolf
et al., 2018), the bioinformatic analysis of paired a and b TCR
chains is still in its infancy. Several methods to perform specific ana-
lytical tasks have been proposed (Supplementary Table S1), but the
comprehensive characterization of TCR diversity from single cells is
still hampered by the lack of ready-to-use computational pipelines.

Here, we present Scirpy (single-cell immune repertoires in
Python), a Python-based Scanpy extension that provides simplified
access to various computational modules for the analysis and
visualization of immune repertoires from single cells. Due to its tight
integration with Scanpy, Scirpy allows the combination with

scRNA-seq transcriptomic data to comprehensively characterize the
phenotype and TCR of single T cells.

2 The Scirpy package

Scirpy integrates different bioinformatic methods for importing,
analyzing and visualizing single-cell TCR-sequencing data from
human and mouse (Fig. 1). TCR data can be loaded from
CellRanger (10� Genomics) csv or json files, TraCeR (Stubbington
et al., 2016) outputs generated from Smart-seq2 data or any delim-
ited text file, including AIRR-compliant tsv files (Vander Heiden
et al., 2018). The AnnData data structure provided by Scanpy is
used to store TCR information together with matched transcrip-
tomic profiles, when available.

Scirpy uses a flexible TCR model supporting up to two a and b
chains per cell, allowing the identification of dual-TCR T cells
(Schuldt and Binstadt, 2019) (Supplementary Note S1). It also flags
cells with more than two chains, which potentially represent
doublets (Supplementary Fig. S1) and may be discarded from
downstream analyses. Scirpy defines clonotypes based on the nu-
cleotide sequence of the TCR complementarity-determining region 3
(CDR3), but can further identify clonotype clusters based on CDR3
amino acid sequence identity or similarity. The latter approach,
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inspired by TCRdist (Dash et al., 2017), leverages the Parasail li-
brary (Daily, 2016) to compute pairwise sequence alignments and
identify clusters of T cells that likely recognize the same antigens.
For building clonotype networks, Scirpy makes use of the sparse-
matrix implementation from the scipy package (Virtanen et al.,
2020), ensuring scalability to hundreds of thousands of cells
(Supplementary Fig. S2).

Scirpy offers a wide range of tools and visualization options that
we demonstrate in Section 3. It allows inspecting TCR chain config-
urations (Supplementary Fig. S1), and exploring the abundance,
diversity, expansion and overlap of clonotype repertoires across
samples, patients or cell clusters derived from transcriptomics data
(Supplementary Figs S3 and S4). Relationships between cells and
clonotypes can be investigated with a graph-based approach
(Supplementary Fig. S5), in addition to spectratype plots (which rep-
resent the distribution of CDR3 sequence lengths), and V(D)J-usage
plots (Supplementary Fig. S6). Finally, TCR information can be inte-
grated with transcriptomic data, for instance by overlaying Uniform
Manifold Approximation and Projection (UMAP) plots (Becht et al.,
2019; Supplementary Fig. S4). Detailed tutorials on data loading
and analysis with Scirpy are available at: https://icbi-lab.github.io/
scirpy/tutorials.html.

3 Case study: re-analysis of 140k single T cells

To demonstrate the applicability to a real-world scenario, we re-
analyzed a recent single-cell dataset of �140k T cells (Wu et al.,
2020). Single T cells were isolated from tumor, normal adjacent tis-
sue, and peripheral blood of 14 patients with four different cancer
types, and subjected to single-cell RNA and TCR sequencing with
the 10� technology. Consistently with the original results, we found
that the majority of clonotypes were singletons and only 9–18% of

patients’ clonotypes were clonally expanded (Supplementary
Fig. S3). Our results further confirm that CD8þ effector, effector
memory and tissue resident T cells comprised a large fraction of
clonotypes that were expanded in both the tumor and normal tissue,
while CD4þ T cells consisted mostly of singletons (Supplementary
Fig. S4). Moreover, leveraging Scirpy’s capability to group cells
based on CDR3 sequence-similarity, we identified clonotype clusters
indicating convergent TCR evolution (Supplementary Fig. S5).
The analysis ran in 13 min on a single core of an Intel E5-2699A v4,
2.4 GHz CPU when defining clonotypes based on sequence identity,
and in 42 min on 32 cores when using pairwise sequence alignment.
A jupyter notebook to reproduce this case study is available at:
https://icbi-lab.github.io/scirpy-paper/wu2020.html.

4 Conclusions

Scirpy is a versatile tool to analyze single-cell TCR-sequencing data
that enables seamless integration with the Scanpy toolkit, the de
facto standard for analyzing single-cell data in Python. Scirpy is
highly scalable to big scRNA-seq data and, thus, allows the joint
characterization of phenotypes and immune cell receptors in hun-
dreds of thousands of T cells. An extension of Scirpy to characterize
cd-TCR and B-cell receptor repertoires is planned for the next
release.
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Fig. 1. Schematization of the Scirpy workflow. Definition of clonotype networks

(top panel), clonotype analysis and visualization (e.g. clonal expansion of T-cell sub-

populations, middle panel), and integration with gene expression data (e.g. UMAP

plot, bottom panel)
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