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Abstract

Conversion of formerly continuous native habitats into highly fragmented land-

scapes can lead to numerous negative demographic and genetic impacts on

native taxa that ultimately reduce population viability. In response to concerns

over biodiversity loss, numerous investigators have proposed that traits such as

body size and ecological specialization influence the sensitivity of species to

habitat fragmentation. In this study, we examined how differences in body size

and ecological specialization of two rodents (eastern chipmunk; Tamias striatus

and white-footed mouse; Peromyscus leucopus) impact their genetic connectivity

within the highly fragmented landscape of the Upper Wabash River Basin

(UWB), Indiana, and evaluated whether landscape configuration and complex-

ity influenced patterns of genetic structure similarly between these two species.

The more specialized chipmunk exhibited dramatically more genetic structure

across the UWB than white-footed mice, with genetic differentiation being cor-

related with geographic distance, configuration of intervening habitats, and

complexity of forested habitats within sampling sites. In contrast, the generalist

white-footed mouse resembled a panmictic population across the UWB, and no

landscape factors were found to influence gene flow. Despite the extensive pre-

vious work in abundance and occupancy within the UWB, no landscape factor

that influenced occupancy or abundance was correlated with genetic differentia-

tion in either species. The difference in predictors of occupancy, abundance,

and gene flow suggests that species-specific responses to fragmentation are scale

dependent.

Introduction

The negative impacts of human-induced fragmentation

are numerous (Andr�en 1994; Fahrig 2003; Cushman

2006), and sensitivities to such impacts vary greatly even

within codistributed species (e.g., Andr�en 1994; Swihart

et al. 2003; Rizkalla and Swihart 2006; Meyer et al. 2008;

Bommarco et al. 2010; Lange et al. 2010). Species’

responses to landscape change ultimately depend on traits

such as ecological specialization, dispersal ability, body

size, and population size because these factors dictate

how well species can persist in patches as well as their

ability to colonize new patches (Hanski 1998; Etienne and

Heesterbeck 2001). Fragmented populations can suffer

from lower effective population sizes and decreased popu-

lation connectivity, which in turn lead to losses in genetic

diversity (e.g., Johansson et al. 2007; Dixo et al. 2009;

Vranckyx et al. 2012; M�endez et al. 2014). Erosion of

genetic diversity increases the risk of inbreeding, genetic

drift, and decreased evolutionary potential, all of which

increase the probability of extirpation (Young et al. 1996;

Saccheri et al. 1998; Reed and Frankham 2003). As a

6376 ª 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.



result of the potential negative consequences of fragmen-

tation, considerable attention has focused on identifying

species traits that increase vulnerability to fragmentation

(e.g., Swihart et al. 2003; Henle et al. 2004; Ewers and

Didham 2006; Barbaro and Van Halder 2009; Blanchet

et al. 2010) and investigating potential mitigation tech-

niques (e.g., McRae et al. 2012; Breckheimer et al. 2014;

Tambosi et al. 2014).

In the large body of literature on species-specific

responses to habitat loss and fragmentation, several eco-

logical factors known to increase species sensitivity to

the negative impacts of habitat loss and fragmentation

have been identified (e.g., Swihart et al. 2003; Rytwinski

and Fahrig 2012; Jauker et al. 2013; Newbold et al. 2013;

Slade et al. 2013; Newmark et al. 2014). Among these

traits, body size and ecological specialization are fre-

quently cited as being correlated with vulnerability to

fragmentation (e.g., Swihart et al. 2003; Watling and

Donnelly 2007; Bommarco et al. 2010). Body size is cor-

related to many life-history traits known to affect species’

responses to fragmentation, including dispersal ability,

geographic range, and reproductive rate (e.g., Blueweiss

et al. 1978; Lindstedt et al. 1986; Hern�andez Fern�andez

and Vrba 2005; Jenkins et al. 2007). In general, larger

species are expected to have greater dispersal capabilities

(Whitmee and Orme 2013), perceptual ranges (Mech

and Zollner 2002), and geographic ranges (Diniz-Filho

and Tȏrres 2002; Hern�andez Fern�andez and Vrba 2005),

so they can more easily colonize new patches of suitable

habitat than can smaller species. Larger species, however,

have low reproductive rates and require large home

ranges, which can increase extirpation risks (e.g., Cardillo

et al. 2005; Rytwinski and Fahrig 2012). Therefore, the

role of body size in predicting how species respond to

habitat alteration is not always clear (Henle et al. 2004;

Ewers and Didham 2006), especially when codistributed

species of similar size display different degrees of ecologi-

cal specialization.

Independent of body size, ecological specialization

limits the amount of habitat a species can occupy as

well as the number of potential routes they can utilize

to travel between patches. Consequently, specialists are

expected to be highly sensitive to habitat loss and frag-

mentation. Empirical data have largely supported this

expectation because specialist species tend to have lower

abundances or occupy fewer patches within fragmented

landscapes (e.g., Berglund and Jonsson 2008; Devictor

et al. 2008; dos Anjos et al. 2011). Habitat loss and frag-

mentation are also expected to reduce connectivity

between patches in specialists and thus contribute to

genetic discontinuity. Patterns of genetic differentiation,

however, vary considerably across specialists (e.g., Exeler

et al. 2008; Bommarco et al. 2010; Br€uckmann et al.

2010; Lawton et al. 2011; Gil-L�opez et al. 2014; Rip-

perger et al. 2014; Berkman et al. 2015), so predicting

how any one trait will impact genetic responses to frag-

mentation is difficult.

To examine how body size and ecological specializa-

tion influence gene flow across fragmented landscapes,

we conducted our study within the Upper Wabash River

Basin (UWB), Indiana, USA. The UWB has been largely

converted to agriculture and has been subject of exten-

sive study to assess the ecological effects of land conver-

sion on a variety of vertebrate species (Nupp and

Swihart 1998, 2000; Goheen et al. 2003; Swihart et al.

2003; Moore and Swihart 2005; Dharmarajan et al.

2009; Beatty et al. 2012; Anderson et al. 2015). These

studies have confirmed that both landscape heterogene-

ity and life-history traits, particularly ecological special-

ization, influence patterns in occupancy and abundance

(Nupp and Swihart 1998; Swihart et al. 2003; Moore

and Swihart 2005; Beasley et al. 2015). In rodents, for

example, dependence on forest largely predicted if a

species was sensitive to habitat fragmentation, whereas

generalist species tended to benefit from agriculture

regardless of body size (Nupp and Swihart 1998, 2000;

Swihart et al. 2003). Building on the previous studies

on forest-associated rodents, we aimed to elucidate

whether traits that affected occupancy and abundance in

forest rodents also predicted patterns in gene flow

across the UWB.

Our focal species, the eastern chipmunk (Tamias

striatus) and white-footed mouse (Peromyscus leucopus),

are largely ubiquitous within the UWB, but are

expected to exhibit contrasting patterns in gene flow

based on their different life histories. Chipmunks are

larger than white-footed mice and are known to move

farther distances (Rizkalla and Swihart 2007), so chip-

munks may be able to traverse potential barriers (i.e.,

unsuitable habitat) more readily than white-footed mice.

Under this scenario, chipmunks would experience high

gene flow within the UWB and exhibit weak genetic

structure as compared to white-footed mice. However,

chipmunks are considered more dependent on forested

habitats than white-footed mice, which in the highly

fragmented UWB, may limit their ability to cross

unsuitable habitats. Suitable forest habitat certainly

influences chipmunk fine-scale gene flow (Anderson

et al. 2015), occupancy (Moore and Swihart 2005), and

simulated abundance (Rizkalla and Swihart 2012) in the

UWB, so forest habitat may impact chipmunk genetic

structure across the UWB as well. In contrast, white-

footed mice are generalists, so their willingness to uti-

lize alternative habitats may result in higher gene flow

and corresponding weaker genetic structure than chip-

munks in the UWB. Furthermore, forested habitat had
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a weak impact on occupancy and abundance within the

UWB, so white-footed mice may not exhibit gene flow

that is correlated with forested habitats such as

chipmunks.

Material and Methods

Study area

Our study area encompassed the Upper Wabash River

Basin (UWB; Fig 1) in north-central Indiana, USA. The

UWB contains eight major watersheds that cumulatively

drain greater than 20% of the state (>20,000 km2; Swihart

and Slade 2004). Prior to European settlement, much of

the UWB was forested (87% statewide; Smith et al. 1994),

but conversion to agriculture has reduced forest cover to

8% within UWB. The remaining forests (mainly Quercus–
Carya–Acer) are highly fragmented and tend to be clus-

tered around the major drainages within UWB because

floodplains or topography was not suitable for agricul-

ture. Currently, 96% of UWB is privately owned with

88% designated as agriculture.

Sample collection

A full description of sampling methods can be found in

Moore and Swihart (2005) and Urban and Swihart

(2009), but briefly, trapping for eastern chipmunks and

white-footed mice occurred within 35, 23 km2 study sites

(hereby called study cells) in the UWB during the sum-

mers of 2001–2003 (Fig. 1). Study cells were selected via

algorithms designed to maximize the diversity of land

cover types sampled within the UWB (Urban and Swihart

2009). Within each study cell, potential locations for trap-

ping grids (30 9 30 m pixels) were classified according

to 1 of 5 land cover categories (agriculture, forest, grass-

land, wetland, or urban) using geographic information

system layers of land use (Moore and Swihart 2005;

Urban and Swihart 2009). We then used a stratified ran-

dom design to select trapping grid locations within study

cells so that natural land cover types (i.e., grassland, for-

est, and wetland; 27.8% of grids for each land cover type

within study cells) were disproportionally represented as

compared to urban and agriculture (13.9 and 2.8% of all

grids within study cells, respectively). In total, a maxi-

mum of 45 trapping grids were placed within each study

cell with 1–3 grids within a patch of habitat (Swihart and

Slade 2004; Moore and Swihart 2005; Urban and Swihart

2009).

Trapping methods within study cells (i.e., grid dimen-

sions and type of trap) varied by year and forest patch

size. In 2001, we placed either 3 9 3 (small to medium

forest patches) or 7 9 7 (large forest patches) grids of

Fitch live traps spaced 15 m apart within study cells.

Sherman live traps or a mix of Fitch and Sherman live

traps, arranged as 3 9 3 or 5 9 5 trapping grids, was

Wabash River
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Figure 1. Distribution of 28 study cells across the Upper Wabash Basin (UWB), Indiana, where trapping for eastern chipmunks and white-footed

mice occurred from 2001 to 2003. Land cover within the study area is primarily agriculture with forests along river tributaries. The Wabash River

(blue online, gray in print) runs east–west across the entire study area.
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deployed in study cells in 2002 and 2003. Habitat corri-

dors identified as treed and nontreed land cover features

<30 m wide were fitted with 5 9 2 grids. Each trapping

session consisted of a prebait period with traps locked

open for 3 days, followed by a 5-day trap-check session,

during which traps were checked twice daily. Traps were

baited with black oil sunflower seeds, and upon capture,

ear or toe clips were removed from animals using sterile

scissors. Following sampling, animals were treated with

ferric subsulfate if bleeding occurred and released. All ani-

mals were handled according to procedures approved by

the Purdue Animal Care and Use Committee under pro-

tocol #01–024. We stored all tissues at �80°C until DNA

extraction.

Microsatellite genotyping

We used an ammonium acetate protocol and an ethanol

wash to extract DNA from tissue samples (modified from

the PUREGENE kit; Gentra Systems, Minneapolis, MN).

DNA quality was checked by running 3 lL of DNA out

on a 2% agarose gel stained with ethidium 12 bromide,

and then, DNA extracts were diluted to a final concentra-

tion of approximately 10 ng/lL. Chipmunk samples were

amplified at 12 (EACH01-12; Anderson et al. 2007)

microsatellite loci, while white-footed mice were amplified

at 10 loci [PO-26, PO-85, Po-97 (Prince et al. 2002);

Pml01, Pml02, Pml05, Pml09, Pml12 (Chirhart et al.

2000); PLGT15 (Schmidt 1999)]. Amplification by multi-

plex PCR took place in 10 lL volumes with 20 ng of

template DNA, 0.2 mM of each dNTP, 1 U of Taq DNA

polymerase (NEB), and 29 Thermopol reaction buffer

(20 mM Tris-HCl, 10 mM (NH4)2SO4, 10 mM KCl,

2 mM MgSO4, 0.1% Triton X-100; NEB). The amount of

primer for each locus (0.05–0.30 lM) was adjusted so

that all loci in the multiplex reaction would result in

approximately equal intensities of product. The amplifica-

tion conditions were as follows: initial 94°C for 2 min, 35

cycles of 94°C for 30 s, primer-specific annealing temper-

ature for 30 s, 72°C for 30 s, then a final extension of

72°C for 10 min, and a soak at 60°C for 45 min. The

PCR products were sized on an Applied Biosystems 3730

automated sequencer, and the genotypes were determined

for all loci in all individuals using the software GeneMap-

per 3.7 (Applied Biosystems, Foster City, CA).

We utilized multiple quality control methods to ensure

accuracy of microsatellite genotypes. First, a negative con-

trol, two pre-amplified positive controls, and a concur-

rently amplified positive control were run on every

96-well plate. Any ambiguous samples were re-amplified

and genotyped again at all loci, and any missing geno-

types were re-amplified in the multiplex reaction up to

two times. If there were still missing genotypes after re-

amplifying the multiplex, samples were amplified using

single locus reactions to attempt to retrieve the missing

genotypes. Finally, if missing genotypes remained, we re-

extracted the samples and genotyped the individuals at all

loci. Only individuals with <30% missing genotypes were

accepted into the final dataset. Following quality control,

we removed 7 study cells that occurred within the eastern

portion of the UWB from our dataset because they did

not provide sufficient sample sizes of one of the species

for genetic analysis. Our final dataset consisted of 1229

chipmunks (107 of 14,916 or 0.717% missing genotypes)

and 959 white-footed mice (237 of 9630 or 2.461% miss-

ing genotypes) across 28 study cells.

Population differentiation and diversity

For each study cell, deviations from Hardy–Weinberg

(HWE) and linkage equilibrium (LE) were calculated in

GENEPOP (Raymond and Rousset 1995). We corrected for

multiple tests using false discovery rate (a = 0.013; Ben-

jamini and Yekutieli 2001), and null allele frequencies

were calculated in MICRO-CHECKER (Van Oosterhout et al.

2004). Microsatellite loci were eliminated from analyses if

they consistently deviated from HWE in all study cells.

We then used the R (R Development Core Team 2013)

package diveRsity (function “divBasic”; Keenan et al.

2013) to quantify four genetic diversity measures (allelic

richness, number of alleles, heterozygosity, and FIS). Two

measures of genetic differentiation between study cells,

FST and Jost’s D (DEST; Jost 2008), were also calculated in

diveRsity to serve as response variables for the landscape

genetic analyses. For each genetic diversity and differenti-

ation metric, 95% confidence intervals were calculated

after 10,000 permutations.

To gain insight into potential major barriers to gene

flow within the entire UWB study area, we tested two

potential causes (geographic distance and the Wabash

River) using Mantel tests. First, a simple Mantel test

quantified the relationship between geographic distance

and genetic differentiation; a positive relationship would

indicate the presence of isolation-by-distance (IBD;

Wright 1943). Second, we utilized a partial Mantel test

to test whether the Wabash River, the major river

within our study area, serves as a barrier to gene flow.

A partial Mantel test allows for control of variables

such as geographic distance and hence isolation of the

variable of interest (i.e., Wabash River). Pairs of indi-

viduals were coded as either a 1 (different sides of the

Wabash River) or a 0 (same side) for the partial Man-

tel test. All Mantel test calculations were performed in

the R package vegan (Oksanen et al. 2012) using the

functions “mantel” and “mantel.partial” via 10,000 per-

mutations.
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In addition to the UWB landscape-level tests for IBD

and isolation due to the Wabash River, we also tested for

the presence of IBD within each 23 km2 study cell using

individual-based simple Mantel tests. Individual-based

genetic distances (Rousset’s a; Rousset 2000) were calcu-

lated in SPAGEDI v. 1.2 (Hardy and Vekemans 2002), and

simple Mantel tests were performed in vegan. As a com-

plement to the simple Mantel tests, we tested for fine-

scale genetic structure using spatial autocorrelations in

GENALEX 6.2 (Peakall and Smouse 2006). Both species

were expected to exhibit significant positive spatial auto-

correlation coefficients (r; Peakall et al. 2003) at small

distance intervals due to restricted dispersal. We evaluated

different distance intervals (50–500 m) as recommended

by Banks and Peakall (2012) and found 100-m intervals

maintained a sufficient sample size within each distance

interval for both species. Regardless of the distance inter-

val, we bounded our analyses between 0 and 2 km in spa-

tial autocorrelation calculations.

Bayesian clustering analysis

To identify the number of genetic clusters of chipmunks

and white-footed mice within the UWB, we utilized two

Bayesian clustering programs: STRUCTURE (Pritchard et al.

2000) and BAPS 6 (Corander et al. 2008). Both programs

group individuals into predefined genetic clusters (K) that

minimize deviations from HWE and LE. While these pro-

grams have been shown to be robust under a number of

potential scenarios (e.g., Latch et al. 2006; Safner et al.

2011), multiple authors suggest running several Bayesian

programs to examine variability according to calculation

methods and prior information (Latch et al. 2006; Frantz

et al. 2009).

STRUCTURE was performed under two scenarios: one

with no prior spatial information and one with study cell

included under the LOCPRIOR option. All Bayesian pro-

grams including STRUCTURE can identify false clusters due

to weak barriers to gene flow (Latch et al. 2006) or sam-

pling along a genetic gradient (Frantz et al. 2009;

Schwartz and McKelvey 2009), so including a spatial prior

helps to minimize detection of erroneous clusters. For

each scenario, we initially tested K = 1–20 with 10 repli-

cate runs (100,000 MCMC burn-in, 100,000 permuta-

tions) at each K under the admixture, correlated alleles

model. The optimal K was then determined via the

Evanno et al. (2005)’s DK method, and ten longer runs

(1,000,000 MCMC burn-in, 1,000,000 permutations) at

the optimal K were used to calculate q-values, the propor-

tion of each individual’s genome that belongs to each

cluster. Q-values were averaged across the ten longer runs

via the program CLUMPP (Jakobsson and Rosenberg 2007),

and individuals were assigned to a cluster based on their

highest q. Each cluster was then run iteratively using the

same conditions as the full dataset to identify any hierar-

chical structure across the UWB. We continued iterative

runs until all clusters had no further structure as indi-

cated by DK.
For comparative purposes, we also employed a spatially

explicit approach in BAPS 6 to identify genetic structure of

chipmunks and white-footed mice across the UWB. BAPS

utilizes geographic information (i.e., geographic coordi-

nates) as a prior, and based on maximum likelihood and

highest posterior probabilities, determines the optimal K.

We tested K = 1 through 20 with 10 replicates per K

using the “Spatial Clustering of Individuals” option and

saved the output for the admixture analysis. Admixture

between inferred clusters was calculated using 500 simula-

tions based on observed allele frequencies.

Landscape genetics: landscape configuration
between study cells

Gene flow in both species is likely a function of both

landscape configuration between study cells and landscape

complexity within study cells (Pfl€uger and Balkenhol

2014). Previous studies have documented that landscape

configuration between populations impact gene flow in

both chipmunks (Anderson et al. 2015) and white-footed

mice (Munshi-South 2012), so we expected configuration

to be correlated with genetic differentiation in both spe-

cies. Within the UWB, chipmunks and white-footed mice

are fairly ubiquitous (Moore and Swihart 2005), but mul-

tiple measures of landscape complexity within study cells

have been related to variance in abundance (Rizkalla and

Swihart 2012) and occupancy (Moore and Swihart 2005)

within the study area. Therefore, landscape genetic

hypotheses incorporated both landscape configuration

between study cells and metrics of landscape complexity

that have previously been correlated with abundance and

occupancy within the UWB.

To evaluate how landscape configuration between study

cells could influence gene flow, we designed six resistance

surfaces for each species based on the 30 9 30 m national

land cover database (NLCD 2001; Homer et al. 2007) ras-

ter clipped to the UWB. The first two resistance surfaces,

isolation-by-distance (IBD) and isolation-by-barrier

(IBB), served as null hypotheses. All pixels within the IBD

resistance surface were given a value of 1, and the IBB

resistance only assumed that open water was highly resis-

tant to movement. Consequently, the resistance of open

water in the IBB resistance surface was set to 500 with all

other pixels set to 1.

The remaining four resistance surfaces were parameter-

ized using species-specific movement and mortality data

derived from six land cover types common in the UWB
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(forest, wetland, urban, open water, grassland, and agri-

culture; Rizkalla and Swihart 2012; Table S1).

For each of these four resistance surfaces, forest was

assumed to be the preferred habitat of both species and

thus was assigned a resistance value of 1 (probability of

mortality = 0.01, movement = 1.0; Rizkalla and Swihart

2012). Resistances for all other land cover types were cal-

culated based on their probabilities of mortality or move-

ment defined in Rizkalla and Swihart (2012; Table S1).

For example, the probability of a chipmunk moving into

wetland in Rizkalla and Swihart (2012) was five times

lower than forest, so the resistance value for wetland was

5 for the movement surfaces. Unlike all other land cover

types, we had to combine roads and urban habitat into a

single category (urban) due to the spatial extent of our

study area. Combining these categories presented a poten-

tial problem because while urban habitat and roads are

known to impede gene flow in rodents (e.g., Munshi-

South 2012; Marrotte et al. 2014), mortality and move-

ment probabilities (and by extension resistance values)

were much higher for roads than unroaded urban habitat

(Rizkalla and Swihart 2012). To reconcile the differences

between roaded and urban habitats, we varied resistance

for urban to reflect either resistances of roads or urban

habitat as defined in Rizkalla and Swihart (2012;

Table S2). Thus, each species had two null hypothesis

surfaces (IBD and IBB), two based on urban mortality

(high resistance for urban = MortH, low resistance for

urban = MortL), and two based on urban movement

probabilities (high resistance for urban = MoveH, low

resistance for urban = MoveL).

Each of the six resistance surfaces (IBD, IBB, MortL,

MortH, MoveL, and MoveH; Table 1) was used as an input

to the program CIRCUITSCAPE v 4.0.5 (McRae and Shah

2009) to calculate landscape resistance distances between

study cells. Resistance distances, in essence, represent the

difficulty of traversing the landscape between study cells, so

resistance distances are expected to be positively correlated

with genetic differentiation between study cells. Calculation

methods in CIRCUITSCAPE combine graph and circuit theory

by constructing a graph of all the study cells where each

study cell is a node connected through edges (i.e., potential

dispersal paths between study cells). Edges then function as

resistors on an electrical circuit where the magnitude of

each resistor can be defined by the resistance surface pro-

vided. Resistance distances between study sites for a given

resistance surface are calculated by summing all resistors

(i.e., edges between study cells) across all possible path-

ways. Multiple pathways are more realistic than single path

analyses (e.g., least cost path; McRae and Beier 2007)

because neither of these rodent species is likely to utilize a

single path for dispersal.

For each species, we modeled connectivity employing

only a single resistance surface at a time, resulting in six

runs per species. Each run in CIRCUITSCAPE assumed that

resistance surfaces reflected resistance values instead of

conductance values and allowed for nodes to be connected

by eight cell neighbors. For each resistance surface input,

CIRCUITSCAPE outputs a matrix of landscape resistance dis-

tances between all study cells, which serve as our measure

of landscape configuration between study cells and explana-

tory variables in subsequent landscape genetic analyses.

Table 1. Landscape variables for the landscape genetic analysis.

Landscape variable Abbreviation Configuration or complexity Definition

Isolation-by-distance IBD Configuration Resistance surface where all pixels assigned value of 1; assumes only

distance influences gene flow

Isolation-by-barrier IBB Configuration Resistance surface where pixels assigned 1 or 500; assumes distance and

open water influence gene flow

Mortality low MortL Configuration Resistance surface where urban pixels assigned probability of dying in urban

habitats; assumes six land cover types influence gene flow

Mortality high MortH Configuration Resistance surface where urban pixels assigned probability of dying on roads;

assumes six land cover types influence gene flow

Movement low MoveL Configuration Resistance surface where urban pixels assigned probability of moving into

urban habitats; assumes six land cover types influence gene flow

Movement high MoveH Configuration Resistance surface where urban pixels assigned probability of moving onto

a road; assumes six land cover types influence gene flow

Proportion of forest PrFor Complexity Proportion of forest habitat within each study cell

Patch density PD Complexity The number of forest patches within a study cell

Clumpy Clumpy Complexity Measure of aggregation of forest patches while controlling for PrFor

Landscape configuration variables are composed of resistance surfaces that reflect hypothesized impacts of six land cover types on gene flow between

study cells. All resistance surfaces were parameterized according to Rizkalla and Swihart (2012; Table S1). Landscape complexity variables are within

study cell landscape metrics that were found to predict either occupancy or abundances in the UWB for chipmunks and white-footed mice.
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Landscape genetics: landscape complexity
within study cells

While CIRCUITSCAPE allows for quantification of how inter-

vening landscape configuration may impact gene flow,

multiple authors have suggested that demographic param-

eters (e.g., abundance; Nowakowski et al. 2015; density;

Busch et al. 2009; effective population size; Weckworth

et al. 2013) within study areas also influence gene flow

between populations. Abundance, for example, has a pow-

erful influence on dispersal regimes and resultant gene

flow in rodents (Cutrera et al. 2005; McEachern et al.

2007; Busch et al. 2009), but many demographic parame-

ters can be difficult to measure at large spatial scales like

that of this study. A potential solution to this problem is

calculating landscape complexity metrics that are known

to be correlated with relevant demographic parameters like

abundance. For the UWB, most previous studies involved

quantifying how fragmentation impacts population

dynamics within forest patches, not across the entire study

cell. Abundances within forest patches are known to vary

according to a number of complexity variables (Nupp and

Swihart 1998; Moore and Swihart 2005; Rizkalla and Swi-

hart 2012), so extrapolating patterns observed in forest

patches to an entire study cell is not ideal. Many influences

on gene flow are scale dependent (Anderson et al. 2010),

so estimating abundances or focusing on metrics impor-

tant for patch-based processes likely will not translate to

broad-scale patterns in gene flow. Therefore, we included

complexity variables that were relevant for simulated

abundances within each study cell instead of previous

patch-based complexity metrics or abundance estimates.

Based on Rizkalla and Swihart (2012), we chose three

complexity metrics (proportion of forest, patch density,

and Clumpy) that were strongly correlated with simulated

abundances within the UWB. The advantage of focusing

on complexity metrics that were correlated with simulated

abundances is that total abundances were known, so the

complexity metrics were both important at the study cell

scale and are known to reflect differences in abundance.

We calculated proportion of forest, patch density, and

Clumpy, a measure of patch aggregation, in FRAGSTATS v.

4.2 (McGarigal et al. 2012) based on Moore and Swihart’s

(2005) reclassified 3 9 3 m rasters of each 23 km2 study

cell with a 1.6-km buffer. In total, all statistical models

included three landscape complexity metrics as explana-

tory variables: proportion forest (prFor), patch density

(PD), and Clumpy (Table 1).

Landscape genetics: statistical analysis

We performed two statistical tests to examine the relation-

ship between our measures of landscape configuration and

complexity and genetic differentiation (FST and DEST). Our

first analysis used multiple regression on distance matrices

(MRDM; Legendre et al. 1994), an extension of Mantel

tests that can incorporate multiple pairwise matrices as

explanatory variables. MRDM requires that all variables are

pairwise distances, so we utilized the average landscape

complexity metrics (i.e., prFor, PD, and Clumpy) for each

pair of study cells. As a result, we conducted twelve MRDM

tests per species, one test per resistance surface for FST or

DEST. Each model included four explanatory variable matri-

ces: one matrix of resistance distances calculated from a

resistance surface (IBD, IBB, MortL, MortH, MoveL, or

MoveH) and three average landscape complexity metrics.

Explanatory variables were eliminated from each MRDM

model based on Zuur et al. (2009) where a final model only

included variables that were significantly correlated with

FST or DEST. Resultant reduced models, thus, reflect the

combination of landscape complexity variables that explain

the most variance in genetic differentiation for each resis-

tance (configuration) surface. For the best overall model

that combined both configuration and complexity, we

selected the model with the highest adjusted R2 among the

six reduced MRDM models for each genetic distance. Sta-

tistical significance of each explanatory variable and R2

were calculated via 10,000 permutations of the genetic dif-

ferentiation matrices within the R package ecodist (function

“MRM”; Goslee and Urban 2007).

Our second complementary analysis utilized distance-

based redundancy analysis (dbRDA), a multivariate ana-

log to multiple linear regression (Legendre and Legendre

2012). A dbRDA first transforms pairwise response dis-

tances (i.e., FST and DEST) using principal coordinates

analysis (PCoA) and extracts all PCoA vectors that have

positive eigenvalues. Then, a redundancy analysis is per-

formed with the PCoA vectors as the response variable.

Unlike MRDM, dbRDA requires site-specific explanatory

variables, so we transformed the resistance distance matri-

ces into a connectivity index for each study cell using the

following equation:

Si ¼
X

exp ð�adijÞ

where Si is the connectivity index for study cell i, a is a

scalar correlated with average dispersal distance of the

species, and d is the resistance distance between sample

sites i and j (Moilanen and Nieminen 2002). Each

matrix of resistance distances was transformed into con-

nectivity indices for the 28 study cells, and along with

the three complexity metrics (prFor, PD, and Clumpy),

served as explanatory variables within twelve dbRDA

tests per species (i.e., one for each resistance surface for

FST and DEST). We used the function “capscale” within

vegan to perform dbRDA tests and function “ordistep” to
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perform forward selection to eliminate explanatory vari-

ables for each resistance surface. Finally, adjusted R2 for

each reduced dbRDA model was calculated via the func-

tion “RsquareAdj” in vegan, and like the MRDM analysis,

we chose the best reduced dbRDA among the six resis-

tance surfaces based on the highest adjusted R2.

While both MRDM and dbRDA provide estimates of

model fit (i.e., adjusted R2), we sought to calculate mea-

sures of variance around each estimate from tested mod-

els. Therefore, we bootstrap resampled our dataset for

each species 1000 times to calculate means and 95% con-

fidence intervals around each F statistic, regression coeffi-

cient, and R2 value. All MRDM and dbRDA tests were

performed on each bootstrap permutation as described

above. This method of resampling allows for further com-

parison among models, particularly regarding how land-

scape resistance hypotheses compare to IBD and IBB.

Specifically, if the 95% confidence intervals of model fit

estimates (i.e., R2) of landscape resistance models did not

encompass those of IBD and IBB, we considered this

strong evidence for landscape effects on gene flow.

Results

Population differentiation and diversity

For chipmunks, no consistent deviations in either HWE

or LE were observed in any study cell, whereas 2 loci

(PO-26 and Pml02) deviated from HWE in all study cells

in white-footed mice. MICROCHECKER suggested that these

two loci may contain null alleles (frequency >0.152), so
we eliminated PO-26 and Pml02 from all subsequent

analyses. Although genetic diversities were similar between

study cells for both species, many study cells exhibited

heterozygote deficiencies (Table 2), a potential conse-

quence of population substructure within those cells (i.e.,

Wahlund effect).

All genetic differentiation metrics for chipmunks were

significantly different from zero (all P < 0.001) for both

FST (range: 0.010–0.125) and DEST (range: 0.011–0.309).
In contrast, only 77.31% of FST (range: �0.001 to 0.052)

and 69.79% of DEST (range: 0.001–0.227) values were sig-

nificantly different from zero in white-footed mice. For

both species, the smallest genetic differentiation values

occurred between proximate study cells within the south-

western corner, the most heavily forested study cells, of

our study area.

We found that geographic distance impacted genetic

differentiation for both species within the UWB, but not

the Wabash River (all partial Mantel r < 0.125, all

P > 0.051). Geographic distance had differing impacts on

chipmunks and white-footed mice across the UWB. Chip-

munks exhibited strong IBD across the study area

(Mantel rFST = 0.342, Mantel rDEST = 0.377, both

P < 0.001) and within 25 of 28 study cells (all significant

r > 0.085, P < 0.025: Table S5). Simple Mantel tests were

not significant for IBD across the study area for white-

footed mice (Mantel rFST = 0.085, Mantel rDEST = 0.071,

both P > 0.225), but 23 of 28 IBD tests within study cells

were significant (Mantel r > 0.125, P < 0.045; Table S5).

Despite the differences in IBD test results, both species

exhibited significant positive spatial autocorrelations for

individuals captured 100 m or less apart (i.e., smallest

distance interval within the spatial autocorrelations) in

the majority of study cells (27 of 28 in both chipmunks

and white-footed mice; Table S2). Regardless of the size

of distance classes within the spatial autocorrelations,

results for the smallest distance class remained consistent.

Although sample size prohibited distance classes smaller

than 50 m, the consistent results across multiple distance

classes provide strong evidence for restricted dispersal

within study cells.

Bayesian clustering analysis

Both Bayesian clustering programs supported considerable

genetic structure in chipmunks, but disagreed on the ideal

K. STRUCTURE detected evidence for hierarchical structure

where the first run’s highest DK occurred at K = 2

regardless if location priors were included (DK = 57.152

or 82.812 for no priors and location priors, respectively;

Fig. S1). The average likelihoods for K = 2 between the

no priors (�56303.0) and location priors (�56304.2) runs

also supported K = 2. The first major split generally cor-

responded to an east–west gradient where eastern individ-

uals were highly assigned to the first cluster and western

individuals to the second cluster (Fig. 2A). Iterative runs

on the first major cluster eventually revealed four addi-

tional subclusters, whereas the second major cluster con-

tained three subclusters (Fig. 2A). There was some

evidence for further substructure in multiple subclusters

(DK = 15.671–18.752 or 25.062–28.123 for no priors or

priors, respectively), but assignments within these clusters

were either weak (most q = 0.35–0.75) or clusters only

occurred within a single study cell. Based on the strong

IBD found within study cells and weak assignments

within putative clusters, the further substructure likely

reflects a combination of false clusters due to IBD (Frantz

et al. 2009) and fine-scale structure within study cells.

Substructure within study cells clearly influenced the

total K found in BAPS, where K = 17 had the modal likeli-

hood (�55434.181). One cluster contained a few individ-

uals (n = 4) scattered across the study area, a likely

“ghost population” (Corander and Marttinen 2006; Latch

et al. 2006), which reduced the optimal K to 16. All other

clusters contain >20 individuals, so they were considered
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Table 2. Genetic diversity metrics for each study cell across 12 and 8 loci for chipmunks and white-footed mice, respectively.

Cell N Na AR HO HE FIS FIS 95% lower FIS 95% upper

Chipmunk

295 145 11.75 7.04 0.705 0.762 0.075 0.048 0.101

365 19 6.83 5.74 0.722 0.725 0.004 �0.067 0.066

366 131 10.58 7.08 0.715 0.753 0.050 0.025 0.074

400 28 6.92 5.55 0.711 0.715 0.005 �0.061 0.072

459 14 6.17 5.42 0.756 0.710 �0.064 �0.179 0.025

464 157 9.67 6.52 0.702 0.732 0.041 0.017 0.066

580 54 8.50 6.39 0.734 0.748 0.019 �0.024 0.065

613 24 7.17 5.86 0.705 0.696 �0.013 �0.093 0.070

654 67 9.50 6.63 0.730 0.748 0.024 �0.010 0.058

691 19 5.83 5.06 0.675 0.669 �0.009 �0.083 0.065

763 34 7.08 5.59 0.689 0.711 0.031 �0.019 0.079

790 42 8.17 6.14 0.650 0.708 0.082 0.034 0.131

793 36 7.08 5.72 0.690 0.709 0.027 �0.024 0.070

803 28 8.08 6.35 0.738 0.733 �0.006 �0.071 0.058

826 29 8.08 6.17 0.727 0.739 0.017 �0.038 0.071

831 33 7.33 5.97 0.711 0.719 0.012 �0.052 0.078

844 53 7.83 6.00 0.663 0.711 0.068 0.025 0.109

845 19 5.50 4.85 0.675 0.689 0.019 �0.049 0.078

854 53 9.25 6.55 0.698 0.751 0.070 0.031 0.112

856 17 6.33 5.55 0.745 0.677 �0.100 �0.176 �0.038

865 27 7.33 6.14 0.722 0.705 �0.010 �0.057 0.037

869 32 7.25 6.14 0.737 0.743 �0.030 �0.057 0.037

875 25 6.33 5.35 0.718 0.687 �0.044 �0.106 0.012

896 30 6.83 5.54 0.678 0.723 0.063 0.015 0.113

898 23 7.17 5.87 0.712 0.715 0.005 �0.040 0.049

905 32 7.17 5.86 0.691 0.705 0.020 �0.028 0.066

920 40 7.92 6.26 0.740 0.753 0.018 �0.030 0.066

960 17 6.17 5.53 0.692 0.737 0.061 �0.011 0.121

White-Footed Mouse

295 22 10.13 8.10 0.676 0.805 0.147 0.052 0.236

365 35 11.75 8.62 0.612 0.812 0.243 0.170 0.314

366 68 16.13 10.54 0.698 0.846 0.166 0.120 0.208

400 35 13.75 9.95 0.741 0.852 0.122 0.062 0.184

459 17 9.75 8.19 0.788 0.813 0.020 �0.068 0.097

464 38 12.50 9.14 0.800 0.842 0.032 �0.020 0.088

580 25 10.75 8.41 0.697 0.817 0.137 0.062 0.208

613 35 11.00 7.78 0.600 0.783 0.225 0.154 0.294

654 90 14.88 9.43 0.654 0.839 0.212 0.172 0.251

691 25 11.63 8.91 0.726 0.812 0.096 0.015 0.176

763 21 10.50 8.53 0.667 0.798 0.142 0.084 0.190

790 20 10.88 8.89 0.809 0.843 0.031 �0.042 0.101

793 20 11.00 8.94 0.823 0.853 0.021 �0.062 0.107

803 30 12.75 9.51 0.774 0.839 0.065 �0.007 0.136

826 38 13.00 9.34 0.726 0.848 0.131 0.063 0.194

831 38 12.38 8.94 0.707 0.825 0.129 0.073 0.188

844 19 10.13 8.39 0.743 0.806 0.072 �0.023 0.149

845 46 12.63 8.96 0.722 0.826 0.117 0.067 0.168

854 20 9.63 7.67 0.733 0.782 0.053 �0.060 0.152

856 23 11.50 8.74 0.703 0.819 0.135 0.051 0.212

865 34 12.25 9.27 0.723 0.830 0.117 0.066 0.172

869 44 13.00 9.25 0.664 0.823 0.183 0.121 0.251

875 35 12.13 9.00 0.728 0.829 0.125 0.068 0.182

896 41 13.88 9.63 0.722 0.830 0.125 0.067 0.183

898 23 11.38 8.97 0.667 0.828 0.198 0.091 0.288
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putative clusters. In general, BAPS corroborated the major

splits detected by STRUCTURE with additional substructure

identified within study cells (Fig. 2B). Similar to the

STRUCTURE results, BAPS assigned much of the densely sam-

pled southwestern portion of our study area to one clus-

ter with many additional, more isolated clusters detected

in the sparsely sampled areas. However, BAPS can indicate

discrete clusters in cases where sampling gaps occur in

populations exhibiting IBD (Frantz et al. 2009), which

likely explains the differences in the optimal K between

the Bayesian algorithms.

In contrast to chipmunks, neither of the Bayesian pro-

grams revealed strong evidence of genetic structure in

white-footed mice across the study area. In STRUCTURE,

the highest DK occurred at K = 2 for both no priors

(4.0444, likelihood = �35425.5) and location priors

(8.254, likelihood = �36210.3), but were not distinct

from any other K (Fig. S2). Furthermore, the majority of

q-values ranged from 0.35 to 0.65, and when plotted, the

spatial distribution of the clusters had little clarity

(Fig. 3A). Therefore, we considered the most likely K in

STRUCTURE to be 1. Similarly, the modal likelihood for

BAPS was K = 3 (�36022.152), with the vast majority of

individuals assigned to a single cluster (900 of 959 indi-

viduals). One of the clusters had only nine individuals

and was not considered valid, whereas the second pri-

marily occurred within a single study cell (Fig. 3B).

Overall, white-footed mice showed very little genetic

structure with no clear spatial structure as observed in

chipmunks.

Landscape genetics

Landscape configuration between study cells and to a les-

ser extent complexity within study cells played a role in

driving genetic differentiation between study cells for

chipmunks, but not in white-footed mice. In the MRDM

analysis for chipmunks, all reduced models (12 total; 6

for each genetic distance) regardless of the resistance sur-

face included resistance distance as a significant explana-

tory variable (Table S3). Pairwise resistance distances (i.e.,

measure of landscape configuration between study cells)

always were positively correlated with genetic

differentiation regardless of genetic distance. No MRDM

model included any landscape complexity variables.

The top MRDM model in chipmunks (i.e., the model

with the highest adjusted R2) among the resistance sur-

faces differed based on the genetic distance (Table 3). In

the six models that had FST as the response variable, the

reduced model for the IBD resistance surface (i.e., null

model) explained the most variance (R2
adj = 0.071). The

95% confidence intervals around the adjusted R2 for the

reduced IBD model indicated no models containing alter-

native resistance surfaces were competing models because

the 95% confidence intervals did not overlap. For the six

DEST reduced models, the reduced model that included

the MoveL resistance distances and no complexity vari-

ables explained the most variance (R2
adj = 0.106; Table 3).

No other models were considered top models because

their 95% confidence intervals around adjusted R2 did

not overlap those of the MoveL resistance surface.

The dbRDA analysis in chipmunks was complementary

to the results of the MRDM analysis because it found that

configuration (connectivity indices) was important in

explaining genetic differentiation (Table S4). Results from

the dbRDA models also suggested that Clumpy affected

genetic differentiation unlike the MRDM analyses. All

reduced dbRDA models for FST and DEST contained both

connectivity indices derived from resistance distances and

Clumpy. Likewise, the top reduced models among the six

resistance surfaces for both measures of genetic distance

(12 total reduced models) incorporated connectivity

indices calculated from the MortH resistance surface and

Clumpy (FST: R2
adj = 0.156, DEST: R

2
adj = 0.156; Table 4).

Calculated 95% confidence intervals around each top

model’s adjusted R2 did not overlap any competing mod-

els, and thus, the top models explained more variance

than both our null resistance surfaces (IBB and IBD).

Unlike the MRDM analysis, dbRDA found that resistance

surfaces with highly resistant urban habitat explained

genetic variation better than those with weak resistances

for urban habitat This counterintuitive results indicate

that MRDM, an extension of Mantel tests, may suffer

from reduced power to detect landscape genetic patterns

(Legendre and Fortin 2010). By collapsing resistance dis-

tances into a single connectivity metric for dbRDA, we

Table 2. Continued.

Cell N Na AR HO HE FIS FIS 95% lower FIS 95% upper

905 40 12.25 8.66 0.692 0.827 0.148 0.087 0.207

920 42 12.25 9.07 0.751 0.832 0.086 0.037 0.133

960 31 12.13 9.16 0.741 0.829 0.102 0.043 0.156

Chipmunks largely adhered to HWE; in that, only two cells had a significantly positive FIS. In contrast, 21 of 28 study cells exhibited positive FIS
values in white-footed mice.
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obtained stronger evidence for landscape effects on gene

flow. Therefore, if MRDM failed to detect Clumpy due to

reduced power, both landscape configuration and com-

plexity appear to influence gene flow in chipmunks based

on dbRDA.

Results for white-footed mice, in contrast, supported

the evidence for limited genetic structure detected by the

Bayesian clustering analysis. No configuration or com-

plexity variables were significant for any resistance surface

in the MRDM analyses. Similarly, forward selection in

dbRDA always selected the null model across the 1000

bootstrap permutations for each resistance surface. Over-

all, it appears that landscape configuration and complex-

ity had little impact on gene flow in white-footed mice.
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Figure 2. Results of the STRUCTURE (A) and BAPS (B) analysis for eastern chipmunks across the UWB. STRUCTURE revealed complex hierarchical genetic

structure (upper left) where after iterative runs, the ending number of putative clusters was seven (C1a.1, C1a.2, Cla.3, Clb, C2a, C2b, C2c). In

contrast, BAPS identified 16 putative clusters for chipmunks. Pie charts represent the proportion of individuals assigned to each cluster within each

study cell.
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Discussion

Despite the ubiquity of chipmunks and white-footed mice

across the highly fragmented UWB, these species exhibited

dramatically different patterns of genetic structure across

the landscape. Chipmunks exhibited strong IBD, hierarchi-

cal genetic clustering, and patterns of genetic differentiation

that were correlated with both resistance distances and

patch aggregation (Clumpy). White-footed mice, in con-

trast, had an overall lack of genetic structure with no signal

of IBD, no discrete genetic clusters, and no evidence of

landscape effects on genetic structure across the

>20,000 km2 UWB. Taken together, it appears that chip-

munks’ greater dependence on forest cover explains the

Wabash River

Agriculture
Forest

Open Water
Urban

C1
C2

(A)

Wabash River

Agriculture
Forest

Open Water
Urban

C1
C2

(B)

Figure 3. Distribution of two putative clusters found in STRUCTURE (A) and BAPS (B) for white-footed mice across the UWB. Pie charts correspond to

the proportion of individuals assigned to each putative cluster (C1 or C2) within a study cell. No apparent genetic differentiation was detected

within either the STRUCTURE or BAPS analysis for white-footed mice.
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differences in gene flow observed between chipmunks and

white-footed mice. Thus, niche specialization on forests

appears to be a more powerful influence on our focal spe-

cies’ gene flow and corresponding sensitivities to fragmen-

tation than body size within the UWB.

Gene flow of eastern chipmunks and white-
footed mice

Genetic differentiation in both chipmunks and white-

footed mice was strongly correlated with geographic

distance within study cells. The simple Mantel tests and

spatial autocorrelations suggested restricted dispersal

within the majority of study cells, particularly with individ-

uals separated by less than 100 m (i.e., within a trapping

grid or patch). For chipmunks, fine-scale genetic differenti-

ation in our study area is consistent with other studies that

have documented short dispersal distances in both sexes

(<200 m; Loew 2000; Messier et al. 2012). In general,

recorded dispersal distances in white-footed mice are

shorter than those of chipmunks (<100 m; Jacquot and

Vessey 1995), but spatial autocorrelations revealed evi-

dence for restricted dispersal in both species. Therefore,

the larger body size of chipmunks may not translate to

Table 3. Reduced model statistics for multiple regression on distance matrices (MRDM) that quantified the relationship between genetic differen-

tiation (FST and DEST) and landscape variables (i.e., configuration and complexity) in chipmunks and white-footed mice.

Resistance surface

FST DEST

Avg F R2adj 95% upper 95% lower P value Avg F R2adj 95% upper 95% lower P value

Chipmunk

IBD 26.754 0.071 0.072 0.070 0.006 40.301 0.103 0.104 0.102 0.001

IBB 20.610 0.055 0.056 0.054 0.017 35.770 0.093 0.094 0.092 0.002

MortL 22.499 0.060 0.061 0.060 0.022 38.583 0.099 0.100 0.098 0.002

MortH 22.207 0.059 0.060 0.058 0.023 36.781 0.095 0.096 0.094 0.003

MoveL 23.317 0.062 0.063 0.061 0.024 41.061 0.106 0.105 0.104 0.001

MoveH 24.184 0.065 0.066 0.064 0.009 38.759 0.101 0.101 0.100 0.003

White-footed Mouse

IBD 2.842 0.023 0.024 0.022 0.683 2.535 0.018 0.020 0.017 0.674

IBB 2.937 0.028 0.029 0.027 0.617 2.727 0.021 0.022 0.020 0.656

MortL 3.152 0.030 0.031 0.029 0.623 3.122 0.029 0.030 0.028 0.625

MortH 3.218 0.033 0.034 0.032 0.618 3.388 0.031 0.032 0.031 0.622

MoveL 3.023 0.030 0.032 0.029 0.621 3.292 0.030 0.031 0.029 0.666

MoveH 3.329 0.037 0.038 0.036 0.608 3.417 0.032 0.033 0.031 0.611

The reduced model that explained the most variance among the six resistance surfaces (IBD, IBB, MortL, MortH, MoveL, MoveH) is bolded. For

FST, all reduced models only contained resistance distances and Clumpy as a significant variables, whereas models with DEST contained resistance

distances only (Table S3). Average F statistics (Avg F), P values (P value), adjusted R2, and 95% confidence intervals around R2 are provided for

each reduced model and were calculated based on 1000 bootstrap iterations.

Table 4. Results from the distance-based redundancy analysis (dbRDA) for eastern chipmunks relating landscape variables and connectivity indices

to two measures of genetic differentiation (FST and DEST).

Resistance surface

FST DEST

Avg F R2adj 95% upper 95% lower P value Avg F R2adj 95% upper 95% lower P value

IBD 2.870 0.119 0.120 0.117 0.009 2.771 0.116 0.117 0.115 0.010

IBB 2.981 0.128 0.130 0.127 0.008 2.985 0.129 0.130 0.128 0.008

MortL 3.366 0.154 0.155 0.152 0.006 3.348 0.153 0.154 0.152 0.006

MortH 3.404 0.156 0.157 0.155 0.006 3.414 0.156 0.158 0.155 0.005

MoveL 3.123 0.140 0.142 0.139 0.006 3.056 0.136 0.138 0.135 0.007

MoveH 3.228 0.146 0.148 0.144 0.006 3.200 0.145 0.146 0.143 0.006

Forward selection for all dbRDA tests in white-footed mice always chose the null model. Comparisons between reduced models for each resis-

tance surface (IBD, IBB, MortL, MortH, MoveL, and MoveH) revealed that the model that incorporated MortH and Clumpy of forest habitats

explained the most variance (R2adj) among the reduced models (bolded, parameter estimates are provided in Table S4). Average F statistics (Avg F),

adjusted R2 with 95% confidence intervals, and average P values (P value) are provided for each reduced model and were calculated based on

1000 bootstrap iterations.
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greater gene flow than white-footed mice within this agri-

cultural ecosystem.

Despite the similar levels of fine-scale genetic structure

within study cells, we detected dramatically different levels

of putative gene flow and genetic differentiation in east-

ern chipmunks and white-footed mice across the UWB.

Eastern chipmunks exhibited strong IBD and formed a

number of discrete genetic clusters, whereas white-footed

mice formed a large, panmictic population. The complex,

hierarchical structure of eastern chipmunks was primarily

driven by IBD and to a lesser extent by landscape hetero-

geneity across the UWB. STRUCTURE revealed at least three

different layers of clustering for chipmunks where the

major split revealed an east–west gradient, likely a result

of IBD. Another distinct pattern was the high connectivity

(i.e., most study cells were assigned to a single cluster)

within the southwestern portion of the study area along

the Wabash River. Forests were concentrated along rivers,

so the presence of relatively continuous habitat within the

southwestern area of the study area likely facilitated chip-

munk gene flow between study cells. In contrast, many

more clusters were found in the eastern portion of the

study area than the southwestern area, but it is difficult

to determine whether genetic differentiation was due to

the greater proportion of agricultural lands between study

cells or simply the large gaps between study cells that had

suitable numbers of chipmunks. Sampling along a genetic

gradient (i.e., IBD) in combination with low levels of

genetic differentiation can create false clusters within

Bayesian programs (e.g., Latch et al. 2006; Frantz et al.

2009; Schwartz and McKelvey 2009), so the diffuse sam-

pling and large tracts of unsuitable habitat between study

cells both could have contributed the high number of

clusters within the eastern portion of our study area.

Regardless of sampling, the high connectivity observed

within the southwestern area of the study area and high

differentiation within the less forested regions provide

evidence for forest being an important driver of gene flow

within eastern chipmunks.

Further evidence for forest driving gene flow in chip-

munks was found in the landscape genetics analysis,

although variation explained by the best models was low.

In all analyses but FST MRDM tests (18 of 24), MRDM

and dbRDA suggested that landscape configuration met-

rics (i.e., resistance surfaces) explained more variance

than IBD. Combined with the Bayesian clustering results

and previous fine-scale studies (Anderson et al. 2015),

our landscape genetic analysis suggests that forests pro-

mote gene flow between study cells for chipmunks. Com-

plexity of forested habitat within study cells may also play

a role in explaining patterns of genetic differentiation in

chipmunks. Similar to resistance surfaces, dbRDA found

aggregation of forests within study cells to impact gene

flow where study cells with similar Clumpy metrics had

lower genetic differentiation. This pattern was largely dri-

ven by the study cells with highly aggregated forest

patches (i.e., southwestern study cells) that experienced

high levels of gene flow according to the Bayesian cluster-

ing programs. Less fragmented patches (i.e., greater

clumpiness index) of suitable habitat have been recorded

to facilitate gene flow in both empirical (Kelly et al. 2014)

and simulated (Kierepka and Latch 2015) studies of frag-

mentation, so it appears that chipmunks experience

higher gene flow in less fragmented forested habitats.

Although we found strong evidence for forests as a

facilitator of gene flow, MRDM and dbRDA disagreed on

how urban habitat impacts gene flow in chipmunks.

MRDM implied that urban habitat was not a strong bar-

rier to gene flow (i.e., MortL had the lowest resistance for

urban), whereas the most variance in dbRDA was

explained with MoveH, the model with the highest resis-

tance for urban. Several possibilities could explain this

discrepancy. First, only dbRDA controls for the effects of

IBD, so MDRM may have not had the power to differen-

tiate landscape effects from IBD. Urban habitats, princi-

pally large roads, have been suggested to be barriers to

chipmunks (Oxley et al. 1974; Ford and Fahrig 2008;

McGregor et al. 2008), which agrees with the dbRDA

results. The MRDM results, in contrast, suggest that the

reduced movement across roads may not translate to

genetic differentiation, perhaps due to a time lag (Land-

guth et al. 2010) or high effective population sizes (Gauf-

fre et al. 2008). Roads did not separate genetic clusters in

a previous fine-scale analysis of chipmunks (Anderson

et al. 2015), but Hennessy (2012) found that large inter-

states within Indiana form substantial genetic barriers for

both chipmunks and white-footed mice. Therefore, the

roads in the UWB may not be large enough to cause

observable genetic differentiation within our focal species.

Alternatively, studies that detect genetic differentiation

often involve targeted sampling along focal roads (e.g.,

Riley et al. 2006; Frantz et al. 2012; Hennessy 2012;

Marsh et al. 2012), so more directed sampling could elu-

cidate whether roads or urban habitat inhibit chipmunk

gene flow within the UWB.

Unlike chipmunks, geographic distance and forested

habitat had little impact on genetic structure in white-

footed mice across the UWB. Neither Bayesian program

found evidence of genetic substructure, and all landscape

genetic analyses indicated that one of our null models

(e.g., IBD) fit the data best. Despite white-footed mice

being a generalist, the overall lack of genetic structure

across the UWB was surprising because they possess sev-

eral ecological and life-history traits that would favor the

formation of genetic structure. Decreased maximum

movement by white-footed mice within agricultural fields
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as compared to chipmunks (Rizkalla and Swihart 2007)

and limited perceptual range of white-footed mice in

agricultural fields (Zollner and Lima 1997) both suggest

that fragmentation within the UWB should lead to

genetic differentiation much like that observed for urban

populations (Munshi-South 2012). Despite such predic-

tions, however, the lack of genetic structure we observed

in this species corroborates the observations of previous

investigations (Mossman and Waser 2001). Thus, while

seemingly unlikely, it is quite possible that white-footed

mice traverse agricultural fields more successfully than their

size and mobility would predict (Cummings and Vessey

1994), especially if corridors such as fencerows are present.

In addition, white-footed mice can persist at high

abundances in agricultural ecosystems (Cummings and

Vessey 1994), and high population abundances and occu-

pancy rates have been documented for this species within

the UWB (Nupp and Swihart 1998; Moore and Swihart

2005). Given their high abundances, occupancy rates, and

genetic diversity within study cells, white-footed mice

likely maintain high effective population sizes across the

UWB, which in turn resists genetic drift and subsequent

spatial differentiation (e.g., Gauffre et al. 2008; Rico et al.

2009). Therefore, despite apparent limitations in move-

ment, the high effective population sizes of white-footed

mice may counteract the isolating factors of fragmenta-

tion, resulting in the panmictic population structure

observed within our dataset.

Agreement between genetic and
demographic effects of fragmentation

While our broad prediction that ecological specialization

would enhance genetic structure in chipmunks inhabiting

the UWB agroecosystem was well supported, congruence

between our study and previous studies of how habitat

alteration impacts rodents within the UWB was mixed.

Chipmunk gene flow generally agreed with hypotheses for

landscape configuration derived from Rizkalla and Swi-

hart (2012), which provides further evidence that chip-

munk dependence on forest habitat drives both within

study cell parameters (i.e., abundance; Nupp and Swihart

1998; Rizkalla and Swihart 2012; occupancy; Moore and

Swihart 2005) and gene flow (Anderson et al. 2015). In

contrast, most landscape complexity metrics were not

correlated with genetic differentiation in either species.

The latter result is consistent with Swihart et al. (2006),

who as part of a multispecies analysis found that residual

variation in cell-level occupancy of chipmunks and white-

footed mice was not explained by landscape complexity

metrics after accounting for variation due to niche spe-

cialization, proximity to range boundary, and phylogeny.

Nonetheless, the lack of relationship between landscape

complexity and genetic differentiation was surprising

given that the same complexity metrics predicted abun-

dance in the UWB (Rizkalla and Swihart 2012), and dis-

persal in eastern chipmunks and white-footed mice is

related to environmental conditions in other populations

(Morris and Diffendorfer 2004; Messier et al. 2012). A

number of factors can contribute to incongruencies

between field and genetic-based studies (e.g., Gauffre

et al. 2008; Spear et al. 2010; Wasserman et al. 2010;

Mateo-S�anchez et al. 2015), but we hypothesize that a

combination of large effective population sizes, particu-

larly in white-footed mice, and scale masked the influence

of landscape complexity on gene flow.

Effects of fragmentation on populations can be measured

in multiple ways including local abundance, occupancy,

and genetics, but studies indicate the strength of correla-

tions between these effects and landscape heterogeneity

varies both across space and over time (e.g., Anderson

et al. 2010; Jackson and Fahrig 2014). Effects of landscape

heterogeneity on abundance or occupancy may be strong

within study cells (Moore and Swihart 2005; Rizkalla and

Swihart 2012), but genetic effects of fragmentation (i.e.,

losses in genetic diversity; Jackson and Fahrig 2014), appear

to be most readily detected at broad spatial scales. This

mismatch in spatial scales, therefore, may result in weak

correlations between landscape complexity and gene flow

across the UWB. Furthermore, genetic variation reflects

gene flow across multiple generations, so any fluctuations

in dispersal regimes (e.g., Messier et al. 2012) can obscure

how landscape heterogeneity impacts overall gene flow.

Based on our results and the difficulty in controlling the

effects of spatial and temporal effects on gene flow, com-

bining genetics and field-based studies at multiple scales

will give the most complete understanding of how frag-

mentation impacts focal populations.

Conclusions

Overall, our results highlight that habitat alteration has

complex impacts on even common species such as eastern

chipmunks and white-footed mice. Similar to previous

comparative studies (e.g., Brouat et al. 2003; DiLeo et al.

2010; Shanahan et al. 2011; Engler et al. 2014), we found

that fragmentation more strongly impacted gene flow in

the more specialized species (i.e., chipmunks) despite their

larger body size. Chipmunk gene flow was related to both

landscape configuration between study cells and landscape

complexity (aggregation of forested habitat) within study

cells, whereas the generalist white-footed mouse formed a

large, panmictic population across this complex agricul-

tural ecosystem. Based on our results, we caution equating

larger body size to higher gene flow, especially in frag-

mented landscapes where realized dispersal distances will
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depend on the distribution of suitable habitat. In addition,

the predictors of abundance we considered were poor pre-

dictors of gene flow. Only one of the three complexity

metrics associated with simulated abundance was corre-

lated with genetic differentiation in either species, so pre-

dicting how gene flow occurs in fragmented landscapes

can be difficult even in well-characterized landscapes such

as the UWB. Based on the incongruence between our

genetic study and previous field-based studies within the

UWB, detection of the negative consequences of fragmen-

tation appears to greatly depend on scale, so focusing on a

single spatial or temporal scale may miss critical demo-

graphic and genetic processes important for persistence in

fragmented landscapes. Therefore, effective management

programs should consider multiple lines of evidence (e.g.,

occupancy, abundance, and gene flow) that vary according

to scale to gain a more complete understanding of how

species respond to habitat fragmentation.
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Table S1. Resistance values of each resistance surface for
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Table S2. Results from within study cell analyses of Man-

tel tests and spatial autocorrelations in chipmunks and

white-footed mice.

Table S3. Parameter estimates for reduced models for

each resistance surface (IBD, IBB, MortL, MortH, MoveL,

MoveH) that quantified the relationship between land-

scape variables (i.e., landscape configuration and com-

plexity) and genetic distance (FST and DEST) in eastern

chipmunks.

Table S4. Parameter estimates for significant landscape

variables (configuration and complexity) within the

reduced dbRDA models for eastern chipmunks.

Figure S1. Results of the STRUCTURE analysis of K = 1 to

20 for all sampled chipmunks (n = 1229) across the

UWB.

Figure S2. Results of the Structure analysis for all white-

footed mice (n = 959) across the UWB.
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