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Abstract

Purpose

To investigate the dynamics of the healing process after therapeutic subthreshold micro-

pulse laser (SMPL) for diabetic macular edema (DME) using polarization-sensitive optical

coherence tomography (PS-OCT).

Methods

Patients with treatment-native or previously-treated DME were prospectively imaged

using PS-OCT at baseline, 1, 2, 3, and 6 months. The following outcomes were evaluated:

changes in the entropy value per unit area (pixel2) in the retinal pigment epithelium (RPE) on

the B-scan image; changes in the entropy value in each stratified layer (retina, RPE, cho-

roid) based on the ETDRS grid circle overlaid with en face entropy mapping, not only the

whole ETDRS grid area but also a sector irradiated by the SMPL; and the relationship

between edema reduction and entropy changes.

Results

A total of 11 eyes of 11 consecutive DME patients were enrolled. No visible signs of SMPL

treatment were detected on PS-OCT images. The entropy value per unit area (pixel2) in the

RPE tended to decrease at 3 and 6 months from baseline (35.8 ± 17.0 vs 26.1 ± 9.8, P =

0.14; vs 28.2 ± 18.3, P = 0.14). Based on the en face entropy mapping, the overall entropy

value did not change in each layer in the whole ETDRS grid; however, decrease of entropy

in the RPE was observed at 2, 3, and 6 months post-treatment within the SMPL-irradiated

sectors (P < 0.01, each). There was a positive correlation between the change rate of

retinal thickness and that of entropy in the RPE within the SMPL-irradiated sector at 6

months (r2 = 0.19, P = 0.039).
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Conclusion

Entropy measured using PS-OCT may be a new parameter that facilitates objective

monitoring of SMPL-induced functional changes in the RPE that could not previously be

assessed directly. This may contribute to a more promising therapeutic evaluation of DME.

Clinical trial

This clinical study was registered in UMIN-CTR (ID: UMIN000042420).

Introduction

Diabetic macular edema (DME) is the leading cause of decreased visual acuity in patients with

diabetic retinopathy [1]. With regard to the treatment of DME, several prospective and ran-

domized studies have shown that subthreshold micropulse laser (SMPL) is a more effective

and minimally invasive therapy for DME compared to the conventional macular laser, that is,

the modified Early Treatment Diabetic Retinopathy Study (mETDRS) photocoagulation

method [2–7]. In addition, SMPL improves or stabilizes visual acuity and reduces macular

thickness without laser scarring and retinal damage as shown by clinical and fundoscopic

examinations performed using spectral-domain optical coherence tomography (SD-OCT) and

fundus autofluorescence (FAF) imaging [8, 9].

Although the molecular mechanisms of SMPL underlying the treatment success are not yet

completely understood, photothermal stimulation to the retinal pigment epithelium (RPE) is

believed to activate heat shock proteins (HSP), which are associated with cell function, autore-

gulation, and immunomodulation of the retina [10, 11]. Intriguingly, an in vivo study using

mouse models demonstrated that SMPL possibly induces monocyte recruitment to the RPE

followed by hematopoietic progenitor cell homing, which may contribute to one of the thera-

peutic effects [12]. Moreover, SMPL downregulates the expression of vascular endothelial

growth factor (VEGF) [13, 14] and inflammatory cytokines that are mainly produced by reti-

nal macrophages, such as macrophage inflammatory proteins-1α [14].

In addition to retinal thickness and macular volume, the following DME-related and cho-

roidal changes in patients with diabetes have been investigated using SD-OCT: reflectivity of

intra/subretinal fluid, integrity of the outer retina including the external limiting membrane or

ellipsoid zone, presence of intraretinal hyperreflective foci (HRF), and changes in the thickness

and structure of the choroid [15–19]. It was previously reported that SMPL may cause some

molecular and functional changes in the retina [10, 13, 14]; however, the current SD-OCT

technology has limitations regarding elucidation of these mechanisms. In this study, polariza-

tion-sensitive optical coherence tomography (PS-OCT) has been employed as an extension to

conventional OCT to observe the depth-resolved polarization properties of a sample by mea-

suring the state of a polarized electromagnetic field [20, 21]. As melanin-loaded structures ran-

domly modify the state of polarization, PS-OCT can indicate whether and the extent to which

the integrity of these structures is preserved and provide information on their conformation in

a detailed manner [22, 23]. Since melanin is found mostly in the RPE cell organelles, analyzing

the polarization states detected by PS-OCT together with the information obtained from con-

ventional SD-OCT images, tissue-specific depolarizing properties of the RPE can be deter-

mined [24]. In fact, using PS-OCT images, the properties of coagulated lesions on the RPE
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and its healing responses after macular laser with pattern scanning laser for DME have been

reported [25].

Almost all of the previous studies of PS-OCT have used degree of polarization uniformity

(DOPU) as a depolarization metric to detect the melanin [22–25]. Although it has been proven

that DOPU was useful in a lot of clinical studies, it has recently been known that DOPU

depends on the incident state of polarization [26], potentially limiting the capability of DOPU

to evaluate the depolarization quantitatively. As one of the approaches to overcome the limita-

tion in DOPU, Yamanari et al. introduced a mathematical framework to compute “entropy”

that represents the randomness of the polarization property in an advantageous way, both

physically and mathematically [27]. We have previously reported that Entropy in PS-OCT is

a parameter that is independent of the incident polarization state and that in principle it is

highly reproducible in retake [28]. Furthermore, high reproducibility of entropy values in nor-

mal eyes also has been reported [29].

We believe that improving our understanding of the morphological changes occurring after

SMPL treatment is of great value, and in this study, we address this issue using a prototype

PS-OCT system designed for clinical studies. The aim of this study was to evaluate the dynam-

ics of the healing process and to provide further insights into the polarization-scrambling

changes in the (sensory) retina, RPE, and choroid that are induced by SMPL performed for the

treatment of DME.

Materials and methods

Patients and inclusion

In this prospective, interventional study, patients with clinically significant DME were enrolled

at the Department of Ophthalmology, the University of Tokyo, Tokyo, Japan. All investiga-

tions were performed using a protocol that adheres to the tenets of the Declaration of Helsinki,

and the study design was approved by the Institutional Review Boards of the University of

Tokyo (approval number #11822). The consent form was obtained in writing. We also

recruited healthy volunteers as controls for comparison with patients with DME. After

explaining the study design, associated investigations for scientific purposes, and adjuvant

imaging procedures in detail, informed consent was obtained from all subjects. This clinical

study was registered (UMIN-CTR, ID: UMIN000042420, http://www.umin.ac.jp/ctr/index.

htm) retrospectively due to the authors’ initial view of this non-invasive, observatory study

with exploratory nature as not a clinical trial. The authors confirm that all ongoing and related

trials for this intervention were registered. A total of 11 eyes each of 11 consecutive DME

patients (9 men and 2 women) and 11 healthy Japanese volunteers without any history of ocu-

lar or systemic disease were enrolled (Fig 1).

In this interventional pilot study, the following inclusion criteria were employed: diagnosis

of DME on the basis of the findings of fundus ophthalmoscopy, OCT, and fluorescein angiogra-

phy and recurrence of DME despite anti-VEGF therapy, macular laser, sub-tenon injection of

triamcinolone acetonide, or vitreous surgery. We performed SMPL as the initial treatment for

these three patients as they did not consent to anti-VEGF therapy due to systemic history of

stroke, medical cost, and risk of infection. Every patient underwent SMPL at the University of

Tokyo Hospital between the period of December 2018 and July 2019 and was followed-up for 6

months after treatment. If required, retreatment was performed at 3 months post-treatment.

The major exclusion criteria were as follows: administration of any intravitreal treatment with

anti-VEGF or steroids, macular laser treatment, vitreoretinal surgery, or cataract surgery within

a period of 6 months prior to baseline; application of targeted photocoagulation to retinal non-

perfusion areas observed using fluorescein angiography or direct photocoagulation for the
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closure of microaneurysms; and significant intraocular opacity that precluded fundus examina-

tion and good-quality fundus imaging.

Functional and morphological examinations

All subjects underwent complete ophthalmic examinations including best-corrected visual

acuity (BCVA [log MAR scale]) assessment, intraocular pressure measurement, slit-lamp bio-

microscopy, indirect ophthalmoscopy, color fundus photography (TRC 50IA, Topcon, Tokyo,

Japan), and FAF imaging (Spectralis HRA2, Heidelberg Engineering, Heidelberg, Germany).

Morphologic analysis was performed on the basis of SD-OCT (Spectralis, Heidelberg Engi-

neering, Heidelberg, Germany) and PS-OCT scans.

SD-OCT evaluation

A linear 180˚ scan with a length of 6 mm (called “B-scans”) was performed by automatic real-

time tracking with 100 frames/acquisition and an en face 30˚ × 25˚ macular map was generated

using 31 sections. We evaluated not only the central macular thickness (CMT) but also the en
face macular map with the ETDRS grid to assess the average retinal thickness at the sector with

the greatest edema, which was the site where SMPL was mainly performed. The ETDRS grid

was used to demarcate nine zones delimited by solid circles with diameters of 1 mm, 3 mm,

and 6 mm, centered on the fovea; radial lines were projected onto the fundus to divide the

OCT map image into nine sectors (Fig 2A and 2B). The follow-up modality was set to facilitate

a perfect comparison between the linear scans and en face maps acquired during the observa-

tion periods.

Fig 1. CONSORT 2010 flow diagram. (DME patients). This study included 11 eyes of 11 subjects.

https://doi.org/10.1371/journal.pone.0257000.g001
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PS-OCT procedures and quantitative evaluation: B-scan and En face
imaging

The detailed principles of our PS-OCT technology and the associated formula used in this

study have previously been reported [27, 28]. In brief, the light source used in an optical inter-

ferometer of the PS-OCT was a frequency-swept laser (Axsun Technologies, Billerica, MA,

USA); its central wavelength, sweep repetition frequency, and wavelength range were 1.05 μm,

100 kHz, and 100 nm respectively. To enable the measurement of all elements of the Jones

matrix, which can characterize polarization property of the tissue completely, we used parallel-

detection PS-OCT (PD-PS-OCT) for the interferometer [30]. We calculated the noise-bias-

corrected polarimetric entropy of local Jones matrices as a measure of the spatial randomness

of the polarization property by Cloude-Pottier decomposition [27]. Entropy of the Jones

matrix is dimensionless and ranges from 0 (completely uniform) to 1 (completely random

polarization). Recently, we showed that the entropy was in proportion to melanin concentra-

tion in double logarithmic scale [30].

Using the PS-OCT, the retina of each subject was scanned in a range of 6 × 6 mm with

a raster scan pattern of 512 A-scans × 512 B-scans. From the Jones matrix measured by

PS-OCT, we obtained an OCT intensity of the backscattered light (Fig 2C), local retardation

(a phase shift between two birefringent axes), and the entropy as described above (Fig 2D).

Depolarizing pixels that had entropy values > entropythreshold = 0.1 were overlapped on the

OCT intensity images (Fig 2E). The OCT intensity image was automatically segmented to

obtain ILM layer, RPE layer, and chorioscleral interface (CSI). We then created en face maps

of the entropy with the following definitions; retinal entropy map (averaged from ILM to 3

pixels or 13 μm above the RPE layer), RPE entropy map (averaged in 6 pixels or 26 μm cen-

tered at the RPE layer), and choroidal entropy map (averaged from 3 pixels or 13 μm below

the RPE layer to the CSI). Notably, our system also provided en face entropy maps of these

layers (512 × 512 pixels) with the ETDRS grid circle (Fig 2F). As indicated in the numerical

tables in Fig 2F, we analyzed the quantitative raw data of the entropy in each section of the

ETDRS grid circle.

Fig 2. Representative SD-OCT (A), ETDRS grid (B), and PS-OCT images (C-F). (A) En face macular map with the ETDRS grid obtained using SD-OCT.

(B) The ETDRS grid was used to demarcate nine zones delimited by solid circles with diameters 1 mm, 3 mm, and 6 mm meter centered on the fovea. (C)

Intensity B-scan image [color scale: = 45 to 80 dB]. (D) Entropy B-scan image [color scale: entropy of 0 to 1]. Pixels below the detection threshold of the

OCT intensity are displayed in black. (E) Overlapped with signalized entropy B-scan image (set as> 0.1) on intensity OCT image. (F) En face entropy map

of each segmented layer (512 × 512 pixels, each) and the numeral tables, which present entropy values at each pixel location, are shown. Abbreviations in

(B) are shown in the following order; TI, temporal inner; II, inferior inner; NI, nasal inner; SI, superior inner; TO, temporal outer; NO, nasal outer; SO,

superior outer.

https://doi.org/10.1371/journal.pone.0257000.g002
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Treatment protocol

Macular gird laser was performed using a micropulse laser (IQ 577; Iridex Corp, Mountain

View, CA, USA) with an Area Centralis1 contact lens (Volk Optical Inc., Menter, OH, USA).

All eyes were treated using the following parameters: a spot diameter of 100 μm, 5% duty cycle

of 0.2 seconds, and laser power was set to 50% of the threshold value determined in test burns.

A pattern scan, with a rectangular grid consisting of 7 × 7 spots, was performed without spac-

ing over the area of increased retinal thickness. The number of treatment spots varied accord-

ing to the extent of macular edema. All procedures were performed by the same experienced

clinician (K.S.).

Outcomes and image analysis

Patients were evaluated before treatment (baseline) and at 1, 2, 3, and 6 months after SMPL.

First, the changes in RPE entropy signals were calculated on the basis of PS-OCT B-scan

images to evaluate the organizational characteristics of the RPE. The percentage of entropy sig-

nals per unit of RPE (pixel2) within a 1500 μm radius, centered on the fovea, on the fovea-span-

ning horizontal linear scan that was analyzed using Image J software (http://imagej.nih.gov/ij/;

provided in the public domain by the National Institutes of Health, version 1.52; Bethesda,

MD, U2A; Fig 3). As secondary analysis, the number of HRF and dots of high entropy thre-

sholded at entropy threshold = 0.1 within the (sensory) retina were investigated on B-scan

images. These numbers were manually counted within a 1500μm radius centered on the fovea

by two blinded retina specialists (T.S. and F.A.), displayed at 400% magnification on a monitor.

Subsequently, the relationship between the number of entropy signals and that of HRF was

evaluated (Fig 4). Moreover, we investigated the following parameters: entropy changes after

SMPL in each stratified layer including the retina, RPE, and choroid based on the ETDRS grid

circle: not only the whole ETDRS grid area but also the sector with the most severe edema that

was irradiated by SMPL; and the relationship between edema reduction and entropy changes.

Statistical analysis

The results are expressed as the mean ± standard deviation. Student’s t-test was used to compare

the following items between healthy subjects and patients with DME: age, BCVA, refractive

error, axial length, and entropy. Mann-Whitney test was used to compare CMT and total macu-

lar volume (TMV). The Chi-square test was used to analyze sex. The Friedman test was used to

analyze the changes in CMT and TMV. Moreover, area percentages of entropy per unit area of

RPE (pixel2), the number of hyper-reflective foci in the neural retina, the percentage of entropy

signals per unit area, and the changes in entropy in each retinal layer within the ETDRS grid

were compared by linear mixed model analysis followed by post hoc analysis with Bonferroni

adjustment for multiple comparison. Pearson linear correlation coefficient was also used to

investigate correlations between edema reduction rate and entropy change rate. P values< 0.05

were considered significant: all statistical analyses were performed using R version 4.0.0 [31].

Results

Of the total 11 DME eyes, nine patients were followed-up at 1,2,3, and 6 months after SMPL,

while the remaining two patients were followed-up to 3 months after treatment. Table 1 shows

the basic characteristics of patients with DME and healthy subjects, and Table 2 shows the

detailed ophthalmic diagnosis and SMPL irradiation parameters. No visible signs of SMPL

treatment were detected by any of the fundus imaging modalities including color fundus pho-

tography, FAF, and SD-OCT B-scan at any follow-up examination. Table 3 shows the mean
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values of CMT, TMV, and BCVA after SMPL. The mean CMT tended to decrease at 2 months

and 6 months after treatment (P = 0.087, P = 0.18); however, TMV and BCVA did not change

during the follow-up period.

Comparison of the mean entropy value of each en face layer according to

ETDRS grid between healthy subjects and DME patients

The mean entropy value in the choroid layer within the ETDRS circle of 1 mm diameter

was significantly lower in patients with DME than that in healthy subjects (0.16 ± 0.064 vs

0.23 ± 0.037, P = 0.010), whereas those in other layers and circles of other diameters were not

different between the two groups (Fig 5).

Determination of changes in RPE entropy values caused by SMPL using

PS-OCT B-scans

No visible signs of SMPL treatment were detected on PS-OCT B-scans images. Area percent-

ages of entropy per unit area of RPE (pixel2) were 35.8 ± 17.0, 37.3 ± 22.9, 30.9 ± 18.4,

Fig 3. Assessment of entropy signals per unit area of RPE (pixel2). The linear scan image obtained by scanning through the fovea

within a 1500 μm radius centered on the fovea was selected (delimited with two vertical markers traced at established distances;

upper) and its imaging was binarized using Image J software (middle). Unit area of RPE was defined as 3 pixels above/below the line

from automatic RPE segmentation (yellow lines), and the percentage of RPE entropy signals (red color) was calculated (bottom).

https://doi.org/10.1371/journal.pone.0257000.g003
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26.1 ± 9.8, and 28.2 ± 18.3 at the baseline and 1-month, 2-month, 3-month, and 6-month time-

points, respectively. Although the changes were not significant, the entropy in the RPE tended

to decrease at the 3-month and 6-month time points (P = 0.14, P = 0.14).

Determination of changes in the number of HRF and entropy signals after

SMPL using PS-OCT B-scans

First, we compared the number of HRF and thresholded entropy between patients with DME

and healthy subjects. The number of HRF in patients with DME was significantly higher than

that in healthy subjects (74.4 ± 13.7 vs 34.0 ± 8.8, P< 0.001). In contrast, the number of thre-

sholded entropy, HRF and thresholded entropy overlaid with HRF did not change significantly

in each group (P = 0.40; 0.82, respectively).

After treatment with SMPL, there was a significant increase in the number of HRF at the

3-month timepoint relative to that at the baseline (P = 0.019), whereas the number of entropy

signals HRF and entropy signals overlaid with HRF did not change significantly during the

Fig 4. Evaluation of the number of entropy signals along with HRF. Intensity images on PS-OCT B-scan (upper) and overlapped

image with signalized entropy (set as> 0.1) on its intensity OCT image (lower) of DME patient are shown. Each image obtained by

scanning through the fovea within a 1500μm radius centered on the fovea was selected (delimited with two vertical markers traced at

established distances, left side of each). The numbers of HRF and dots of entropy signals in the retina were evaluated. The pictures on

the right side of each picture are a partial enlarged image and yellow and green arrows indicate HRS and entropy signals,

respectively. HRF, hyperreflective foci; DME, diabetic macular edema.

https://doi.org/10.1371/journal.pone.0257000.g004
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follow-up period (Fig 6). In addition, no correlation was found at each endpoint between: 1)

the number of entropy signals and that of HRF and 2) the number of HRF and that of entropy

signals overlaid with HRF (P> 0.05, respectively). However, there was a strong positive corre-

lation between the number of entropy signals and that of entropy signals overlaid with HRF

that is, a signal with an entropy often overlaid with HRF (r = 0.98, P< 0.001 at baseline;

r = 0.97, P< 0.001 at 1 month; r = 0.98, P< 0.001 at 2 months; r = 0.96, P< 0.001 at 3 months;

r = 0.87, P = 0.002 at 6 months [n = 9]).

Changes in mean entropy values of each en face layer according to the

ETDRS grid after SMPL treatment

Among the mean entropy value changes determined based on en face images, that of RPE

within an ETDRS grid circle of 6 mm diameter (whole area) tended to decrease from the base-

line to the 2-months timepoint (P = 0.17); however, it did not reach statistical significance.

There were no significant differences in entropy values in the other layers or ETDRS sectors

during the follow-up. In contrast, with regard to the entropy value in SMPL-irradiated sector

within the ETDRS grid, the mean entropy values in the SMPL-irradiated sector within the

ETDRS grid and the mean entropy value of the RPE layer tended to decrease at the 1-month

timepoint (P = 0.24), and the values were significantly lower at the 2-months, 3-months, and

6-months after SMPL than at the baseline value (P< 0.01, each) (Fig 7).

Relationship between the rate of change of retinal thickness and that of

entropy value in SMPL-irradiated sectors

There was a positive correlation between the rate of change of retinal thickness and that of

entropy in the RPE at 6 months after SMPL (r2 = 0.19, P = 0.039). On the contrary, there was a

Table 1. Basic clinical characteristics of DME patients and healthy subjects.

Healthy subjects DME patients P value

No. of eyes 11 11

Age, years 69.4 ± 3.9 73.2 ± 7.5 0.15

Sex, Men / Women 6/5 9/2 0.17

Best corrected visual acuity (logMAR) -0.10±0 0.29±0.21 < 0.001

Refractive error (diopter), mean ± SD -0.5±1.8 -1.0±2.3 0.64

Axial length (mm), mean ± SD 24.00±0.93 23.90±1.20 0.84

CMT, μm 221.1±19.2 407.3±105.9 < 0.001

TMV, mm3 8.27±0.31 9.68±1.27 < 0.01

Glycated hemoglobin, % - 7.0 ± 0.9

Diabetes Treatment

Oral hypoglycemic agent, n - 10

Insulin, n - 1

Presence of medical history

Hypertension, n - 3

Dyslipidemia, n - 1

Renal disease, n - 0

eGFR (ml / min) - 66.9±17.0 (n = 7)

Values are presented as means ± standard deviations (SD). SD-OCT (Spectralis, Heidelberg Engineering, Heidelberg, Germany) was used to examine CMT and TMV. n,

number; CMT, central macular thickness; TMV, total macular volume; DME, diabetic macular edema.

https://doi.org/10.1371/journal.pone.0257000.t001
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negative correlation between the rate of change of retinal thickness and that of entropy in the

choroid at 3 months after SMPL (r2 = 0.28, P = 0.002) (Fig 8).

Discussion

In this study, PS-OCT was used to investigate postoperative changes in the entropy value of

the retina, RPE, and choroid, along with the effect of SMPL for DME. The results based on B-

scan showed that the entropy value in RPE tended to decrease at 3 and 6 months after treat-

ment. In addition, the entropy value did not change in each layer based on en face mapping

Table 2. Details of DME patients undergoing subthreshold micropulse laser: Diagnosis and laser parameters.

No Age,

y

Sex Diagnosis of patients (baseline) Parameters of SMPL treatment

Stage of

DR

Type of

macular

edema

CMT (μm)

/ TMV

(mm3)

Previous

treatment

History of

photocoagulation

Lens

status

BCVA

(logMAR)

Laser

energy

(mW)

Treatment

spots

Laser irradiated

sector (Assigned

to ETDRS grid)

1 83 M moderate

NPDR

Diffuse

+SRD

358 /

11.10

None None Phakic 0.22 650 637 TO, TI

2 70 M severe

NPDR

Diffuse 459 /

10.05

Anti-VEGF,

MAPC

PRP Phakic 0.30 350 294 TO, TI

3 79 M moderate

NPDR

Diffuse

+SRD

306 / 9.67 MAPC focal Phakic 0.05 400 294 SI, TI

4 66 M severe

NPDR

CME 282 /

10.50

MAPC PRP Phakic 0.40 400 147 TI

5 65 M moderate

NPDR

Diffuse

+SRD

281 / 9.78 None None Phakic 0.10 400 245 TI

6 69 W severe

NPDR

CME 561 / 8.85 Vitrectomy,

STTA

PRP IOL 0.40 500 637 NI, II

7 83 W moderate

NPDR

CME 574 / 6.26 Vitrectomy,

STTA

PRP Phakic 0.30 450 294 SI, NI, II, TI

8 81 M moderate

NPDR

CME 421 / 9.28 STTA None IOL 0.52 550 490 NO, SI, NI

9 62 M severe

NPDR

Diffuse

+SRD

290 / 9.53 MAPC PRP Phakic 0.15 550 441 TO, SI, NI, II

10 75 M moderate

NPDR

CME 435 /

10.82

None None Phakic 0.05 500 490 SO, TO, SI, II, TI

11 72 M severe

NPDR

CME 503 /

10.63

MAPC focal Phakic 0.70 600 588 SO, TO, SI, NI, II,

TI

SD-OCT (Spectralis, Heidelberg Engineering, Heidelberg, Germany) was used to examine CMT and TMV. M, man; W, woman; NPDR, non proliferative diabetic

retinopathy; SRD, serous retinal detachment; CME, cystoid macular edema; CMT, central macular thickness; TMV, total macular volume; PRP, pan retinal

photocoagulation; MAPC, direct photocoagulation for microaneurysm; VEGF, vascular endothelial growth factor; STTA, sub-Tenon injection of triamcinolone

acetonide; IOL, intraocular lens; BCVA, best-corrected visual acuity; TI, temporal inner; II, inferior inner; NI, nasal inner; SI, superior inner; TO, temporal outer; NO,

nasal outer; SO, superior outer.

https://doi.org/10.1371/journal.pone.0257000.t002

Table 3. Changes in SD-OCT parameters and visual acuity after subthreshold micropulse laser (n = 11).

Baseline 1 Month 2 Month 3 Month 6 Month (n = 9)

CMT(μm) 407.3±105.9 365.1±115.2 346.6±101.3 371.3±100.4 322.1±104.3

TMV (mm3) 9.68±1.27 9.93±0.69 9.86±0.71 9.80±0.81 9.65±0.71

BCVA (logMAR) 0.29±0.21 0.33±0.24 0.33±0.22 0.31±0.15 0.19±0.12

Values are presented as means ± standard deviations. SD-OCT (Spectralis, Heidelberg Engineering, Heidelberg, Germany) was used to examine CMT and TMV. CMT,

central macular thickness; TMV, total macular volume; BCVA, best-corrected visual acuity.

https://doi.org/10.1371/journal.pone.0257000.t003
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within the whole ETDRS grid; however, regarding the sector where SMPL was performed, the

entropy value of the RPE exhibited a significant decrease at 2, 3, and 6 months after treatment.

Moreover, there was a positive correlation between the rate of changes of retinal thickness and

that of entropy in the RPE within the irradiated sector at 6 months after treatment.

Unfortunately, in our study, no statistically significant changes in CMT, TMV, and BCVA

were observed during the follow-up period. However, CMT tended to decrease at 2 and 6

months after treatment; this decrease is probably a result of the low relative macular thickness

(five cases with CMT< 400μm) of the treated eyes, small sample size, and high standard devia-

tion. Further studies must be conducted to confirm this result.

Previous studies have estimated, using various fundus imaging techniques including color

snap images, FAF, and SD-OCT, that SMPL demonstrates no laser lesions in any of the treated

areas [8, 9], which were similar to our patients. As evident from these findings, it has been dif-

ficult to elucidate the mechanism underlying the treatment success of SMPL using the conven-

tional imaging devices. However, changes in entropy values detected using PS-OCT in the

current study are potentially useful for the evaluation of the direct RPE responses and thera-

peutic effects by SMPL. Entropy estimated per unit area of the RPE based on B-scan images

Fig 5. Comparison of the mean entropy value of each en face segmentation layers according to ETDRS grid between healthy

subjects (n = 11) and patients with DME (n = 11). Mean entropy value in the choroid layer within the ETDRS circle with the

diameter of 1 mm was a significantly lower in patients with DME than in healthy subjects (0.16 ± 0.064 vs 0.23 ± 0.037, P = 0.010),

whereas in other circle ranges and strata, no difference was observed between patients with DME and healthy subjects. The ETDRS

grid was used to demarcate nine zones delimited by solid circles with diameters of 1 mm, 3 mm, and 6 mm centered on the fovea;

radial lines were projected onto the fundus to divide the OCT map into nine sectors. The results are the means ± standard

deviation.

https://doi.org/10.1371/journal.pone.0257000.g005
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tended to decrease although no visible signs of treatment lesion were detected. In addition,

although there were no changes in the mean entropy value by SMPL in the whole ETDRS grid,

a significant entropy reduction was observed within the SMPL-irradiated sectors (Fig 7).

Based on these findings, we hypothesized that the activation of phagocytosis by macrophages

could be one possible explanation for the reduced entropy in these areas. Macrophages play a

key role in innate immunity and respond rapidly to signals generated from inflamed sites.

Fig 6. Changes in the number of HRF and entropy signals after SMPL as determined using PS-OCT B-scans (n = 11). After

treatment with SMPL, there was a significant increase the number of HRF at 3-month timepoint relative to that at baseline

(P = 0.019), whereas the number of entropy signals, HRF, and entropy signals overlaid with HRF did not change significantly

during the follow-up. SMPL, subthreshold micropulse laser; HRF, hyperreflective foci. The results are the means ± standard

deviation.

https://doi.org/10.1371/journal.pone.0257000.g006

Fig 7. Changes in mean entropy values on SMPL-irradiated sectors according to ETDRS grid in each en face layer (n = 11). The mean entropy of the

RPE layer tended to be lower at the 1-month timepoint (P = 0.24) and was significantly lower at the 2-month, 3-month, and 6-month timepoint after SMPL

than at baseline value (P< 0.01, each). The results are the means ± standard deviation.

https://doi.org/10.1371/journal.pone.0257000.g007

PLOS ONE Changes in entropy on PS-OCT images after therapeutic SMPL for DME: A pilot study

PLOS ONE | https://doi.org/10.1371/journal.pone.0257000 September 13, 2021 12 / 18

https://doi.org/10.1371/journal.pone.0257000.g006
https://doi.org/10.1371/journal.pone.0257000.g007
https://doi.org/10.1371/journal.pone.0257000


Treatment with SMPL effectively leads to the expression of HSP70 in the RPE [10], and HSP70

mediates the effects of thermal stimulation on macrophage function [32]. In diabetic retinopa-

thy, the physiological functions of the RPE are deregulated or impaired by chronic inflamma-

tion [33]. However, the polarizing and activation of macrophages has been shown by laser

irradiation [13, 34]. The present result suggests SMPL-induced thermal effects activate macro-

phages, which could promote phagocytosis. Consequently, impaired RPE cells are disposed;

leading to a decrease in its melanin-rich RPE cells and hence, a decrease in entropy, which is

detected by PS-OCT. Another possibility is thermomechanical microbubble-induced RPE cell

damage as a result of SMPL irradiation. Laser-induced retinal/RPE damage is caused by ther-

mal denaturation when the pulse durations longer than milliseconds and by microbubble for-

mation around the melanosomes when the pulse duration is shorter than a microsecond [35].

Since the pulse duration of SMPL at 5% duty cycle is 100 μs, which does not cause irreversible

heat damage to the RPE, thermomechanical microbubble-induced RPE cell damage mecha-

nisms may be involved [35]. Melanin is eliminated due to RPE cell damage, which is associated

with the reduction of entropy values at the SMPL-irradiated site, as detected by PS-OCT.

Regarding the relationship between decreased the entropy value of the RPE and reduction

of macular edema in SMPL-irradiated sectors (Fig 8), we suggest the possibility of promotion

of functional remodeling of RPE cells. Although melanin is lost due to moderate RPE cell dam-

age caused by SMPL which results in entropy reduction, it is considered to contribute to cell

remodeling. A previous report identified a single damaged RPE cell in the treatment area

immediately after the subthreshold laser, however there were no visible signs of damage to the

RPE layer in the subsequent process; that is, it is considered that RPE cells are restored under

SMPL irradiation conditions [36]. For this reason, these remodeled RPE cells may contribute

to DME improvement by promotion of cytokine or angiogenic factor secretion, metabolic acti-

vation, or barrier function. Another possibility could be the suppression of macrophage pro-

inflammatory cytokine production. Thermal stimulation has inhibitory effects on cytokine

Fig 8. Relationship between the rate of change of retinal thickness and that of entropy value in SMPL-irradiated sectors. There was a positive

correlation between the change rate of retinal thickness and that of entropy in the RPE at 6 months after SMPL (n = 9; r2 = 0.19, P = 0.039). On the

contrary, there was a negative correlation between the change the rate of retinal thickness and that of entropy in the choroid at 3 months after SMPL

(n = 11; r2 = 0.28, P = 0.002).

https://doi.org/10.1371/journal.pone.0257000.g008
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expression in macrophages, and its effects are correlated with HSP70 or heat shock factor-1

(HSF-1) activation [37]. Previous studies using macrophage cell lines or human monocyte-

derived macrophages have shown that thermal stimulation suppresses the expression of acti-

vated macrophage pro-inflammatory cytokines including TNF-α, IL-6, and IL-1β [38, 39].

These heat-induced suppressions may also involve high mobility group box1 (HMGB1), which

is a nuclear protein released by activated macrophages or damaged cells and plays a role in ini-

tiating intracellular signaling and activating NF-κB and pro-inflammatory cytokine produc-

tion [40]. The thermal effect has been shown to inhibit HMGB1 secretion from macrophages

and increase HSF-1 and HSP70 expression. These increased levels of HSF-1 and HSP70 may

reduce HMGB1 secretion and subsequent NF-κB activation and cytokine production [37].

These findings can be attributed to the fact that temporary RPE damage induced by SMPL or

phagocytosis of damaged RPE by activated macrophages resulted in the loss of melanin with

a reduction in entropy. However, DME was improved by the reduction of the secretion of

inflammatory cytokines from macrophages. One of the therapeutic effects of SMPL include

the decrease of retinal thickness by reducing the intraocular concentration of vascular endo-

thelial growth factor [13]. We hypothesized that the reason for the low r2-value shown in our

result may be due to such other factors aside from the changes in RPE entropy.

Previously, the characteristics of HRF scattered throughout all retinal layers, as shown by

SD-OCT B-scan imaging [16, 17], and the presence of higher number of HRS in patients with

diabetes than in normal subjects was reported; these findings are in line with the findings of

the current study [41]. Although the origin of HRF remains unclear, previous studies have

hypothesized that the deposition of extravasated lipoproteins (the precursor of hard exudates),

lipid-laden macrophages, photoreceptor degeneration, activated/over-phagocytosed RPE cells,

or RPE metaplasia may be involved [42–44]. In contrast, several other studies have stated that

HRF is associated with inflammatory responses in the retina [41, 45], with representation

aggregates of activated macrophages [46]. In our study, changes in the number of entropy sig-

nals as well as HRF were determined after SMPL based on PS-OCT B-scan imaging. The num-

ber of HRF increased significantly 3 months after SMPL but decreased thereafter (Fig 6). Hard

exudates tend to consolidate and eventually clear by laser treatment [47]. We considered that

HRF increased up to 3 months after SMPL due to aggregation of activated macrophages or

excessively phagocytosed RPE cells, or other immune responses; however, as these effects

peaked, HRF began to decrease with the absorption of hard exudates. In general, since laser-

induced inflammation occurs at an earlier stage, our results did not support the fact that HRF

is associated with inflammatory response; but some other immune responses may be involved

instead. In contrast, the number of entropy signals remained unchanged after SMPL, and no

correlation was found between the number of entropy signals and that of HRF. Therefore, the

number of entropy signals, as determined using PS-OCT B-scan, could not be shown as a ther-

apeutic effect of SMPL. Since its association with HRF remains unclear, further studies are

needed. In contrast, HRF and entropy signals were observed at the same sites. As entropy is

also sensitive to melanin, HRF may also represent melanin itself or melanin-phagocytosed

macrophages.

The mean entropy value of the choroid layer within the ETDRS circle with a diameter of 1

mm was significantly lower in patients with DME than in healthy subjects (Fig 5). Various

studies have described the choroidal structure using swept source-OCT; however, the changes

in choroidal thickness associated with diabetic retinopathy remain controversial. Previous

studies have shown that the choroid thickness of patients with DME tends to increase [48] or

remain unchanged [49]; while others exhibit decreased choroidal thickness [50]. As the char-

acteristics of the choroid in patients with diabetes remain poorly understood, further studies

are needed for the interpretation of entropy-related results obtained in the current study.
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The study was limited by its small sample size, thus a type II error (false negative) might

occur. In addition, the short follow-up period and the possibility that entropy was affected by

confounding individual systemic or ocular local factors were also cited as limitations of this

study. Furthermore, it is conceivable that studies with experimental models are needed to

obtain a more precise understanding of entropy signals. Nevertheless, our study suggests that

entropy measured using PS-OCT may be a new parameter for objective monitoring of SMPL-

induced functional RPE changes that could not previously be assessed directly.
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