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ABSTRACT: The reaction of :AlAriPr8 (AriPr8 = C6H-2,6-(C6H2-2,4,6-
iPr3)2-3,5-

iPr2) with ArMe6N3 (Ar
Me6 = C6H3-2,6-(C6H2-2,4,6-

Me3)2) in hexanes at ambient temperature gave the aluminum imide AriPr8AlNArMe6 (1). Its crystal structure displayed short Al−N
distances of 1.625(4) and 1.628(3) Å with linear (C−Al−N−C = 180°) or almost linear (C−Al−N = 172.4(2)°; Al−N−C =
172.5(3)°) geometries. DFT calculations confirm linear geometry with an Al−N distance of 1.635 Å. According to energy
decomposition analysis, the Al−N bond has three orbital components totaling −1350 kJ mol−1 and instantaneous interaction energy
of −551 kJ mol−1 with respect to :AlAriPr8 and ArMe6N̈:. Dispersion accounts for −89 kJ mol−1, which is similar in strength to one
Al−N π-interaction. The electronic spectrum has an intense transition at 290 nm which tails into the visible region. In the IR
spectrum, the Al−N stretching band is calculated to appear at ca. 1100 cm−1. In contrast, reaction of :AlAriPr8 with 1-AdN3 or
Me3SiN3 gave transient imides that immediately reacted with a second equivalent of the azide to give AriPr8Al[(NAd)2N2] (2) or
AriPr8Al(N3){N(SiMe3)2} (3).

The chemistry of compounds with group 13 element-
nitrogen bonding has been extensively studied.1−9

Current interest is driven by their applications as precursors
for group III−V materials,10 H2 storage media,11−13 and an
interest in M−N (M = Al−Tl) multiple bonding. Early work
on the group 13 amine complexes showed they could be
condensed at elevated temperature with release of RR′ (R,R′ =
organic group or hydrogen): a common route to amide, imide,
and nitride compounds14 (Scheme 1).

The group 13 metal imides (also called N-iminometallanes)
of formula [RMNR′]n (R = alkyl, aryl, hydrogen, halide; R′ =
alkyl, aryl, silyl, hydrogen; M = Al−In; n = 4−8) were first
studied in detail by Cesari and co-workers in the 1960s and
’70s, and several examples featuring cage structures with
alternating metal and nitrogen vertices were structurally
characterized.15−19 Roesky and co-workers characterized the
quasi-isomeric tetrameric amido-Al(I) compound [AlN-
(Dipp)(SiMe3)]4 (Dipp = 2,6-iPr2−C6H3) with a tetrahedral
Al4 core and terminal amide groups.20 The lower imido
aggregates (n = 1−3) remain scarce but are especially
interesting since M−N multiple bonding becomes possible.
Thus, the unique trimer [Al(Me)N(Dipp)]3,

21 which is an Al
analogue of borazine (i.e., an “alumazine”), features relatively
short (ca. 1.78 Å) Al−N bonds. The planar Al3N3 ring has 6-π
electrons but has little aromatic character as shown by its
reaction chemistry.22,23 Several dimeric, [RAlNR′]2 com-
pounds with Al2N2 cores and short Al−N distances in the

range 1.796−1.842 Å, which is slightly longer than that seen in
the alumazine derivative, have also been reported.24−29

Monomeric RAlNR′ compounds remain unknown, which is
probably a result of high association energies (cf. dimerization
of HAlNH is exothermic by ca. 580 kJ mol−1).30 Their
synthesis via hydrocarbon or dihydrogen elimination usually
proceeds at elevated temperatures that often results in C−H
activation of the ligands.31 However, an alternative synthesis by
the reaction of organoazides with M(I) species at low
temperatures avoids C−H activation. For example, Roesky
and co-workers reported that the reaction of :AlCp* (Cp* =
η5-C5Me5), formed by dissociation of (AlCp*)4 at elevated
temperature, with R3SiN3 (R = iPr, Ph, tBu), gave the imido
dimers {Cp*Al(μ-NSiR3)}2.

26 Using the larger, chelated Al(I)
β-diketiminate :AlDippNacNac (DippNacNac = HC{(CMe)-
(NDipp)}2) gave the transient imides DippNacNacAl = NR
which reacted with a second equivalent of the azide to give
cyclic AlN4 products DippNacNacAl[(NR)2N2].

32,33 Attempts
to stabilize the imide using more sterically demanding m-
terphenyl azides failed to give an isolable aluminum imide,
although this route did yield a corresponding Ga imide.34 The
Al imide underwent C−H activation of a methyl group on a
flanking ring of the DippNacNac ligand or C−C activation of
the aryl ring of the nitrogen terphenyl ligand.35

Nonetheless, monomeric aluminum imides were obtained by
coordinative blocking of the Al atoms. Cui and co-workers
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Scheme 1. Stepwise Condensation of Group 13 Amine
Complexes to Nitrides
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showed that addition of an NHC (N-heterocyclic carbene) to
:Al[HC{(CtBu)(NDipp)}2] resulted in insertion of the Al
atom into the N−C bond of the β-diketiminate ligand.36 This
gave the four-coordinate terminal Al imide I (Figure 1) with a

short (1.705(2) Å) Al−N bond. Recently, the groups of Coles
and Aldridge separately reported that the reaction of anionic
Al(I) aluminyls with organoazides gave terminal aluminum
imides II and III (Figure 1) with Al−N distances of
1.7251(11) and 1.723(2) Å, supported by multidentate
NON ligands that exist as dimers with bridging K+ cations.37,38

It was shown that the Al=N bonds reacted readily with small
molecules such as CO and CO2.

36−38

No compounds of formula RAlNR′ in which Al and N are
two-coordinate have been isolated and characterized. The
reaction of laser-ablated Al atoms with NH3 gas gave the planar
trans-bent parent compound HAlNH as a minor product,
identified by IR spectroscopy in a solid argon matrix.39 Ab
initio computations by Davy and Jaffrey found HAlNH to be
“quasi-linear” with only a 0.2 kcal mol−1 barrier between the
linear and bent geometries and a short Al−N bond distance of
1.63 Å, which may be interpreted on the basis of Al−N triple
bonding. Computations for HAlNH and MeAlNMe showed
linear geometries with short (ca. 1.63−1.65 Å) Al−N
distances,11,30,40,41 and NBO analysis of MeAlNMe by Gilbert
indicated that it had an Al−N triple bond composed of one σ-
and 2 π-bonds.42

Previously, our group described the synthesis of gallium and
indium imides with two-coordination at both the group 13
metal and N atoms by reaction of an m-terphenyl azide with
the dimetallenes AriPr4MMAriPr4 (M = Ga, In; AriPr4 = C6H3-
2,6-(C6H3-2,6-

iPr2)2), which exist in equilibrium with :MAriPr4

monomers in solution.43 This suggested that a similar Al
species could be isolable, but the lack of an analogous Al(I)
precursor (i.e., ArAlAlAr or :AlAr) precluded its synthesis.
Recently, we reported the monomeric alanediyl :AlAriPr8 (AriPr8

= C6H-2,6-(C6H2-2,4,6-
iPr3)2-3,5-

iPr2) with a one-coordinate
Al atom.44 We show here that its reaction with ArMe6N3 (Ar

Me6

= C6H3-2,6-(C6H2-2,4,6-Me3)2 gives the aluminum imide
AriPr8AlNArMe6 (1) having two-coordinate Al and N atoms
with a notably short Al−N bond length of 1.625(4) or
1.628(3) Å consistent with Al−N triple bonding. Additionally,
the reaction of :AlAriPr8 with the less sterically demanding
azides 1-AdN3 (1-Ad = 1-adamantyl) or Me3SiN3 gives
transient imides which react immediately with a second
equivalent of azide to give products featuring ring closure or
silyl migration.
Compound 1 was prepared by reaction of :AlAriPr8 with

ArMe6N3 (Scheme 2a) in hexanes at ambient temperature,
giving immediate vigorous evolution of N2 and formation of a
red solution. After ca. 5 min, the solids had dissolved and gas
evolution had ceased. Storage at ca. −30 °C for 3 days gave
orange plates of 1 in ca. 91% yield. The crystal structure of 1
(Figure 2) contains two crystallographically independent
molecules. One of these lies along the 2-fold proper rotation
axis of the I2/a space group and contains a strictly linear C−
Al−N−C core. The second molecule maintains a planar C−
Al−N−C array but deviates slightly from linearity at the Al
(C−Al−N = 172.5(3)°) and N (Al−N−C = 171.4(2)°)
atoms. The Al−N bond lengths of 1.625(4) and 1.628(3) Å
are the shortest reported to date and agree with those
calculated for HAlNH and MeAlNMe.11,30,40,41 The linear
structure of 1 is in marked contrast to the heavier congeners
AriPr4M=NAr′ (M = Ga, In; Ar′ = C6H3-2,6-(C6H2-2,6-Me2-
4-tBu)2) which are strongly bent at the M and N atoms (Ga−
N = 1.701(2) Å; C−Ga−N = 148.2(2)°; Ga−N−C =

Figure 1. Structurally characterized terminal aluminum imides. Mes =
2,4,6-Me3C6H2; Dipp = 2,6-iPr2C6H3.

36−38

Scheme 2. Synthesis of Compounds 1, 2, and 3a

a(a) Synthesis of compound 1; (b) synthesis of compounds 2 and 3; Trip = 2,4,6-iPr3C6H2; Mes = 2,4,6-Me3C6H2; 1-Ad = 1-adamantyl.
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141.7(3)°; In−N = 1.928(2) Å; C−In−N = 142.2(1)°; In−
N−C = 134.9(2)°).43

The UV−vis electronic spectrum of 1 has a single
absorbance at 290 nm which tails into the visible region,
producing an orange color. Time-dependent DFT calculations
on 1 suggest that the low-intensity absorption tail is mostly due
to the HOMO → LUMO+1 transition at 387 nm, whereas the
main feature is due to two high-intensity transitions at 287 and
316 nm. The Al−N stretching band of 1 was calculated to be
ca. 1100 cm−1; however, no distinct spectral features are
apparent for assignment of the band.
Imide 1 slowly decomposes in solution over ca. 12 h at

ambient temperature as indicated by fading of the orange color
to colorless. 1H NMR spectroscopy (Figure S3, Supporting
Information) is consistent with decomposition via C−H
activation of one of the methyl groups on the flanking rings
that is analogous to that in DippNacNacAl=NAriPr4.35 A singlet
at δ 3.50 ppm is assigned to the resulting amine proton, while
the Al-CH2 group gives a multiplet at δ 0.05−0.13 ppm. Solid
1 is thermally stable at ambient temperature for at least several
days but rapidly decomposes to a white solid above 83 °C.
Dispersion corrected DFT calculations for 1 at the

PBE1PBE- GD3BJ/def2-TZVP level yield an optimized
structure with a linear C−Al−N−C core and an Al−N bond
length of 1.635 Å in excellent agreement with the crystal
structure. The Kohn−Sham orbitals (Figure S15, Supporting
Information) and those of the model system Ph-NAl-Ph
(Figure 3) show three major components to the Al−N bond,
one of σ-type and two nondegenerate of π-type. NBO analysis
yielded three two-center Al−N bonding orbitals with
occupations close to 2 electrons and ca. 90% localization on
the N atom.45 Consequently, the calculated Wiberg bond index
for the Al−N bond is only 0.89. More detailed bonding

analyses using the ETS-NOCV method and fragments :AlAriPr8

and ArMe6N̈: at the geometries they adopt in 1 also revealed
three primary contributions to the Al−N bond. The major
component (−1120 kJ mol−1, ca. 83% of the total orbital
interaction of −1350 kJ mol−1) involves charge flow from Al to
N, whereas the two minor components (−100 and −102 kJ
mol−1, each ca. 8% of the total orbital interaction) describe
backdonation from N to Al. Taken as a whole, the Al−N bond
in 1 has the formal characteristics of a triple bond with
donation from Al to N greatly exceeding backdonation from N
to Al. The calculated instantaneous interaction energy between
:AlAriPr8 and ArMe6N: is −551 kJ mol−1 (cf. Gibbs interaction
energy of −429 kJ mol−1 taking into account fragment
relaxation) with significant stabilization, −89 kJ mol−1, from
dispersion interactions. The possibility of charge-shift character
in the Al−N bond has not yet been supported by computa-
tional data.46−48

Addition of AdN3 or Me3SiN3 to :AlAriPr8 gives the transient
imides AriPr8AlNR (R = 1-Ad, SiMe3), which immediately react
with a second equivalent of the azide (Scheme 2b). Roesky,
Aldridge, and co-workers have shown that organic azides with
small substituents such as -SiMe3, -SiPh3, and 1-Ad react in a
2:1 ratio with :Al[DippNacNac] or an aluminyl anion to give
planar AlN4 heterocycles.32,33,38 Reaction with the first
equivalent of azide results in N2 loss and a highly reactive
species with a terminal Al=NR moiety, which undergoes ring
closure with a second equivalent of the azide. The reaction of
:AlAriPr8 with 2 equiv of 1-AdN3 gave 2 (Figure 4, left) as
colorless crystals. The Al−N bonds are 1.8126(9) and
1.8220(11) Å which are in the typical range for these AlN4
compounds.32,33,38 However, steric congestion between the
terphenyl flanking rings and the adamantyl groups result in a
deformation of the central ring of the terphenyl ligand,
illustrated by torsion angles of C(1)−C(2)−C(3)−C(4) =
20.43(14)° and C(1)−C(6)−C(5)−C(4) = 20.06(14)°. The
1H and 13C{1H} NMR spectra of 2 also display broad signals
indicating restricted movement of the 1-adamantyl and
terphenyl flanking groups. The reaction of :AlAriPr8 with 2
equiv of Me3SiN3 gives the amido- azido-alane 3 (Figure 4,
right) as colorless crystals in which silyl migration from the
second equivalent of azide to the nitrogen atom of the

Figure 2. Thermal ellipsoid plot (50%) of one of the crystallo-
graphically independent molecules of AriPr8AlNArMe6 (1). H atoms
and n-hexane solvent not shown. Selected bond lengths (Å) and
angles (deg) {values in braces correspond to the other crystallo-
graphically independent molecule of 1}: Al(1)−N(1): 1.625(4)
{1.628(3)}, Al(1)−C(1): 1.935(4) {1.931(3)}, N(1)−C(43):
1.378(5) {1.366(4)}, C(1)−Al(1)−N(1): 180 {172.4 (2)}, Al(1)−
N(1)−C(43): 180 {172.5(3)}, C(1)−Al(1)−N(1)−C(43): 0
{167.0(2)}.

Figure 3. Occupied PBE1PBE-GD3BJ/def2-TZVP orbitals of Ph-
NAl-Ph localized on the AlN bond (NPh moiety on the left, AlPh
moiety on the right; isosurface value ±0.05 au).
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transient imide has occurred. Such migrations have been
observed in a number of reactions of Me3SiN3 with low valent
main group compounds.49−54

Computationally, the reaction of :AlAriPr8 with Me3SiN3
yielded AriPr8AlN(N2)SiMe3 which readily releases N2 with a
free energy barrier of 46 kJ mol−1 to afford AriPr8AlNSiMe3 at
−306 kJ mol−1 (Figure S17, Supporting Information).
Addition of a second equivalent of Me3SiN3 gave two products,
cis- and trans-AriPr8Al[N(SiMe3)N2]NSiMe3, depending on the
relative orientation of AriPr8AlNSiMe3 and Me3SiN3. The cis-
isomer has the two SiMe3 groups on the same side of the
dative Al−N bond and readily forms 3 via silyl migration,
whereas the trans-isomer can form the SiMe3 analogue of 2 via
ring closure. Of the two possible products, 3 is kinetically
preferred and thermodynamically favored by 113 kJ mol−1.
The potential energy surface is expected to be largely similar
for the :AlAriPr8 1-AdN3 pair with the exception that
substituent migration is energetically unfeasible and 2 is
formed rapidly via ring closure.
In summary, the alanediyl :AlAriPr8 reacts with the m-

terphenyl azide ArMe6N3 to yield the monomer AriPr8AlNArMe6

in which the Al and N atoms have linear, or almost linear,
coordination and short Al−N distances of 1.625(4) or
1.628(3) Å, consistent with Al−N triple bonding. Calculations
show that the Al−N bond is composed of strong σ-donation
from the :AlAriPr8 moiety to the :N̈ArMe6 nitrene and weak π-
donation from the latter to :AlAriPr8. The calculations also
indicate a key contribution from dispersion energies that,
together with steric effects from the terphenyl substituents,

provide sufficient stabilization for the room-temperature
characterization of 1.
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