
Intermediate uveitis is an anatomically defined diag-
nosis, reserved for patients who have intraocular inflamma-
tion primarily involving the vitreous, peripheral retina, and 
pars plana [1]. Intermediate uveitis is a common presenta-
tion to general ophthalmology practice, particularly among 
children [2], with a population prevalence of 1.4/100,000 [3]. 
Generally, the onset is insidious with symptoms of blurred 
vision and floaters, and remission is infrequent and transi-
tory. Vision loss is most commonly caused by chronic cystoid 
macular edema or secondary glaucoma [4].

The diagnosis of idiopathic intermediate uveitis (IIU) 
is restricted to patients in whom there is no evidence of 
infection; pars planitis refers to a subset with concomitant 
snowball formation or pars plana exudation (snowbanking) 
[2]. The presenting clinical phenotype overlaps with infec-
tious causes of uveitis, including syphilis, tuberculosis, Lyme 
disease, cat-scratch fever, toxoplasmosis, Whipple’s disease, 
Epstein-Barr virus, human T lymphotropic virus type I, and 

human immunodeficiency virus. Furthermore, intermediate 
uveitis is commonly associated with several diseases that span 
the full spectrum of the autoimmune-autoinflammatory (AI) 
immunological disease continuum [5], such as sarcoidosis, 
multiple sclerosis (MS), thyroid disease, and inflammatory 
bowel disease (IBD) [6]. Moreover, the familial aggregation 
of cases with IIU and other AI diseases suggests the exis-
tence of common genetic variants that underlie susceptibility 
to AI disease and/or a common environmental agent [7-13]. 
While unconfirmed, a general hypothesis is that an infec-
tious foreign agent (virus or bacterium) systemically activates 
self-reactive T-cells in genetically susceptible individuals. 
The mechanisms by which this occurs are likely to involve 
molecular mimicry or non-specific bystander activation of 
self-reactive T-cells that home to the eye, leading to chronic, 
relapsing, or recurrent intraocular inflammatory disease [14].

The connection between IIU and MS merits further 
interrogation because both have been associated with the 
HLA-DRB1*15 antigen, a subtype of DR2 [15,16]. MS 
develops in 14% to 16.2% of patients with IIU, and either 
disease can precede the other [16,17]. In one study, 31% of 
patients with IIU who were HLA-DRB1*15+ also had MS, 
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and 25% had a positive family history of MS [15]. Patients 
with MS have autoreactive T-cells and antibodies directed 
against glial proteins, such as myelin basic protein, that are 
associated with actively demyelinating lesions [18]. Glial 
proteins are also detected in snowbanks [8]. The inference 
is that patients with MS and IIU have autoreactive T-cells 
directed toward a common glial epitope.

The experimental models of uveitis (experimental auto-
immune uveoretinitis, EAU) and MS (experimental autoim-
mune encephalomyelitis, EAE) share many common features; 
in particular, the detrimental role of tumor necrosis factor-α 
(TNFα). A consistent feature of EAU is the increased TNFα 
expression found in inflammatory cell infiltrates [19,20], and 
similarly, high levels of TNFα are found in MS lesion sites in 
patients with MS [21]. Furthermore, cerebrospinal fluid levels 
of TNFα are increased in chronic progressive MS compared 
with controls and correlate with disease severity [22]. 
Consequently, anti-TNFα monoclonal antibodies and a TNF 
receptor 1:immunoglobulin G fusion protein to ameliorate 
disease were tested in EAU and EAE with promising results 
[23,24]. Although anti-TNFα therapies translate effectively to 
the clinic for uveitis [25], this is not the case for patients with 
MS in whom anti-TNFα agents worsen disease and precipitate 
demyelination in others [26]. As a result, the administration 
of anti-TNFα therapy to patients with IIU has been somewhat 
more tentative. However, treatment successes with anti-TNFα 
therapy for patients with IIU have been reported [27,28], 
while others have described episodes of central nervous 
system demyelination in patients with IIU for the first time 
following anti-TNF therapy [29-31].

Previously, we have shown that specific genotypes in 
three haplotype-tagging single nucleotide polymorphisms 
(htSNPs) in the IL10 gene (rs6703630, rs2222202, and 
rs3024490) are significantly associated with susceptibility 
to non-infectious uveitis (NIU), while a LTA+252AA/TNFA-
238GG haplotype (rs909253 and rs361525) is protective 
[7]. Moreover, patients with two closely overlapping white 
dot syndromes, punctuate inner choroidopathy (PIC) and 
multifocal choroiditis with panuveitis (MFCPU), demon-
strated identical associations with the IL10 haplotype, IL10-
2849AX/+434TC, that were not observed in other subgroups 
[32]. MFCPU and PIC fall under the SUN (Standardized 
Uveitis Nomenclature) Working Group classification of poste-
rior uveitis with clinical evidence of multifocal choroiditis 
[1], and both disorders are characterized by inflammatory 
microgranulomata at the chorioretinal interface [33]. Hence, 
our data on the genetic profile of these patients suggested that 
MFCPU and PIC may be manifestations of the same disease 
[32].

In this report, we sought to further interrogate our study 
population to determine whether patients with IIU (which 
is also defined anatomically by the SUN Working Group) 
demonstrate a characteristic genetic profile that differs from 
that of patients with non-specific NIU. In addition, we were 
interested to know whether this profile was similar to genetic 
associations identified previously in patients with MS.

METHODS

Subjects: One hundred and thirty-six subjects in good general 
health (45 male, 91 female; age range 21-89 years’ old) were 
recruited from three regional centers in Bristol (Bristol Eye 
Hospital), Aberdeen (Grampian University Hospitals), and 
Dublin (The Royal Victoria Eye and Ear Hospital) as part 
of a larger study [7]. Ethical approval was given by each 
center, and the study adhered to the tenets of the Declaration 
of Helsinki. All subjects were white Caucasians of British or 
Irish descent for at least two generations.

Informed consent was obtained from all participants 
(44 patients, 92 controls), after the nature and possible 
consequences of the study were explained. All subjects were 
given a full ophthalmic examination for diagnostic evalua-
tion according to the guidelines of the SUN Working Group 
[1]. All patients managed at the three regional centers had 
routine diagnostic and pretreatment investigations as part of 
the previous study [7]. Forty-four patients diagnosed with IIU 
were included in the study, of whom nine had pars planitis 
characterized by snowbanking. They were consecutively 
recruited over a five-year period between 2002 and 2007 
from regional uveitis clinics at the three centers. Patients 
with coexisting MS were excluded, as were patients with any 
underlying etiology for intermediate uveitis (e.g., sarcoidosis) 
based on their pretreatment investigations. Control subjects 
were examined to ensure that they had no evidence of preex-
isting inflammatory eye disease. They were excluded if they 
had any eye-specific disorder or systemic disease with a 
significant immunogenetic etiology, including known asso-
ciations with cytokine gene polymorphisms (e.g., age-related 
macular degeneration, glaucoma, type 1 diabetes mellitus 
[T1D], ankylosing spondylitis, rheumatoid arthritis, systemic 
lupus erythematosus, chronic obstructive pulmonary disease, 
ischemic heart disease, neoplasia).

Genotype associations were determined for three parameters 
of disease severity: 1. Ocular remission, using SUN guide-
lines [1].

2. Maintenance immunosuppression, defined as the most 
recent combination of immunosuppressants to consistently 
control disease activity for at least three months, with no 
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increase in immunosuppression during this period (more 
fully described elsewhere) [7].

3. Visual outcome, assessed by (a) visual acuity (VA) at 
the census date and (b) change in VA from disease onset to 
the census date (defined, according to SUN guidelines, as a 
decrease in Snellen VA of >3 lines) [1].

Genotyping: HtSNPs in the IL10 and TNF genomic regions 
were selected and genotyped using published methods [7], 
and Hardy–Weinberg probabilities were calculated for the 
larger cohort [7]. The TNFd microsatellite polymorphism was 
genotyped as previously described [34,35]. HLA class I (A, B, 
and C) and II (DRB1 and DQB1) typing was performed using 
sequence specific primers (SSP–PCR) at medium resolution 
[36]. Sequence accession numbers were NT_021877 for IL10 
and NT_007592 for TNFA.

Statistical analyses: Demographic information, clinical 
course parameters, patient, and control genotype distributions 
were compared between dichotomous groups using the two-
tailed χ2 test (chi-square) or Fisher’s exact test where appro-
priate, using SPSS 14.0 (SPSS UK Ltd, Woking, UK) and 
UNPHASED [37]. Snellen VAs were converted to logMAR 
for analyses. Distributions of ordinal phenotypic characteris-
tics were compared using the Kruskal–Wallis non-parametric 
test, and for continuous characteristics using the two-tailed 
Student t test in SPSS.

Associations across the major histocompatibility 
complex (MHC) were determined using UNPHASED [37]. 
UNPHASED uses an expectation-maximization (EM) algo-
rithm to perform the likelihood ratio X2 test on case-control 
data with the advantage that this algorithm can handle multi-
allelic MHC data [37]. The genetic models that best explained 
significant genetic associations with IIU were determined 
using PLINK 1.07 [38]. Haplotype associations were also 
determined in PLINK, which is limited to biallelic SNPs.

The Bonferroni correction was applied to genotypic data 
to adjust for the number of comparisons (n=total number of 
loci or haplotypes) and assumes that the statistical compari-
sons are independent. Odds ratios were calculated in OpenEpi 

version 2.3.1 [39]. Since the population prevalence of IIU is 
relatively low at 1.4/100,000 in a European cohort similar to 
the UK [3], we predicted the relative risk of IIU to approxi-
mate the odds ratio.

Sample sizes were calculated using OpenEpi based on 
the published minor allele frequencies in a European cohort 
of the SNPs (HapMap CEU cohort) and TNFd microsatellite 
polymorphisms (a UK cohort) under investigation [35,40]. 
Based on these published data, our study had 80% power 
to detect differences in allele frequency between patients 
and controls with a minimum odds ratio of 3.0 and with 95% 
confidence levels.

RESULTS

The demographics of the IIU and control groups were similar 
for age and sex with no significant differences (Table 1). As 
we have found previously, there was a high prevalence of AI 
disease in patients’ self-reported personal medical histories 
(29.5% versus 0% in controls) and family history (20.5% 
versus 5.4% in controls) [7]. The conditions that patients 
reported in their personal histories were non-specified 
arthritis/arthralgia (four patients), asthma (three patients), 
primary hyperthyroidism/hypothyroidism (two patients), 
primary hypoparathyroidism (one patient), fibromyalgia 
(one patient), psoriasis and arthritis (one patient), and type 2 
diabetes mellitus (T2D, one patient). In the family histories, 
only one patient had a relative with MS, and another had a 
family member who was also affected by IIU. Other condi-
tions reported by patients in their family history were T2D 
(one patient), celiac disease (one patient), rheumatoid arthritis 
(two patients), non-specified arthritis (one patient), inflam-
matory bowel disease (one patient), and primary hyperthy-
roidism (one patient). Five controls had a family history of 
AI disease: four were unaffected relatives of patients in the 
study, and one had a strong family history of arthritis.

Idiopathic intermediate uveitis is associated with tumor 
necrosis factor polymorphisms: Lymphotoxin alpha (LTA), 
TNFA, and TNFd are located within the class III region of the 
MHC on chromosome 6p21.3. Hence, we used UNPHASED 

Table 1. Demographic information on recruited subjects

Uveitis classification Number in 
group

Age at recruitment (years) Sex
Mean +/− SD Range Male Female

IIU patients 44 43.2 +/− 14.6 22–87 18 26
Healthy controls 92 48.9 +/− 16.9 21–89 27 65

Comparison of IIU versus control groups p=0.055 p=0.182

The IIU and control cohorts were statistically similar in mean age, age range and sex distribution. The two groups were compared using 
the 2-tailed unpaired t test for age and 2-tailed X2 test for sex. Abbreviations: IIU, idiopathic intermediate uveitis; SD, standard deviation.
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to analyze associations between loci across this region and 
IIU since UNPHASED can handle data from multiallelic 
SNPs and can model associations to determine which loci 
are primarily associated with disease among several linked 
loci. We also included SNPs within the IL10 complex on 
chromosome 1.

Using UNPHASED, we found that loci TNFA-308, 
TNFA-238, HLA-DRB1, and HLADQB were associated 
with IIU, but only the associations with TNFA-308 and 
TNFA-238 remained significant after correction for multiple 
comparisons (Table 2). Since a specific TNFA promoter allele 
contains TNFA-308A, and a LTA promoter allele contains 
LTA+252G in several combined HLA-TNFA-LTA haplotypes, 
including the HLA 8.1 ancestral haplotype (A1, B8, DR3) 
[41], and since HLA-DRB1*17 is a subtype of HLA-DR3, we 
looked for a similar combined HLA-TNFA-LTA haplotype 
demonstrating an association with IIU. Nonetheless, no 
combined haplotype demonstrated significant association 
with disease in our cohort (data not shown). Moreover, in 
further modeling analyses in UNPHASED, we conditioned 
on TNFA-308, TNFA-238, HLA-DRB1, and HLA-DQB, either 

singly or combination. In these analyses, the combination of 
loci, TNFA-308 and TNFA-238, was the most significantly 
associated with IIU throughout (p<0.00001), suggesting that 
the associations were explained solely by these two loci. 
Although HLA-DRB1*15 (17.9% versus 15.5% in controls, 
puncorr=0.63) and HLA-DRB1*17 (19.1% versus 10.9% in 
controls, puncorr=0.07) were the most prevalent HLA-DRB1 
alleles, individually they were not significantly associated 
with disease in this cohort.

The associations between IIU and the TNFA-308 
(rs1800629) and TNFA-238 (rs361525) loci were best 
explained by an allelic (additive) genetic model in which 
the minor alleles, TNFA-308A (pc=0.0042) and TNFA-238A 
(pc=0.0019), were significantly associated with IIU (Table 3). 
Analyses using either a dominant or recessive model for the 
associations between TNFA-308 and TNFA-238 with IIU in 
PLINK were not significant (data not shown).

Given the allelic associations between the TNFA-308 
and TNFA-238 loci with IIU, and the significant association 
between the two combined loci and IIU in our modeling 
analyses in UNPHASED, we investigated combined allelic 

Table 2. Associations between IIU and HLA, TNF and IL10 loci.

Locus Chromosome X2 Degrees of freedom p value pc value
IL10 −3545 1 0.129 2 0.7195 NS
IL10 −2849 1 1.186 2 0.2762 NS
IL10 −1082 1 0.343 2 0.5579 NS
IL10 −819 1 0.426 2 0.5138 NS
IL10 +434 1 0.021 2 0.8850 NS
IL10 +504 1 0.004 2 0.9472 NS
IL10 +1847 1 0.610 2 0.4346 NS
LTA+252 6 2.992 2 0.0837 NS

TNFA −308 6 10.99 2 0.0009 0.0171
TNFA −238 6 11.54 2 0.0007 0.0133
TNFA +488 6 0.494 2 0.4821 NS

TNFd 6 1.688 10 0.8904 NS
HLA A 6 18.94 15 0.2165 NS

HLA Cw 6 13.15 12 0.3581 NS
HLA B 6 27.06 22 0.2088 NS

HLA Bw 6 0.001 1 0.9701 NS
HLA DRB1 6 28.45 12 0.0048 NS
HLA DR3–5 6 1.194 3 0.7953 NS
HLA DQB 6 15.22 6 0.0254 NS

IIU is significantly associated with the TNFA-308 and TNFA-238 loci. There were associations with the HLA DRB1 and HLA DQB loci 
that lost significance after Bonferroni correction. Statistical analyses used the Likelihood ratio χ2 test in UNPHASED with 2-tailed prob-
ability values and Bonferroni correction for the number of loci (n=19). Abbreviations: NS, not significant with a p value>0.05; p value, 
uncorrected probability value; pc, Bonferroni corrected p value (pc=p x19); X2, Chi-square test.
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haplotypes of the two loci. In these analyses, we found the 
TNFA-308G/TNFA-238G haplotype was the most signifi-
cantly protective haplotype (50.9% in patients versus 80.4% 
in controls, pc=000004), i.e., negatively associated with 
disease (Table 4). No IL10 SNP genotypes were associated 
with disease after correction for multiple comparisons (Table 
2).

Tumor necrosis factor and interleukin 10 polymorphisms 
are not associated with severity of disease: There were no 
significant genotype associations with our three parameters 
of disease severity after correction for multiple comparisons, 
including (i) ocular remission, (ii) the requirement for and 
level of maintenance immunosuppression, and (iii) visual 
outcome in terms of absolute logMAR VA and decrease in 
VA of >3 lines at the census date. Since other investigators 
have found a correlation between the IL10-1082AA genotype 
and poor visual outcome in patients with IIU (VA<6/12 in 
both eyes while quiescent, five years after presentation) 
[42], we asked whether there was a similar correlation in our 
cohort of patients. In fact, there was no association between 
the IL10-1082 genotype and visual outcome (puncorr=0.113 for 
VA decrease >3 lines with Fisher’s exact test; puncorr=0.796 
for logMAR VA at census date with the Kruskal–Wallis test). 
Of 38/44 IIU patients with bilateral disease, seven patients 
experienced a decrease in visual acuity by >3 lines in at 
least one eye and one patient in both eyes, between disease 
onset and the census date, an average follow-up period of 
10.6 years (range 4.7 to 36.5 years). The latter was the only 
patient to have a Snellen VA <6/12 in both eyes at the census 
date due to glaucoma and chronic cystoid macular edema, 
despite previous treatment with high-dose prednisolone, 
cyclosporine, tacrolimus, mycophenolate mofetil, azathio-
prine, and methotrexate. This patient had an IL10-1082AG 
genotype. In fact, no patients with a VA<6/12 in at least one 
eye or decrease in VA>3 lines by the census date had an IL10-
1082AA genotype.

DISCUSSION

The results of this study have shown that IIU is strongly 
associated with polymorphisms of the TNFA-308 and -238 
loci and that these associations appear to be independent of 
HLA-DRB1*15 and the ancestral haplotype, HLA-A1, B8, 
DR3. The relationship is best explained with an allelic model, 
in which the TNFA-308A and TNFA-238A minor alleles are 
associated with IIU. Moreover, the combined TNFA-308G/-
238G haplotype confers resistance to IIU (pc=0.000004). 
Collectively, these results are enticing since the TNFA-308 
and TNFA-238 loci have been shown to inf luence TNF 
production levels and have been associated with several other 
diseases on the AI immunological disease continuum [43].

Our results are consistent with previous work that has 
shown that the LTA+252AA/TNFA-238GG haplotype is nega-
tively associated with non-infectious uveitis (p=0.00031) in 
a cohort where patients with six different uveitic syndromes 
contributed equally to the analyses [7]. Moreover, two white 
dot syndromes, PIC and MFCPU, demonstrated an extended 
LT-TNF haplotypic association with disease [32]. Yet none of 
the other uveitic syndromes in our original study, including 
Behçet’s disease, sarcoidosis, and sympathetic ophthalmia, 
demonstrated significant associations with the TNFA-238 
and TNFA-308 loci that were independent of their HLA 
associations, for example, sympathetic ophthalmia with 
HLA-DRB1*04 [7,32,44](data not shown). HLA-B27 is a well-
recognized susceptibility allele for idiopathic anterior uveitis 
and linkage disequilibrium between HLA-B27 and other vari-
ants within the human MHC known to confound analyses 
for additional susceptibility loci in this region. Several 
previous studies investigating the prevalence of TNF poly-
morphisms in patients with anterior uveitis have suggested 
genetic associations, but the inconsistent outcomes may be a 
result of heterogenous patient cohorts with a mixed number 
of underlying systemic disease associations or incomplete 

Table 4. Association between combined TNFA-308 and TNFA −238 haplotypes with IIU

TNFA-308/-238 
haplotype

Inferred 
frequency in 
IIU patients

Inferred 
frequency in 

controls

X2 Degrees of 
freedom

p value pc value

GG 0.509 0.804 24.31 1 0.000001 0.000004
GA 0.145 0.042 8.896 1 0.002858 0.011432
AG 0.312 0.152 9.132 1 0.002512 0.010048
AA 0.033 0.002 4.794 1 0.028560 NS

The combined TNFA-308G/-238G haplotype had a significant negative association with IIU, suggesting a protective effect against devel-
opment of the disease. Two marker haplotypes were inferred in PLINK. Statistical analyses used the Pearson X2 test with 2-tailed prob-
ability values in PLINK with Bonferroni correction for the number of haplotypes (n=4). Abbreviations: %, percentage; IIU, idiopathic in-
termediate uveitis; p value, uncorrected probability value; pc value, Bonferroni corrected p value; NS, not significant with a p value>0.05.
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stratification analyses for HLA-B27 in patient and control 
groups [45-47].

The investigation of genetic influences on TNF produc-
tion is also complicated by the location of the TNF gene 
cluster within the MHC, the most polymorphic region of 
the human genome [48]. Only 1.2 kb separates the polyad-
enylation site of LTA and the transcription start site of TNFA 
within the TNF gene cluster of the MHC class III region, 
genes that encode the structurally homologous inflammatory 
cytokines, LTα and TNFα. Moreover, examples of long-range 
linkage disequilibrium (LD), extending more than 2 Mb, arise 
in a subset of MHC haplotypes because of LD between tightly 
linked segments of strong LD creating a unique microstruc-
ture [49,50]. Consequently, the TNFA-308A polymorphism 
is often linked to the LTA+252G polymorphism in several 
combined HLA-TNF-LT haplotypes, including the HLA 8.1 
ancestral haplotype (A1, B8, DR3) [41] that has repeatedly 
been associated with higher TNF production levels and many 
immunopathological diseases [43,51-57].

Why some studies have failed to demonstrate a correla-
tion between polymorphisms of TNFA and TNFα production 
levels might be partly attributed to the chance representation 
of different subsets of haplotypes in each study, and partly 
due to differences in experimental methods, including the 
cell-type investigated, culture conditions, type of stimulant 
used (if any), and means of measurement [56]. Analyzing 
chromatin structure is one method for determining regions 
of a gene involved in transcriptional activation, and DNase 
I hypersensitivity (HS) sites represent nucleosome-free 
regions of a gene that are accessible to transcription factors 
as well as the DNase I endonuclease [58-60]. DNase I HS 
sites within regions of a gene demonstrating a high degree 
of DNA sequence conservation with other species, known 
as conserved non-coding sequences, are most likely to 
represent important regulatory sequences. Consequently, it 
is relevant that the proximal TNFA and LTA promoters are 
highly conserved between species, and constitutively active 
DNase I HS sites have been identified in these regions in 
human monocyte and T-cell lines, whereas other induc-
ible HS sites are cell-type and stimulus dependent [61-66]. 
Although further regulatory elements have been identified 
in conserved non-coding sequences elsewhere in the TNF 
gene cluster [62,67-71], the LTA and TNF proximal promoter 
regions attain the highest conservation scores. Moreover, 
the TNFA-308 polymorphism appears to affect transcription 
factor binding and TNF transcriptional activity in a cell-type 
and stimulus-specific fashion [72]. These data from func-
tional chromatin studies combined with the evidence from 
disease association studies further implicate this region of 

the MHC in the immunopathogenesis of several AI diseases. 
However, the relevance of specific polymorphisms in disease 
pathogenesis likely depends on the importance of the cell-
type and stimulatory conditions in which the polymorphisms 
have most influence. Although one limitation of this study 
is that we did not include an analysis of TNF production 
levels based on patient genotype, this would clearly require 
a systematic investigation of the response of different leuco-
cyte subclasses to varying stimuli before and after systemic 
immunosuppression is administered, which is beyond the 
scope of this report.

Perhaps for this reason, the role of TNF in the pathogen-
esis of AI disease is not always straightforward. The timing 
and duration of TNF expression are important in determining 
the pathogenic versus protective roles of TNF, since prolonged 
TNF exposure can activate antigen-presenting cells (APCs), 
augment antigen-presentation capability, and upregulate the 
expression of costimulatory molecules, while in other situa-
tions, TNF can inhibit the function of mature dendritic cells 
(DCs), induce their apoptosis, and impair antigen presentation 
[73]. In addition, exposure of DCs to TNFα in vitro has the 
capacity to induce a tolerogenic “semimature” functional 
phenotype on these cells, which can themselves secrete 
further TNFα to act in an autocrine fashion. When admin-
istered in vivo, TNFα-activated semimature DCs critically 
depend on the microenvironment to determine whether they 
remain tolerogenic or become immunogenic [74-77]. Hence, 
APCs are influenced by environmental cytokine signals that 
can promote either immunity or tolerance depending on their 
timing. These data might explain the paradoxical effects of 
anti-TNF therapy in MS. In comparison to IIU, the HLA 
class II region contributes most to genetic susceptibility to 
MS by linkage, case-control, and genome-wide association 
studies [78-82], while the link between TNF polymorphisms 
and MS remains contentious: TNFA-308A was significantly 
associated with reduced risk of MS in one large meta-analysis 
[83], but not another [84]. Since anti-TNF therapy for Crohn’s 
disease and rheumatoid arthritis (conditions not known to be 
linked to MS) have been reported to precipitate subsequent 
demyelination [85-88], low levels of TNF per se, whether due 
to TNF blockade or genetic factors, may be the major risk for 
demyelination [89], and systemic anti-TNF therapy for IIU 
might present the same risk. MS patients with a TNF receptor 
1 (TNFR1) polymorphism, rs1800693, may be at particular 
risk of an adverse response to anti-TNF treatment because 
this SNP results in a soluble TNFR1 isoform that naturally 
antagonizes the action of TNF [89]. Whether this SNP is 
also predictive of demyelination after anti-TNF therapy in 
patients with IIU remains to be determined. Nevertheless, 
the data suggest that TNF has different roles in initiating 
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and maintaining the two disorders: high levels increase the 
risk of IIU, and low levels increase the risk of demyelination; 
in addition, these levels are determined by several genetic 
factors, such as TNF and TNFR1 polymorphisms, and envi-
ronmental factors such as exposure to anti-TNF therapy.

In comparison, IL10 polymorphisms appeared to have 
less influence on IIU susceptibility in our cohort. IL10 has 
mainly anti-inflammatory properties: it downregulates the 
expression of MHC class II and costimulatory molecules, 
inhibits the maturation of DCs, and inhibits the release of 
proinflammatory cytokines, resulting in the suppression of 
Th1 cell responses [90-93]. Furthermore, IL10 production 
by antigen-specific CD4+ Tregs is enhanced by IL10 [94]. 
Nevertheless, we did not detect an association between IL10-
1082AA and poor visual outcome, as reported previously 
[42]. Neither was there an association between IL10-1082 and 
change in visual acuity from disease onset to the census date. 
One caveat is that 33/102 patients in the previous report had 
a Snellen VA <6/12 in both eyes after five years of follow-up 
[42], while only 1/44 patients met these criteria in our cohort. 
Although we predicted a change in visual acuity would be a 
better predictor of disease severity, it is likely that both visual 
outcome measures are confounded by coexisting ocular 
disease, differences in treatment regimen, and response to 
treatment between patients.

A further limitation of this study is that patients with 
coexistent MS were excluded from the outset, and none 
of our cohort developed MS during the follow-up period. 
Furthermore, only 2/44 patients were on anti-TNF therapy 
during the period of the study, and neither patient developed 
central nervous system demyelination. Nevertheless, the 
strong association of TNF haplotypes with IIU demonstrates 
the future need to investigate further their correlation with 
TNF expression, disease severity, and response to treatment 
with anti-TNF agents. Additionally, the association is impor-
tant in driving a future ability to tailor therapy to those who 
will benefit, and to investigate further the relationship in the 
context of HLA-DRB1*15 status and TNFR1 polymorphism, 
to direct treatment to those that will demonstrate maximum 
benefit, but also to ensure no adverse effects (as demonstrated 
in MS).
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