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How to determine the community structure of complex networks is an open question. It is critical to
establish the best strategies for community detection in networks of unknown structure. Here, using
standard synthetic benchmarks, we show that none of the algorithms hitherto developed for community
structure characterization perform optimally. Significantly, evaluating the results according to their
modularity, the most popular measure of the quality of a partition, systematically provides mistaken
solutions. However, a novel quality function, called Surprise, can be used to elucidate which is the optimal
division into communities. Consequently, we show that the best strategy to find the community structure of
all the networks examined involves choosing among the solutions provided by multiple algorithms the one
with the highest Surprise value. We conclude that Surprise maximization precisely reveals the community
structure of complex networks.

he analysis of networks has profound implications in very different fields, from sociology to biology'~.

One of the most interesting features of a network is its community structure®”. Communities are groups

of nodes that are more strongly or frequently connected among themselves than with the other nodes of
the network. The best way to establish the communities present in a network is an open problem. Two
related questions are still unsolved. First, which is the best algorithm to characterize networks of known
community structure. Second, how to evaluate algorithm performance when the community structure is
unknown. The first question requires testing the algorithms in benchmarks composed of complex networks
where the community structure is established a priori. In these benchmarks, it has been found that algorithm
performance depends on how different is the density of intracommunity links from the average density of
links in the network. In addition, it has been determined that most algorithms perform well when the
networks are small and the communities have similar sizes, but many perform quite poorly in benchmarks
composed of large networks with many communities of heterogeneous sizes®*'®. Thus, benchmarks with the
latter features have become crucial to rank algorithm performances. Among them, the Lancichinetti-
Fortunato-Radicchi (LFR) benchmarks''~'® and the Relaxed Caveman (RC) benchmarks'*'*-** have shown
to be particularly useful. Both benchmarks pose a stern test for algorithms that deal poorly with the presence
of many communities, of small communities or of a mixture of communities of different sizes (see e.g. refs.
11, 13 and 14).

The second question, how to determine the best performance when the community structure is unknown,
involves devising an independent measure of the quality of a partition into communities that can be reliably
applied to any type of network. The first and still today most popular such measure was called modularity”' (often
abbreviated as Q). Modularity compares the number of links within each community with the expected number
of links in a random graph of the same size and same distribution of node degrees and then adds the differences
between expected and observed values for all the communities. It was proposed that the optimal partition of a
network could be found by maximizing Q*'. However, it was later determined that modularity-based evaluations
are often incorrect when small communities are present in the network, i.e. Q has a resolution limit*. Several
other works have found additional, subtle problems caused by using modularity maximization to determine
network community structure'”**-*°. All these results suggest that using Q provides incorrect answers in many
cases.

We recently suggested an alternative global measure of performance, which we called Surprise'. Surprise
assumes as a null model that links between nodes emerge randomly. It then evaluates the departure of the
observed partition from the expected distribution of nodes and links into communities given that null model.
To do so, it uses the following cumulative hypergeometric distribution:
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Where F is the maximum possible number of links in a network ([&* —
k]/ 2, being k the number of units), # is the observed number of links,
M is the maximum possible number of intracommunity links for a
given partition, and p is the total number of intracommunity links
observed in that partition'*. Using a cumulative hypergeometric dis-
tribution allows to calculate the exact probability of the distribution of
links and nodes in the communities defined for the network by a given
partition. Thus, S measures how unlikely (or “surprising”, hence the
name of the parameter) is that distribution. In previous studies, we
showed that Surprise improved on modularity in standard bench-
marks and that choosing algorithms with high S values leads to accur-
ate community structure characterization'*'®. Although these results
were encouraging, whether S maximization could be used to obtain
optimal partitions was not rigorously tested. This was due to the fact
that Surprise values were estimated from the partitions provided by
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just a few algorithms. Given that other algorithms could provide even
higher S values, it was unclear how optimal these results were.

Here, we test the best strategies currently available to characterize
the structure of complex networks and we compare them with the
results provided by Surprise maximization in both LFR and RC
benchmarks. We first show that none among a large number of
state-of-the-art algorithms work consistently well in all these com-
plex benchmarks. Particularly, all modularity-based heuristics
behave poorly. Also, we demonstrate that evaluating the perform-
ance of an algorithm using modularity is incorrect. We then show
that a simple meta-algorithm, which consists in choosing in each
network the algorithm that maximizes Surprise, very efficiently
determines the community structure of all the networks tested.
This method clearly performs better than any of the algorithms
devised so far. We conclude that Surprise maximization is the strat-
egy of choice for community characterization in complex networks.

Results
In order to determine the performance of different algorithms for
community structure characterization, we explored two standard

R=10%

Figure 1| Global performance of the algorithms. (a) Behavior of the algorithms in the LFR benchmark. To obtain this figure, the algorithms were first
ordered according to the VI results obtained for each p condition. Then, we plotted the results for the algorithm with the best VI value (black line,
indicated with “17), the average of the top five algorithms (red line), average of the top ten ones (blue line) or average for all the 18 algorithms (green line).
The grey region corresponds to the values of p (0.1 —0.7) chosen to perform the main comparative analyses (see text). Beyond that region, even the best
algorithms obtain VI values considerably higher than zero, meaning that the original structure of the network has been significantly modified by the
increase in intercommunity links. (b) An example showing the five largest communities in a LFR network (5000 units) when p = 0.1. Nodes are
distributed into two dimensions with a spring-embedded algorithm*® and drawn using Cytoscape*’. Communities are well-isolated groups. (c) The five
largest communities when p = 0.7. They are barely distinguishable in this representation because the mixing of links was quite extreme. However, several
algorithms were still often able to detect these fuzzy communities. (d) — (f): The same results for the RC benchmark (512 units). Panel e depicts the five
largest communities when R = 10% and Panel f to the same communities when R = 50%. Again, notice in panel d) the sharp increase in VI values when R
> 50%. An extreme degree of superimposition among communities is observed already when R = 50% (f). In the LFR benchmark, the rapid increase in VI
values when the intercommunity links goes from p = 0.7 to 0.8 (Panel a) is explained by all communities being of similar sizes. Therefore, they are
destroyed at about the same time. On the contrary, the more progressive increase in VI when R grows, which we observed in Panel d, is due to the
heterogeneous sizes of the communities present in that benchmark, which break down at different times.
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benchmarks, an LFR benchmark with 5000 units and an RC bench-
mark with 512 units (see Methods). Variation of Information (VI)
was used to determine the degree of congruence between the parti-
tions into communities suggested by 18 different algorithms and the
real community structure present in the networks. A perfect congru-
ence corresponds to a value VI = 0. Figures la and 1d display the
general results obtained in the two benchmarks. A sharp VI increase
was found when the community structure was weakened by highly
increasing the number of intercommunity links, as occurs when the
mixing parameter (1) of the LFR benchmark has values above 0.7 or
the rewiring parameter R of the RC benchmarks is higher than 50%
(see also Methods for the precise definitions of p and R). These
results mean that, above p = 0.7 or R = 50%, the community struc-
ture originally present in the networks was substantially altered. In
such cases, we could not determine whether the partitions suggested
by the algorithms were correct or not: there would not be a known
structure with which to compare. Thus, we decided to restrict our
subsequent analyses to the LFR networks with 0.1 = p = 0.7 (100
realizations per p value, giving a total of 700 networks) and the RC

networks with 10% = R = 50% (again, 100 realizations per R value,
for a total of 500 different networks). These conditions generate some
community structures that are very difficult to detect (Figure 1).
Figure 2 summarizes the individual performance of the algorithms
according to three global measures of partition quality. The first one
is VI, the gold standard for algorithm performance in these bench-
marks. The other two, already mentioned above, are Surprise (S) and
modularity (Q). The performance values measured according to the
VI scores shown in Figure 2 indicate two very important facts. On
one hand, none of the algorithms was the best in all LFR or in all RC
networks. On the other hand, the best algorithms in LFR networks
often performed poorly in RC networks, and vice versa (see e.g. the
results of RB, LPA or RNSC in Figure 2). This can be rigorously
shown by ordering within each benchmark the algorithms according
to their performance, assigning a rank, from best to worst, and com-
paring the ranks in both benchmarks. We found that Kendall’s non-
parametric correlation coefficient for these ranks was very weak, just
T = 0.31 (p = 0.04, one-tailed comparison). We conclude that using
single algorithms for community characterization is inadvisable,

a LFR

T T T T T T T T T T T T T T T T T
16 i
Vi
14 Il S .
Q1 DQ _
(%]
&
1 -
£
-
3] i
€
]
Q -
2 B o S L. C 4 4 & & & 1, 4. C
v % Y %o o Ry, %, % Yy %, 9,0 % % %
2 % % ¢ e % S L,
) DN % aQA/ 2,
b RC
T T T T T T T T T T T T T T T T T
16 - -
Y
141 S |
12 Q| |

Perfomance
=
[+/] o
T

S B G By S b b Yy O S S b R s % O
C‘/% '13\0 47%% v 7&, ,66, @4& (0047 o,)QO () S %y QVO '1/47 sS‘ox
S &{@A % % S 2,

Figure 2 | Performance of the algorithms according to Variation of Information (VI), Surprise (S) and Modularity (Q) in LFR and RC benchmarks.
Average performance and standard errors of the mean are shown. Performance values were obtained by the following method: 1) the VI, S or Q values of
the partitions provided by the 18 algorithms in each of the networks (i.e. 700 values for LFR benchmarks, 500 values in RC benchmarks) were established;
2) For each network, the algorithms were assigned a rank according to their performance (1 = optimal, 18 = worse); identical ranks were given to tied
algorithms (i. e. the ranks that would correspond to each of them were summed up and then divided by the number of tied algorithms); and, 3)

Performance was calculated as 18 —average rank, meaning that 17 is the maximum possible value that would obtain an algorithm that outperforms the rest

in all networks, and 0 equals to being the worst in all networks.
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given that their performance is strongly dependent on the particular
structure of the network.

If we focus now on the Surprise (S) and modularity (Q) results
shown in Figure 2, another two striking facts become apparent. First,
there was a very strong correlation between the performance of the
algorithms according to VI and according to S. Kendall’s correlation
coefficient for the ranks of the performances of the algorithms
ordered according to VI and to S values is T = 0.91 in the LFR
benchmarks (p = 4.9 107", one-tailed comparison) and t = 0.83
in the RC benchmark (p = 1.4 107%, one-tailed test). These results
demonstrate that S is an excellent measure of the global quality of a
division into communities, confirming and extending the conclu-
sions of one of our previous works'. Second, the performance of
the algorithms evaluated using Q only weakly correlated with their
performance according to VI in the LFR benchmarks (Kendall’s 1y zr
= 0.29, p = 0.048, one-tailed test) and these two measures did not
significantly correlate in the RC benchmarks (trc = 0.27, p = 0.066,
again one-tailed test). These results indicate that evaluating the qual-
ity of a partition according to its modularity is inappropriate. It was
therefore logical to find out that both the algorithms devised to

maximize Q (Blondel; EO, MLGC, MSG+VM and CNM?¥~") and
the algorithms that use Q to evaluate the quality of their partitions
(Walktrap, DM****) were poor performers (Figure 2).

If indeed maximization of Surprise is an optimal strategy for com-
munity characterization, as its strong correlation with VI suggests,
then it should be possible to improve on the results of any single
algorithm by simply picking up among many algorithms the one that
generates the highest S value (S,,.x) in each particular network. Also,
this S-maximization strategy should provide VI values very close to
zero in our benchmarks. These two expectations are fulfilled, as
shown in Figure 3. The top panel (Figure 3a) demonstrates that
choosing in each particular case the algorithm with the highest S
value is better than selecting any of the state-of-the-art algorithms
tested. It is remarkable that the S, values in Figure 3a derived from
the combined results of as many as 7 algorithms (CPM, Infomap, RB,
RN, RNSC, SCluster and UV Cluster'*****-**). In addition, Figure 3b
indicates that the sum of the average VI values obtained using S, in
the 1200 networks analyzed (with p = 0.1 - 0.7 and R = 10 - 50%)
were just slightly above zero, i.e. almost optimal. The average values
were 0.002 = 0.000 in the LFR benchmarks and 0.100 * 0.007 in the

Performance

o

B LFR

Variation of Information
w
T

% 7

Figure 3 | A simple meta-algorithm based on Surprise maximization improves over all known community detection algorithms. (a) Performances
(calculated as in Figure 2) for all the algorithms are compared in both the LFR and the RC benchmarks with the performance of a strategy that consists in
picking up the algorithm that provides the highest S value (Sp,.,). (b) For the S,y strategy, the average VI values for the 1200 networks analyzed are very

close to zero, i.e. an almost optimal performance.
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RC benchmarks. We may ask why these VI values are not exactly
zero, given that VI = 0 would be expected for a perfect global mea-
sure. We detected two reasons for this minor discrepancy. The first
reason was that, in some cases (mainly in the RC benchmark with R
= 50%), the available algorithms failed to obtain the highest possible
S values. We found that the S values expected assuming that the
original community structure of the network was intact (Soy) were
often higher than S, (Table 1). This obviously means that these
algorithms did not found the community structure that maximizes S.
That structure could still be the original one -- which indeed has the
highest S value observed so far in our analyses -- or some alternate
structure, but clearly not any of those found by the algorithms, which
had lower S values. The second reason observed was the presence of
minor changes in community structure that occurred in some net-
works when intercommunity links increased. Thus, the exact original
structure of the network was not present anymore. This was deduced
from the fact that S, values were sometimes slightly higher than
Sorig both in the LFR benchmarks with pp = 0.6 - 0.7 and the RC
benchmarks with R = 10 - 40% (Table 1). These results suggested
that the algorithms obtained optimal partitions, but they were a bit
different from the original ones. To establish that fact, we examined
the 23 cases where Sy, > Soyig in the RC benchmarks with R = 10%.
We found that the partitions with S, values generally differed from
the original structures in one of the smallest communities having lost
single units (Supplementary Table 1; see example in Figure 4).
Significantly, in those 23 networks we always found just one partition
With Sax > Sorig and several algorithms often recovered exactly that
same partition (Supplementary Table 1). All these results indicate
that real, small changes in community structure occurred in those
networks, suggesting that the partitions with S;,,.c > Soyig values were
indeed optimal. From the data in Table 1, we also obtain an indirect
validation of our decision of using the LFR benchmarks with p < 0.7
and the RC benchmarks with R = 50% to evaluate algorithm per-
formance. As shown in that Table, up to those limits, the S,,.x and
Sorig Values are not significantly different, while, beyond those limits,
very significant differences are found. This means that the original
structures, or structures almost identical to them, were indeed

Figure 4 | When VI and Surprise maximum values do not coincide, the
difference is often due to minimal changes in the community structure of
the network. This is an example from the RC benchmark where S.,.x >
Sorig (see text). a): original structure. b): after R = 10% has been applied.
Smax 1s obtained when a single unit (square) is classified as being isolated
from its original 4-nodes community (highlighted). As shown in panel b),
the critical unit has become almost fully separated from the rest of the
nodes in its original community, only one link remains, while it has been
connected to many nodes in other communities.

Table 1 | Average Serigand Sax values in the LFR and RC benchmarks. Statistical significance (p) was estimated using a two-tailed Student t
test. ns: non-significant differences. In italics, the benchmarks containing quasi-random networks, discarded for the main analyses
(summarized in Figures 2 and 3), but included in the analyses shown in Figure 5, below

LFR benchmark

3] Sorig Smux P
0.1 99065.69 + 111.50 99065.69 = 111.50 ns

0.2 82631.18 = 93.92 82631.18 £ 93.92 ns

0.3 67847.35 = 90.78 67847.35 = 90.78 ns

0.4 54354.47 + 76.71 54354.47 +76.71 ns

0.5 41991.16 = 48.70 41991.16 = 48.70 ns

0.6 30807.18 = 40.09 30807.38 = 40.09 ns

0.7 20563.37 = 26.92 20570.70 = 26.78 ns

0.8 11598.83 + 17.91 10168.11 = 28.15 < 0.0001
0.9 4204.50 = 7.62 8368.94 + 4.21 < 0.0001
RC benchmark

R Sorig Smcx P

10 19012.72 = 67.33 19012.94 + 67.32 ns

20 13505.84 = 34.14 13506.72 = 34.11 ns

30 9298.98 + 11.88 9301.12 +11.88 ns

40 6013.69 = 3.92 6017.58 = 4.09 ns

50 3487.65 = 11.54 3479.92 = 12.99 ns

60 1647.42 = 13.82 1540.76 = 16.79 < 0.0001
70 475.35+ 10.42 899.96 = 7.98 < 0.0001
80 11.84 = 1.52 963.73 £ 9.42 < 0.0001
90 0.00 = 0.00 1003.21 = 9.95 < 0.0001
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Figure 5 | The performance of the algorithms in the limit cases (n = 0.7, R = 50%) and beyond those limits (p = 0.8 - 0.9, R = 60 - 90%) are correlated.
A statistically significant correlation was found, despite the fact that some algorithms, such as Infomap or LPA, totally collapsed. These algorithms
established partitions consisting in a single community, which led to VI = 0 when compared with the original distribution.

present in the networks examined to generate the results summarized
in Figures 2 and 3, which precisely was the only condition required
for a reliable measure of algorithm performance.

The important results described in Figures 2 and 3 indicate that S
maximization should allow determining with a very high precision
the community structure of any network. We have explored whether
this may be the case even when the community structure is very
poorly defined by analyzing the results of our 600 additional net-
works, corresponding to the LFR benchmark with mixing parameter
p=0.8and p = 0.9 (i.e. 200 networks) and the RC benchmark with R
= 60% to R = 90% (400 networks). As indicated above, in these
networks, the VI-based optimality criterion (i.e. VI = 0 means find-
ing the original community structure) cannot be confidently used
(Figure 1; Table 1). However, alternative, unknown structures may
be present that the algorithms should be able to detect. If this is the
case, a reasonable prediction is that the algorithms that are providing
the maximum S values in the conditions that are closest to those
extreme ones (i.e. when p = 0.7 in the LFR benchmarks and R =
50% in the RC benchmarks) should also provide the best S values in
the most extreme networks. Figure 5 shows that there is indeed a
good correlation between the results obtained in the limit cases and
in the most extreme cases. Kendall’s non-parametric correlation
coefficients for the ranks of the algorithms in the limit networks
and in the most extreme networks are significant in both the LFR
and RC benchmarks (1 gg = 0.42; p = 0.007 and trc = 049, p =
0.020, one-tailed tests). This occurs despite some algorithms, as
Infomap or LPA***, totally failing in these quasi-random networks
(Figure 5). UVCluster, RB, CPM and SCluster'>***>** emerge as the
best algorithms to characterize the structure in networks with poorly
defined communities, in good agreement with previous results'*'c.

We decided to perform some final tests to determine whether the
limitations that affect Q when communities are very small may also
affect S. For this purpose, we used two extreme networks of known
structure suggested before'”*>*’. The first one includes just three
communities, one of them very large (400 nodes with average degree
= 100) and the other two much smaller (cliques of 13 nodes). These
three communities are connected by single links (Figure 6a). We
found in this network that the maximum value of Q (EO algorithm,
Q = 0.0836) did not correspond to a partition into the three natural
communities. On the contrary, and as already noted by other authors
in similar cases'”*, Q indicates a mistaken solution, in this case with
five communities. On the other hand, the three communities were
correctly found by multiple algorithms (CPM, Infomap, LPA, RNSC,

Figure 6 | Two extreme networks designed to test the behavior of
Surprise when small communities are present. (a) A network with three
communities (sizes 400, 13, 13). The nodes of the largest community have
an average degree of 100, while the nodes in the two smallest communities
form cliques. The three communities are interconnected by single links, as
shown. (b) Cliques, each one with five nodes, which are connected also by
single links in a way that can be depicted as a ring. The figure shows an
example with eight cliques, but that number was progressively increased to
determine whether the partition with highest S still corresponded to the
one in which each cliques was an independent community.
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SCluster and UV Cluster), and this partition indeed corresponded to
the maximum value of S (1230.73). The second extreme type of
network was precisely the ring of cliques in which the resolution
limit of Q was first described®’, which is schematized in Figure 6b.
Here, a variable number of cliques, each one composed of five units,
were connected to each other by single links to form a ring. We were
interested in determining whether, even if we increase the number of
cliques, a solution in which all cliques are separately detected always
has a better S value than one in which pairs of cliques are put
together. We tested networks of sizes up to 1 million nodes, finding
that the best partition was always the one in which the cliques are
considered independent communities. On the contrary, when Q is
used, the cliques are considered independent units only if the net-
work size is smaller than 150 units.

Discussion

Our results lead to two main conclusions. The first one is that none of
the algorithms currently available generates optimal solutions in all
networks (Figures 2, 3). In fact, there is just a weak correlation of the
algorithm performances in the two standard benchmarks used in this
study. More precisely, we can say that there are some algorithms that
clearly fail in both benchmarks and the rest tend to perform much
better in one of the benchmarks than in the other (see Figure 2). Most
of the best overall performers were already found to be outstanding
in other studies'>'*'¢'%%, The exception is RNSC*’, which had not
been tested in depth before. Among the ones that always perform
poorly are all the algorithms that use modularity as either a global
parameter to maximize or as a way to evaluate partitions. This fact,
together with the demonstration that Q does not correlate with VIin
networks of known structure (Figure 2), and also the good perform-
ance of S, including its ability to cope with extreme networks in
which Q traditionally fails due to its resolution limit (Figure 6),
should definitely deter researchers from using modularity. A strong
corollary is that it is advisable a reevaluation of the hundreds of
papers -- in fields as varied as sociology, ecology, molecular biology
or medicine -- which are based on modularity analyses.

The second, and most important, conclusion is that the commun-
ity structure of a network can be determined by maximizing S, for
example by simply taking the results of as many algorithms as pos-
sible and choosing the one that provides partitions with the highest
Surprise value. In a previous paper, we showed that Surprise can be
used to efficiently evaluate the quality of a partition, behaving much
better than modularity', but the precise performance of the S-

maximization strategy was not determined. Here, we extend those
results, to show that using S maximization leads to an almost perfect
performance. We were very close to solve the correct community
structure of all the networks of these two benchmarks, as is strikingly
demonstrated by the S, results shown in Figure 3b. It is significant
that they were obtained by combining results of the 7 algorithms with
the best average performances, as detailed in Figure 3a: RN, SCluster,
Infomap, CPM, RNSC, UV Cluster and RB. Another important result
is summarized in Figure 5, which indicates that Surprise can also be
used in cases in which the community structure is so blurred as to
become almost random. Given these results, we conclude that
Surprise is the parameter of choice to characterize the community
structure of complex networks. Future works should use Surprise
maximization, instead of modularity maximization or other meth-
ods, to establish that structure.

It is significant that only two algorithms (SCluster and UV Cluster)
use the maximization of Surprise to choose among partitions gener-
ated by consensus hierarchical clustering®*®. This may explain their
good average results (Figures 2, 3, 5). However, no available algo-
rithm performs searches to directly determine the maximal Surprise
values. That type of algorithms could overcome the limitations
detected in all the currently available ones, potentially allowing the
characterization of optimal partitions even in the most difficult net-
works.

We may ask why Surprise is able to evaluate with such efficiency
the quality of a given partition, while modularity cannot. In our
opinion, the difference rests on the fact that modularity is based on
an inappropriate definition of community. Newman and Girvan®'
verbally defined a community as a region of a network in which
the density of links is higher than expected by chance. However,
the precise mathematical model used to deduce the modularity for-
mula implies a definition of community that does not take into
account the number of nodes required to achieve such a high den-
sity’'. By not evaluating the number of nodes, modularity falls prey of
a resolution limit: small communities cannot be detected'”*’. On the
other hand, Surprise analyses often choose as best a solution where
some communities are just isolated units (see examples in Figure 4
and Ref. 14). This happens because the Surprise formula precisely
evaluates not only the number of links, but also the number of nodes
within each community. For instance, incorporating a single poorly
connected unit into a community is often forbidden by the fact that
such incorporation sharply increases the number of potential intra-
community links (all those that might connect the units already

Table 2 | Details of the algorithms used in this study. A summary of the strategies implemented by the algorithms and the corresponding
references are indicated

Name of the Algorithm Strategy used by the algorithm References
Blondel Multilevel modularity maximization [27]
CNM Greedy modularity maximization [31]
CPM Multiresolution Potts model [16]
DM Spectral analysis + modularity maximization [33]

EO Modularity maximization [28]
HAC Maximum Likelihood [43]
Infomap Information compression [34]
LPA Label propagation [39]
MCL Simulated flow [44]
MLGC Multilevel modularity maximization [29]
MSG+VM Greedy modularity maximization + refinement [30]

RB Multiresolution Potts model [35]

RN Multiresolution Potts model [36]
RNSC Neighborhood tabu search [37]
SAVI Optimal prediction for random walks [45]
SCluster Consensus Hierarchical Clustering + Surprise maximization [20]
UVCluster Consensus Hierarchical Clustering + Surprise maximization [20, 38]
Walktrap Random walks + modularity maximization [32]
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present in the community with the new unit) while barely increasing
the number of real intracommunity links. This leads to an S value
much smaller than if the unit is kept separated. It is also significant
that a general problem of modularity maximization and other related
algorithms -- as those based on Potts models with multiresolution
parameters -- is that they cannot find a perfect equilibrium between
merging and splitting communities'”*>*. In these methods, each
community is evaluated independently, one at a time. The global
value to be maximized is the sum of the qualities of the individual
communities. However, in complex networks with communities of
very different sizes, it may be often impossible to find a single rule
(even using a tunable parameter, as in these multiresolution meth-
ods) to split some communities while keeping intact the rest”.
Surprise analyses are not affected by this problem, because com-
munities are not defined independently, one by one, but emerge as
regions of nodes statistically enriched in links, according to the gen-
eral features (i.e. the total number of nodes and links) of the whole
network.

Methods

We searched the literature to select the best community detection algorithms avail-
able to analyze networks with unweighted, undirected links. Our final results are
based on 18 of them (summarized in Table 2). Algorithms known to behave poorly in
similar benchmarks or specifically designed to characterize communities with over-
lapping nodes were discarded. Some other algorithms that seemed interesting but we
were unable to test for diverse reasons (e.g. they were not provided by the authors, did
not complete the benchmarks, etc.) are detailed in Supplementary Table 2. We per-
formed extensive tests with these selected algorithms, using their default parameters,
in two very different benchmarks. They were chosen both difficult and very dissim-
ilar, with the idea that the results could be general enough as to be extrapolated to
networks of unknown structure. The first was a standard LFR benchmark already
used in other studies that compared algorithms'>~'*"”. It is composed of networks with
5000 nodes, structured in small communities with 10-50 nodes. The distribution of
node degrees and community sizes were generated according to power laws with
exponents —2 and — 1, respectively. The sizes of the communities in the networks of
this benchmark have average Pielou’s indexes*' with a value of 0.98. This index is
equal to 1 when all communities are of the same size. The chief difficulty of this
benchmark thus lies on the presence of many small communities. The second
benchmark was one of the Relaxed Caveman (RC) type, very similar to the ones used
in our previous works'*'®. The networks in this RC benchmark have 512 units and 16
communities, with sizes defined according to a broken-stick model to obtain an
average Pielou’s index = 0.75. This makes this benchmark very difficult, given that it
consists of networks with communities of very different sizes, some of them very
small (see e.g. Figure 4). It was not convenient to our purposes to use larger RC
benchmarks given that the total number of links in these networks quickly grows
when the number of nodes is increased and many algorithms become too slow.

These two benchmarks are “open”, meaning that they have a tunable parameter
that, when increased, makes the network community structure to become less and less
obvious until it shifts towards a totally unknown structure, potentially very different
from the original one and close to random'"'*!***, This parameter increases intra-
community links and lowers the number of intercommunity links. In the case of the
LFR benchmarks, the “mixing parameter”, y, indicates the fraction of links con-
necting each node of a community with nodes outside of the community''. For the RC
benchmarks, we defined Rewiring (R) as the percentage of links that is randomly
shuffled among units. Thus, R = 10% means that 10 per cent of the links were first
randomly removed and then added again, to link randomly chosen nodes.

Variation of information (VI)** was used to measure the agreement between the
original community structure present in the network and the structure deduced by
each algorithm. The advantages of using VI have been discussed in our previous
works'*'®. A perfect agreement with a known structure will provide a value of VI = 0.
In addition, two global quality functions, Newman and Girvan’s modularity (Q)® and
Surprise (S)'*'%, (see Formula [1]), were also used to evaluate the results. The values of
Sand Q for the partitions proposed by each algorithm were calculated and then all the
values were used to determine the correlations of S and Q with VI and to establish
these maximum values of S.
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