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Abstract: Container-based virtualization is becoming a de facto way to build and deploy applications
because of its simplicity and convenience. Kubernetes is a well-known open-source project that
provides an orchestration platform for containerized applications. An application in Kubernetes
can contain multiple replicas to achieve high scalability and availability. Stateless applications have
no requirement for persistent storage; however, stateful applications require persistent storage for
each replica. Therefore, stateful applications usually require a strong consistency of data among
replicas. To achieve this, the application often relies on a leader, which is responsible for maintaining
consistency and coordinating tasks among replicas. This leads to a problem that the leader often
has heavy loads due to its inherent design. In a Kubernetes cluster, having the leaders of multiple
applications concentrated in a specific node may become a bottleneck within the system. In this
paper, we propose a leader election algorithm that overcomes the bottleneck problem by evenly
distributing the leaders throughout nodes in the cluster. We also conduct experiments to prove the
correctness and effectiveness of our leader election algorithm compared with a default algorithm
in Kubernetes.

Keywords: containers; Kubernetes; leader election; load balancing; stateful

1. Introduction

Recently, container-based virtualization has emerged as a key technology to deploy
applications in Cloud computing [1]. Unlike traditional virtual machines [2], a container
runs at the software level within a host machine and shares the kernel with the host
operating system [3]. It consumes fewer resources than the traditional virtualization
method because it does not consist of an entire operating system; only the application and
its dependencies are bundled into a single package. These features make containers more
efficient in the deployment and scalability of applications.

In a large-scale system, it is important to have an orchestration platform to manage
the container deployment. Kubernetes [4] is the most popular orchestration platform for
container-based applications. It provides several powerful functions, such as automated
application deployment, resource management, scaling, and load balancing. In a Kuber-
netes cluster, the application, which contains several replicas, is generally categorized as
either stateless or stateful [5]. A stateless application has no persistent storage associated
with it, whereas a stateful application requires a persistent datastore. This means that each
replica in the stateful application should have its own persistent datastore. Therefore, it
is important to maintain consistency among these distributed data stores of the stateful
application. This consistency problem can be handled using a leader-based consistency
maintenance mechanism in which an elected leader is responsible for maintaining con-
sistency and coordinating tasks among replicas. Kubernetes provides a leader election
algorithm, which is implemented by leveraging existing components in Kubernetes, to
facilitate the process of using leader election in a Kubernetes cluster [6]. In the leader-based
mechanism, the leader solely handles all the data update requests; therefore, the leader
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replica consumes a load that is heavier than that consumed by other replicas owing to the
inherent design of the mechanism.

In this paper, we target a scenario in which the Kubernetes cluster acts as a Fog com-
puting infrastructure, and several stateful applications that use a leader-based mechanism
are deployed in the infrastructure. If the leaders of these applications are concentrated on a
specific node, it can cause a problem wherein user requests also concentrate on a single
node, possibly resulting in a bottleneck within the system. Please note that the preliminary
version of this paper [7] proved that the default leader algorithm in Kubernetes does not
consider such leader concentration problem that results in a significant performance reduc-
tion. Therefore, to improve the performance of the system, it is highly required to balance
the number of leaders among nodes in the cluster. In this paper, we propose a balanced
leader distribution (BLD) algorithm for the leader election process of stateful applications
in Kubernetes clusters. The BLD algorithm improves the default leader election algorithm
in Kubernetes by evenly distributing leaders throughout the nodes, thereby balancing the
workload among nodes in the cluster. Through experimental evaluations, we verified the
correctness and effectiveness of the BLD algorithm in Kubernetes clusters. Consequently,
the main contributions of the BLD algorithm can be summarized as follows:

• It facilitates the use of the leader election process, so users can easily deploy the leader
election for application in the Kubernetes cluster.

• It balances the number of leaders throughout all the nodes in the cluster, so the system
performance can be improved.

The remainder of this paper is organized as follows. Section 2 presents related work.
Section 3 provides an overview of the Kubernetes architecture and the leader-based consis-
tency maintenance mechanism. Section 4 describes a default leader election algorithm in
Kubernetes, and the leader concentration problem. Section 5 presents the proposed bal-
anced leader distribution algorithm. Sections 6 and 7 present the performance evaluation
and discussion, respectively. Finally, Section 8 presents the conclusions.

2. Related Work

Recently, there have been several studies based on Kubernetes. The paper [8] pro-
posed a prediction model to improve the performance of auto-scaling in Kubernetes. This
model combines empirical modal decomposition with an autoregressive integrated moving
average model to predict the load of the pod. The goal is to expand the capacity of the ap-
plication before the peak load by adjusting the number of pods in advance according to the
prediction result. In [9], the authors investigate the horizontal pod autoscaler (HPA), which
is one of the most important features in Kubernetes. They conduct various experiments
to deeply analyze HPA based on several metrics, such as Kubernetes resource metrics
(e.g., CPU and memory usage) and Prometheus custom metrics (e.g., the average arrival
rate of HTTP requests) [10]. Based on the analysis, researchers and developers can gain
a deep insight on optimizing the performance of HPA in Kubernetes. In [11], a monitor-
ing platform was presented for dynamic resource provisioning based on Kubernetes. It
collects the system resource use (CPU, RAM) and application quality-of-service metrics
(response time) by using several open-source applications, such as Heapster and Apache
JMeter [12]. Based on these data, it automatically analyzes and scales the application
according to the resource provisioning strategy. The paper [13] presented a Reference
Net-based performance and management model for Kubernetes. The goal is to identify
the effects of the different interference sources (e.g., CPU usage and network usage) on the
applications; therefore, the developer can consider such interference sources and improve
the application’s performance. In [14], a component in Kubernetes was used to build a
protocol, named DORADO (orDering OveR shAreD memOry), which coordinates requests
in Kubernetes. A leader is elected from among the replicas of an application. To coordinate
the requests accessing the application, only the leader has the authority to define orders
for handling requests, and all the replicas must execute the requests following this order.
In [15], the authors proposed a load balancer for Kubernetes. The proposed load balancer
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can consider the running status of servers and applications (e.g., CPU and network status)
to distribute requests. The users can configure the load balancing rules based on several
metrics, including CPU, memory usage, and network IO. Subsequently, the server running
status is collected, and the real-time load of each server is calculated to find a back-end
server that can forward the requests. The paper [16] proposed a solution that allows for
automatically redirecting client requests to healthy pods. A state controller was imple-
mented to integrate with Kubernetes, and it can determine the status of a pod and assign
the “active” or “standby” label to the pod. The client requests are redirected to the pods
that have the “active” label, and the messages containing the state data are replicated
to the standby pods. The paper [17,18] proposed a network-aware scheduling approach
that is extended from the default scheduling mechanism in Kubernetes. This approach
is used to deploy container-based applications in a smart city. In the Fog computing en-
vironment, the paper [19] presented a framework that is based on Kubernetes. It collects
the network traffic status to provide elastic resource provisioning of the container-based
application among geographically distributed Fog nodes in real time. Additionally, a few
experiments were conducted to evaluate the efficiency of Kubernetes on NFV management
and orchestration [20] or on deploying microservice-based applications [21].

Regarding the consensus problem in distributed systems, many studies have been
conducted over several decades. Some well-known algorithms have been applied to
ensure a consensus of data among replicas in distributed systems. Paxos [22], proposed
by Lamport, is one of the most famous distributed consensus algorithms. One or more
proposed values are proposed to Paxos, and the consensus is achieved when a majority
of the replicas accept one of the proposed values. Raft [23] is a consensus algorithm that
applies specific techniques that make it more understandable than Paxos. It separates the
consensus problem into relatively independent subproblems, such as leader election and log
replication. In OpenDaylight (ODL), which is an open source project for Software Defined
Networking (SDN) controller, the datastore is distributed into shards; and these shards can
be located in any node of the cluster [24]. The Raft algorithm was implemented to maintain
the consistency in these distributed datastores. Paper [25] integrated Raft consensus
algorithm with Kubernetes. They present evaluations of the Raft algorithm running on the
physical machine and on containers managed by Kubernetes. The results showed that the
throughput when executing the Raft algorithm on Kubernetes approximately was 17.4%
lower than that when running directly on a physical machine; however, it is acceptable
because of the many powerful features offered by Kubernetes. Paper [26] presents a solution
for replica stateful containers management in Kubernetes. A coordination layer that uses
Raft as a consensus algorithm was implemented. A leader replica was determined from
among the replicas of an application, and the write operations were performed by only
the leader replica. However, the proposed approach is complicated because it requires
developers to integrate the Raft algorithm into Kubernetes and implement a firewall to
redirect the requests to the leader replica.

To simplify the use of the leader election process, a leader election algorithm was
implemented by leveraging existing information and components in Kubernetes [6]. How-
ever, as demonstrated in [7], this leader election algorithm does not consider the leader
concentration problem in a specific node of the cluster, which results in the bottleneck prob-
lem and decreases the system performance. In this paper, a new leader election algorithm
is proposed to solve this problem by attempting to balance the number of leaders among
nodes in the Kubernetes cluster.

3. Overview of Kubernetes

This section presents an overview of the Kubernetes architecture and a leader-based
consistency maintenance mechanism for stateful applications in the Kubernetes cluster.
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3.1. Kubernetes Architecture

Kubernetes is a well-known open-source platform for automating the deployment,
scaling, and management of container-based applications. A pod, which is the smallest
unit in Kubernetes, represents a single instance of an application. Each pod contains a
set of one or more containers, and these containers are tightly coupled, use the same IP
and data storage. The architecture of Kubernetes is shown in Figure 1. A Kubernetes
cluster usually has one or more master nodes and several worker nodes. The master
node is the control plane that is responsible for managing and controlling the cluster. It
contains four main components: etcd, kube-apiserver, kube-scheduler, and kube-controller [4].
The etcd is a datastore that is used to store the configuration and the state of the cluster.
The kube-apiserver is the front end of the Kubernetes control plane. In other words, the
user or management request needs to communicate with the kube-apiserver to interact
with the Kubernetes cluster. The kube-scheduler watches unscheduled pods and assigns
them to a node to run on based on multiple factors, such as resource constraints, affinity,
and anti-affinity rules. The kube-controller continuously watches the state of the cluster to
maintain the desired state. For example, it ensures the correct number of running replicas
of an application according to the desired configuration.

Worker Node 1 

App A

Master Node

kubectl (user commands)

etcd

NortPort

kube-
scheduler

kube-apiserver

kube-proxy kubelet kubelet kube-proxy

NortPort

Container

Pod

Clients

kube-
controller

Worker Node 2

NodeIP1 NodeIP2

dockerdocker

App AApp A App A App A

Figure 1. Kubernetes architecture.

The pods are scheduled and orchestrated to run on the worker nodes that consist of
three main components: kubelet, kube-proxy, and container runtime [4]. Kubelet ensures that
the pods are running and healthy (e.g., by restarting failed pods). It reports the status of
pods and node to the api-server and receives commands from the control plane. Kube-proxy
is responsible for maintaining the network rules, which allow communication with the pods
from inside and outside of the cluster. Container runtime (e.g., Docker [27] or containerd [28])
pulls the container image from a container registry and deploys the container based on
that image. In Kubernetes, a pod can be created and destroyed frequently, and its IP
address is updated after a restart; therefore, it is difficult to access an application using
the pod’s IP address. Kubernetes provides a Service that is an abstract layer enabling
network access to a set of pods. The pods are selected based on their label, and all pods
belonging to a Service have the same label. The Service is assigned an unchanging IP
address (ClusterIP), and the requests accessing the Service are load-balanced among the
pods. The load balancing policy depends on the proxy mode of kube-proxy. By default,
the userspace mode uses a round-robin algorithm to select the pods, whereas the iptable
mode selects pods randomly. The IP Virtual Server can load balance traffic to the pods
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in several ways, such as destination hashing, source hashing, and round-robin methods.
The ClusterIP is reachable only from within the cluster. To expose the application outside
the cluster, the NodePort and LoadBalancer Service can be used. The NodePort Service
exposes the application on the node’s IP address at a static port (NodePort). As shown in
Figure 1, clients from outside the cluster can access to the NodePort Service by using the
NodeIP:NodePort address. The traffic accessing the NodePort Service is then forwarded
to a backend pod according to the configuration in kube-proxy. The LoadBalancer Service
exposes the application externally using a cloud provider that provides a public IP address,
and the load balancing policy depends on the cloud provider implementation.

3.2. Leader-Based Consistency Maintenance Mechanism

Stateful applications are services that require saving data to persistent data storage,
such as a database or key-value store, for use by servers, clients, and other applications [29].
The pods in Kubernetes are ephemeral in nature and do not persist data, so the data in a
pod is lost once it is destroyed or restarted. To support persistent data storage, Kubernetes
provides a PersistentVolume (PV) and a PersistentVolumeClaim (PVC) object. A PV is a
persistent storage that has an independent lifecycle with the pod. A PVC defines several
criteria (e.g., capacity and access mode) to choose the persistent storage, so it is used to
claim a persistent storage that satisfies the criteria. Therefore, each pod replica of the
stateful application can create its own persistent data storage by using the PVC. This PVC
binds the pod to a PV that satisfies the criteria defined in the PVC.

In Kubernetes, one application can have multiple replicas to provide high availability
and performance. For example, throughput and latency can be improved by using the load
balancing feature in Kubernetes, which distributes the incoming requests among replicas
of the application. Because each replica of the stateful application has its own data storage,
deploying a set of replicas for the stateful application requires an approach to handle the
inconsistency problem among these distributed databases. To handle this problem in the
Kubernetes cluster, the paper [7] introduced a leader-based consistency mechanism, as
shown in Figure 2. In this mechanism, a replica is elected as a leader, and the other replicas
run as the followers. Read operations that clients require to read data from the storage
is handled by both the leader and follower. However, only the leader is responsible for
handling write operations that clients write the data into the storage. Thus, if a request for
a write operation comes to a follower, it must be redirected and handled by the leader.

App A

Pod A2

Clients

Leader election container

write request write request read request

redirect write 

request

Worker Node Worker Node

Query current 

leader

L
Query current 

leader

App A

Pod A1

F

PV A1 PV A2

ServiceMain container

L: leader F: follower

Figure 2. Leader-based consistency model [7].

To determine the leader among the pod replicas, each pod consists of two containers:
a main container and a leader election container. The main container is responsible for
handling incoming requests from clients, whereas the leader election container is responsi-
ble for the leader election process among replicas of the application. The leader election
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container provides a simple web server that returns the name of the current leader; thus,
the main container can easily determine its role (leader or follower) by querying this web
server in the leader election container.

4. Default Leader Election Algorithm in Kubernetes

This section presents the default leader election algorithm in Kubernetes and discusses
the leader concentration problem of the default algorithm.

4.1. Default Leader Election Algorithm in Kubernetes

To use the leader-based consistency maintenance mechanism in a distributed system,
an approach to elect a leader among the replicas is essential. Implementing leader election
often requires deploying either algorithms or software such as Raft [23], Zookeeper [30], or
Consul [31]. However, to avoid high implementation costs and facilitate the use of leader
election in the Kubernetes cluster, a simple leader election algorithm was implemented by
leveraging existing components in Kubernetes [6].

Typically, in a leader election algorithm, a set of candidates compete to become a
leader in several ways. For example, the first one who successfully declares itself as a
leader or the candidate who receives a majority of votes from other candidates can become
a leader. Once the leader election process is completed, the leader continuously sends
“heartbeats” to retain the leadership. If the current leader fails for some reason, the other
candidates can be aware of that status and start a new election process to become the leader.
The leader election algorithm in Kubernetes uses an annotation in the Endpoint object (EP)
to hold a leader record. An example of the leader record in the EP is shown in Figure 3.
The leader record includes the name of the leader (holderIdentity), the time when the leader
renews the leader record in EP (renewTime), and the timeout duration (leaseDurationSeconds)
that the follower has to wait to acquire the leadership.

 Endpoint
Name: epA

Annotations: 

          holderIdentity: pod_A1, leaseDurationSeconds: 10,                           

renewTime: 2020-09-19T01:09:23Z

Figure 3. Example of leader record in the EP.

The procedure of the default leader election algorithm is presented in Figure 4. Once a
replica starts, it runs as a follower and periodically checks the leader record in the EP to try
to acquire the leadership. Please note that each replica maintains an observer record that
contains the leader record copied from the EP and the observer time when the observer
record was updated. First, the follower checks for the existence of an EP; if an EP has not
yet been created, it creates a new EP and updates the leader record in that EP to become
a new leader. If the EP did exist, the follower obtains the leader record from the EP and
compares it with its own observer record to determine whether the leader record was
renewed or not. If the leader record was renewed (the leader record in the EP differs from
the leader record in the observer record), it updates the observer record and remains in the
follower state. Otherwise, it checks the timeout by calculating the total elapsed time from
the latest observation (when the observer record was updated) to the current time. If this
value exceeds the predetermined timeout, the candidate updates the leader record in the
EP to become a new leader. Otherwise, it remains in the follower state and periodically
tries to acquire the leadership by checking the EP. The leader also has to periodically renew
the leader record by updating the renewTime in the EP to retain its leadership.
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Follower EP exists?

 Has leader record 
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Leader
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NO

YES

YES

NO

Get leader record in EP and 
compare with its observer 
record

Renew leader record in EP to 
retain the leadership

Create a new EP

YES

NO

Figure 4. Procedure of the default leader election algorithm.

4.2. Leader Concentration Problem

We consider a scenario in which several stateful applications are deployed in the
Kubernetes cluster as a Fog computing infrastructure. Each application has multiple
pod replicas, and the application employs the leader-based mechanism for maintaining
consistency among data storage of the replicas. It is obvious that the workload of the leader
is higher than that of the followers because all requests for the write operation are handled
only by the leader. Therefore, if the leaders of these applications are concentrated on a
specific node, it may lead to a workload imbalance problem among worker nodes–one node
with many leaders has a heavier workload than other nodes do. Eventually, it can cause a
bottleneck in the cluster, which results in a significant decrease in the system performance,
as already discussed by [7,24]. An example of the leader distribution is shown in Figure 5.
There are three worker nodes, and five applications are deployed in this cluster. Figure 5a
presents a concentrated leader distribution (concentrated leaders) with five leaders in node
1, while Figure 5b presents a balanced leader distribution (balanced leaders) with 2, 2, and
1 leaders in node 1, node 2, and node 3, respectively. To prove the workload imbalance
problem, four clients simultaneously send write requests to each application over a period
of time. Figure 6 shows the average CPU use and standard deviation of each worker node
in concentrated leaders and balanced leaders. In the case of concentrated leaders, the
average of CPU use in node 1 is approximately 70%, while that in node 2 and node 3 is
only approximately 20%. In the case of balanced leaders, we can observe a balanced CPU
use among nodes, which is approximately 50% in both node 1 and 2 and approximately
40% in node 3. Therefore, it is clear that the workload imbalance problem can occur when
five leaders are concentrated in a specific node. This hinders the ability to fully exploit
the computational and networking resources of the distributed system. Meanwhile, the
workload can be balanced among worker nodes in the cluster when the leader distribution
is balanced.

Moreover, it is important to note that although the default leader election algorithm in
Kubernetes can facilitate the use of leader election in the Kubernetes cluster, it does not
consider where the leader is running. Consequently, it may lead to a leader concentration
problem on a specific node, resulting in a significant decrease in the system performance.
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Figure 5. Example of leader distribution: (a) concentrated leaders, (b) balanced leaders.
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Figure 6. CPU use on each node when clients send write requests.

5. Balanced Leader Distribution Algorithm

In this section, we present the BLD algorithm that overcomes the weakness of the
default leader election algorithm in Kubernetes. The proposed algorithm considers the
number of leaders in the nodes to achieve a balanced leader distribution among nodes
in the Kubernetes cluster. To store the information of the number of leaders on each
node, we newly define an Endpoint object named Leader Management EP (LMEP), as
shown in Figure 7. The number of leaders on the node is updated by the leader of the
application. Once a new leader is determined, it realizes the node where it is running by
using Kubernetes API and updates the leader information in LMEP. Using this information,
we can calculate the current total number of leaders in the cluster (Lcluster). The number
of worker nodes (N) can also be retrieved by using Kubernetes API. Let us assume that
the maximum number of leaders on each node is denoted as M; the value of M can be
calculated as M = (Lcluster + 1)/N, to balance the number of leaders on each node. The
balanced leader distribution condition is satisfied if the number of leaders in the node
where the candidate is running is smaller than or equal to M. The overview of the algorithm
is shown in Figure 8. First, the replica frequently checks the leader record in the EP to try to
become a leader (if it is a follower) or to renew the leader record to retain the leadership (if
it is a leader). After satisfying the original conditions of the default algorithm, the follower
obtains the leader information of the cluster from the LMEP and checks the BLD condition
to investigate the status of the leader distribution. It becomes a leader if the BLD condition
is satisfied.
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Figure 7. Example of leader information in the LMEP.

L

Worker Node 1

F

EP

LMEP

EP

F L

check leader 
record

check BLD 
condition

Worker Node 2

Application A Application B

L: Leader F: Follower

Figure 8. Overview procedure of the BLD algorithm.

The detailed procedure of the BLD algorithm is depicted in Figure 9. The replica
pods start as followers, and they race to become a leader by trying to be the first one who
successfully declares itself as a leader in the EP. As in the default algorithm, the candidate
checks the existence of the EP. If the EP has not yet been created, it creates a new one. Then,
the BLD condition is checked. If it satisfies the condition, it updates the leader information
in the LMEP and EP to become a leader. Otherwise, if the EP already existed, steps similar
to the default algorithm are performed—it checks the leader record in EP, updates the
observer record, and checks whether the timeout duration is over. If the timeout has not
expired, it remains as a follower. Otherwise, the candidate checks the BLD condition. If it
satisfies the BLD condition, it updates the information in the LMEP and EP to become a
new leader. If it does not satisfy the BLD condition, it remains as a follower and periodically
tries to acquire leadership by repeating the aforementioned procedure. Similarly, the leader
periodically renews the leader record in the EP to retain its leadership.

Follower EP exists?

 Has leader record 
been renewed?

Update observer record

Leader
Satisfy BLD
condition?

Update leader 
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information in LMEP
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Figure 9. Detailed procedure of the BLD algorithm.
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6. Performance Evaluation

In this section, we describe our experimental setup. Then, we compare the evaluation
results of the leader distribution and leader election latency between the default algorithm
and BLD algorithm. Finally, the effects of the leader distribution is analyzed in terms
of throughput.

To evaluate the correctness and effectiveness of the BLD algorithm, we set up a
Kubernetes cluster that contains one master node and three worker nodes, using Kubernetes
version 1.14.10 and Docker version 18.09.6. The master node has 4 GB of RAM and four
CPU cores, and the three worker nodes have 3 GB of RAM and four CPU cores. Several
stateful applications are deployed in the cluster. The Hey program [32] is used to create
and send requests to the applications.

6.1. Leader Distribution and Leader Election Latency

To evaluate the leader distribution and the leader election latency, we deploy a dif-
ferent number of stateful applications that use the leader-based mechanism to maintain
consistency among replicas of the application. Each application is set to have five replicas,
and the experiment is repeated 100 times. Figure 10 shows a comparison of the leader dis-
tribution among the worker nodes between using the default algorithm and using the BLD
algorithm. The number of leaders in each node is sorted in a descending order; therefore,
highest, medium, and lowest indicate the highest, medium, and lowest number of leaders
concentrated in one node. For three applications, the leader distribution is 2.2:0.68:0.12
using the default algorithm, whereas it is 1:1:1 using the BLD algorithm. For five and seven
applications, the leader distribution in the default algorithm is unbalanced among worker
nodes, with 2.94:1.44:0.62 and 4.42:1.88:0.7, respectively. The leader distribution in the BLD
algorithm is balanced among worker nodes, with 2:2:1 and 3:2.04:1.96 for five and seven
applications, respectively. The standard deviation, minimum and maximum number of
leaders in a node are presented in Table 1. We can see that a high number of leaders can
be concentrated in a specific node with the default algorithm. For example, all leaders of
the applications may be concentrated in one node in case the number of applications are
three and five. Therefore, it is clear that the leader distribution among nodes is balanced
when the BLD algorithm is applied, whereas it is unpredictable when the default algorithm
is used.
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Figure 10. Leader distribution among nodes in the cluster: (a) 3 applications; (b) 5 applications; (c) 7 applications.

Table 1. Statistics of leader distribution.

Algorithm Default BLD

Number of Applications 3 5 7 3 5 7

Std. dev. 1.01 1.2 1.79 0 0.47 0.5
Minimum value 0 0 0 1 1 2
Maximum value 3 5 6 1 2 3
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Figure 11 shows an analysis of the latency of the leader election process, measured
from when a new election process starts until a candidate becomes a leader. The average
leader election latency in the case of the default algorithm is approximately 12 ms for
three, five, and seven applications. This is because the default algorithm does not consider
where the leader is; therefore, the first replica that starts the election process is highly
possible to become a leader. The average latency for the leader election process in the case
of the BLD algorithm is slightly higher than in the default algorithm, approximately 34 ms
for three, five, and seven applications. Besides, the variation and the maximum value
of the leader election latency in the case of the BLD algorithm are also higher than that
in the default algorithm. This is because the BLD algorithm requires additional rounds
of leader election in case the BLD condition is not satisfied. Table 2 presents the mean,
standard deviation of the results, and maximum and minimum obtained values for the
leader election process. Clearly, they are higher than the values obtained using the default
algorithm; however, it can be considered to be a trade-off to improve throughput, which is
shown in the next subsection.
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Figure 11. Leader election latency.

Table 2. Statistics of leader election latency.

Algorithm Default BLD

Number of Applications 3 5 7 3 5 7

Mean value (ms) 11.91 12.44 11.92 34.46 33.41 33.77
Std. dev. (ms) 4.65 5.71 5 10.51 10.32 10.93

Minimum value (ms) 5 5 5 13 13 12
Maximum value (ms) 30 37 52 64 67 87

6.2. Effect of Leader Distribution in Kubernetes Cluster

Here, we analyze the throughput according to the replica’s role and the leader dis-
tribution. The number of concurrent clients accessing each application is increased from
1 to 16. The requests are sent to the applications for 60 s. To evaluate the throughput of
read and write operation based on the replica’s role, one application with five replicas is
deployed. The requests are sent directly to the follower or the leader of the application.
The evaluation results are shown in Figure 12. For the read operation, the leader and
the follower have a similar trend with increasing concurrent requests, because the read
operation can be handled immediately by the leader or follower. The throughput for the
write operation handled by a follower is significantly lower than that handled by a leader.
For example, the throughput for the write operation in the case of the follower is 161.55
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and 1330.7 reqs/s with 1 and 16 concurrent clients, respectively; whereas, in the case of
the leader, it is 1037.13 and 4136.76 reqs/s, respectively. This is because the write requests
are handled only by the leader; if a request comes to a follower, it will be redirected to the
leader. Please note that the write operation requires more computational resources and
time to handle the requests than the read operation does; this is why the throughput of the
write operation is considerably lower than that of the read operation. In the case of one
application, we can conclude that the throughput of the write operation can be significantly
improved if the requests are handled directly by the leader, and the write operation takes
more time and resources to handle than the read operation does.
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Figure 12. Throughput of one application according to replica’s role and read/write operation.

To analyze the importance of balanced leader distribution, we evaluate the throughput
between two leader distribution scenarios: “concentrated leaders” and “balanced leaders”,
which are representation results for the default leader election algorithm and the BLD
algorithm, respectively. Five applications, each of which contains five replicas, are deployed
in the cluster. In case of “concentrated leaders”, all the leaders of these applications are
assumed to be concentrated in one specific node. In case of “balanced leaders”, the number
of leaders in each node is balanced, such that three worker nodes have 2:2:1 leaders for
five applications. In this experiment, we use the NodePort service in Kubernetes to expose
the service of the application to the outside cluster. The requests accessing the application
through the NodePort are distributed among replicas of the application using the iptables
proxy mode. Figure 13 shows the cumulative throughput of five applications according
to the leader distribution scenarios and the request operations (read, write, and smart
write operation). For the read and write operation, the requests access the application
through a NodePort service, and they can be redirected to either a follower or a leader. The
smart write operation is defined as forwarding the write requests directly to the leader of
the application to avoid the overhead of forwarding requests to the leader in the leader-
based consistency maintenance mechanism. Figure 13a shows that the throughput for the
read operation in both “concentrated leaders” and “balanced leaders” has a similar trend
because requests are handled immediately by any replica. Meanwhile, the throughput for
the write operation in the case of “balanced leaders” is significantly higher than that in the
case of “concentrated leaders”, as shown in Figure 13b. The throughput obtained with 1
client in the case of “balanced leaders” is approximately 20.16% higher than that in the case
of “concentrated leaders”. It tends to become worse as the number of concurrent clients
increases. For example, the throughput in the case of “balanced leaders” is approximately
35%, 52.03% higher than that in the case of “concentrated leaders” with 8 and 16 concurrent
clients, respectively. In the case of “concentrated leaders”, because all the write requests
are handled at one specific node and that node reached its maximum capacity. By contrast,
in case of “ balanced leaders”, the write requests are distributed throughout the nodes
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in the cluster; therefore, the throughput keeps increasing as the number of concurrent
requests increases. Figure 13c shows the throughput for the smart write operation; the
“balanced leaders” case shows a significant improvement over “concentrated leaders”
in terms of throughput. For example, the throughput in the “balanced leaders” case is
approximately 21.93% higher than that in the “concentrated leaders” case with 1 concurrent
client, and it is approximately 63.7% with 16 concurrent clients. Notably, the write request
is forwarded directly to the leader in the smart write operation, whereas in the normal
write operation, it is randomly forwarded to the replicas regardless of their roles. Therefore,
the throughput obtained in the smart write operation is significantly higher than that
obtained in the normal write operation. In the case of “balanced leaders”, the throughput
obtained with 1 and 16 concurrent requests in the normal write operation is 1399.76 and
3347.77 reqs/s, respectively; whereas it is 3196.41 and 7640.08 reqs/s, respectively, in the
smart write operation. Overall, we can conclude that balancing the leaders of multiple
stateful applications among nodes significantly improves the performance, and it can be
further enhanced by implementing a smart network service that can forward requests to
an appropriate replica according to the replica’s role.

concentrated balanced
(a)

0

2500

5000

7500

10,000

12,500

15,000

17,500

Th
ro

ug
hp

ut
 (r

eq
s/

se
c)

1 clients
2 clients
4 clients
8 clients
16 clients

concentrated balanced
(b)

0

500

1000

1500

2000

2500

3000

3500

Th
ro

ug
hp

ut
 (r

eq
s/

se
c)

1 clients
2 clients
4 clients
8 clients
16 clients

concentrated balanced
(c)

0

1000

2000

3000

4000

5000

6000

7000

8000

Th
ro

ug
hp

ut
 (r

eq
s/

se
c)

1 clients
2 clients
4 clients
8 clients
16 clients

Figure 13. Cumulative throughput of multiple applications according to leader distribution: (a) Read operation. (b) Write
operation. (c) Smart write operation.

7. Discussion

Throughout the performance evaluations, we have proved that the proposed BLD
algorithm evenly distributes multiple leaders to nodes in the cluster and enhances the
throughput of the cluster by balancing the workload of nodes. However, it is worth
discussing the limitation of the BLD algorithm. As we have discussed in Section 6.1, the
BLD algorithm causes a relatively high leader election latency compared to the default
algorithm due to the design of the BLD condition check. The absence of a leader can
lead to temporal service interruption. Moreover, although the leader election latency of
the BLD algorithm in our experimental environment is not significantly high, there is a
possibility that it may increase as the number of replicas and applications increase. Since
the absence of a leader may lead to temporal service interruption, in the future works,
we will investigate the effect of the leader election latency in large-scale infrastructures to
improve both throughput and availability of the service.

It is also interesting to note that the throughput can be improved significantly in case
the smart write operation is applied. Hence, implementing a network service in Kubernetes
that is aware of the role of a replica and can forward requests to an appropriate replica
according to its role is worth considering in future works.

8. Conclusions

In this paper, we described the Kubernetes architecture and the leader-based mecha-
nism for maintaining consistent data storage among replicas of a stateful application in
the Kubernetes cluster. Because the leader concentration problem can cause unbalanced
resource usage among nodes, the full exploitation of the computational resources of the
cluster is hindered. Therefore, we proposed a leader election algorithm that not only
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facilitates the use of leader election in Kubernetes but also evenly distributes the leaders
throughout all the nodes in the cluster. The evaluation results showed that the proposed
BLD algorithm can effectively balance the number of leaders among all nodes in the cluster.
The effectiveness of the BLD algorithm was proved through a performance evaluation with
multiple applications, demonstrating that the throughput can be significantly improved by
distributing the number of leaders evenly throughout the nodes. There have been more
and more systems using the leader-based mechanism, and we expect that the idea of a
balanced leader distribution throughout the nodes is widely applied to leader election
algorithm design, to maximize the performance of the cluster.
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