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Transient marine euxinia at the end of the terminal
Cryogenian glaciation
Xianguo Lang 1,2, Bing Shen1, Yongbo Peng3,4, Shuhai Xiao 5, Chuanming Zhou6, Huiming Bao1,3,

Alan Jay Kaufman 7, Kangjun Huang8, Peter W. Crockford9,10,11, Yonggang Liu 12

Wenbo Tang13 & Haoran Ma1

Termination of the terminal Cryogenian Marinoan snowball Earth glaciation (~650–635Ma)

is associated with the worldwide deposition of a cap carbonate. Modeling studies suggest

that, during and immediately following deglaciation, the ocean may have experienced a rapid

rise in pH and physical stratification followed by oceanic overturn. Testing these predictions

requires the establishment of a high-resolution sequence of events within sedimentary

records. Here we report the conspicuous occurrence of pyrite concretions in the topmost

Nantuo Formation (South China) that was deposited in the Marinoan glacial deposits.

Sedimentary facies and sulfur isotope data indicate pyrite precipitation in the sediments with

H2S diffusing from the overlying sulfidic/euxinic seawater and Fe (II) from diamictite sedi-

ments. These observations suggest a transient but widespread presence of marine euxinia in

an ocean characterized by redox stratification, high bioproductivity, and high-fluxes of sulfate

from chemical weathering before the deposition of the cap carbonate.
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The Sturtian (~717–660Ma) and Marinoan (~650–635Ma)
snowball Earth events in the Cryogenian Period1–5 repre-
sent the most severe pan-glaciation climate experienced

over the past 2 billion years, and possibly over the entire Earth
history2,6,7. Climatic and geochemical models show that the ter-
mination of a snowball Earth glaciation requires a high level of
atmospheric CO2 (pCO2 > 0.2 bar)8–12 in order to overcome
the high albedo from global ice cover. Such a high pCO2 atmo-
sphere will result in a rapid meltdown of glaciers13 and an
extreme greenhouse climate9,10. Rapid deglaciation may lead to
the shutdown of thermohaline circulation and the intensification
of ocean stratification14,15, with warmer and dysoxic freshwater
in the surface ocean overlying cold and anoxic seawater in the
deep13,15.

Such a catastrophic end of a snowball Earth glaciation is
expected to drive drastic perturbations in ocean chemistry16–19.
Globally, sedimentary sequences during deglaciation are mostly
manifested as a cap carbonate sharply overlying glacial
diamictites2,7,20,21. Although the cap carbonate is often assumed
to have been deposited immediately after the onset of deglacia-
tion, a window of time is required to allow atmospheric pCO2

drawndown and seawater alkalinity buildup9,20. This necessarily
means that deglaciation and associated continental weathering
must have started before the initiation of cap carbonate deposi-
tion. This time lag is supported by recent work exploring Mg
isotopes within post-Marinoan sequences20 and may be on the
order of 105 years9.

Because this time lag cannot be resolved using currently
available geochronometric tools, we are forced to carry out high-
resolution analysis of sedimentary sequence in order to test
models about the termination of snowball Earth glaciation22.
Here, we report the occurrence of abundant pyrite concretions
from the topmost Nantuo Formation5,23,24, a sedimentary
sequence deposited during the terminal Cryogenian Marinoan
glaciation in the Yangtze Block of South China (Fig. 1 and Sup-
plementary Fig. 1, see Supplementary Note 1). These pyrite
concretions lie immediately beneath the cap carbonate of the
basal Doushantuo Formation deposited in the Ediacaran Period,
and they present opportunities to investigate the atmospheric,
oceanic, and biological events during the termination of the
Marinoan glaciation.

In this paper, we explore the origin of these pyrite concretions
based on an integrated analysis of sedimentary facies, thin-section
petrography, and multiple sulfur stable isotopes. We show that
there was a transient marine euxinia before the deposition of the
cap carbonate.

Results
Stratigraphic distribution and petrography. Pyrite concretions
are abundantly distributed in the top 0.5–10 m of the Nantuo
Formation (Fig. 2). The concretions include spheroidal-ellipsoidal
nodules and aggregates with irregular outlines (Supplementary
Fig. 2a–g). The pyrite nodules are randomly distributed and
aligned parallel or subparallel to the bedding plane, whereas the
pyrite aggregates are parallel to the bedding plane (Supplemen-
tary Fig. 2c). Individual concretions are isolated from each other,
and there is no connection between nodules or between a nodule
and an aggregate.

The pyrite concretions are present in all studied sections except
those in proximal inner shelf environment of the Yangtze Block
(Figs. 1, 2). Both the size and abundance of pyrite concretions
display depth gradients. In the basinal sections, most pyrite
nodules are 10–30 cm in size (Supplementary Fig. 2), whereas
pyrite aggregates can be >1 m in length and >30 cm in thickness
(Supplementary Fig. 2c). In these settings, pyrite concretions
account for ~5 vol% (ranging from 2 to 10 vol%, n= 5,
Supplementary Table 1) of the concretion-bearing strata. In the
slope depositional environment, most pyrite nodules vary
between 5 and 15 cm in size (Supplementary Fig. 2f), and pyrite
concretions account for 2~5 vol% (average value of 3.1 vol%, n=
5, Supplementary Table 1). In the shallower outer shelf sections,
pyrite concretions occur only sporadically (<0.5 vol%) as small
nodules less than 3 cm in size in gravelly siltstone layers
immediately below the Doushantuo cap carbonate (Supplemen-
tary Fig. 2g). No pyrite concretions are found in the most
proximal inner shelf sections (Fig. 1).

Both the nodules and aggregates are composed of euhedral
pyrite, which normally range from 50 to 500 μm with occasional
occurrences of mega-crystals >1 mm in size (Supplementary
Fig. 3a–d). No framboidal pyrite has been identified using
reflective microscopy (Supplementary Fig. 3d), nor are
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Fig. 1 Paleogeographic map and depositional model of the Yangtze Block. a Paleogeographic map, modified from Jiang et al.21 showing the distribution of
pyrite concretions in the topmost Nantuo Formation. Inset showing the geographic locality of the Yangtze Block. b Depositional model. The height of the
columns indicates the maximum size of pyrite nodules observed in field. 1: Yazhai, 2: Tongle, 3: Silikou, 4: Yangxi, 5: Yuanjia, 6: Huakoushan, 7: Bahuang, 8:
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framboidal cores present in euhedral pyrite under back-scatter
electron microscopy (Supplementary Fig. 3e, f), suggesting that
the euhedral crystals were not derived from overgrowths of
framboidal pyrite. Pyrite nodules are composed of densely packed
euhedral pyrite and interstitial space is filled with fine sands/silts
and/or cemented by silica (Supplementary Fig. 3a–d). Within a
single nodule, there is no rim to core differentiation in either
pyrite content or crystal size. On the other hand, pyrite aggregates
are texturally supported by siliciclasts that are identical to the host
rock in composition, and thus have less (15–30 vol%) pyrite

content than the nodules (40–60 vol%). Pyrite crystals may
contain abundant siliciclastic inclusions (Supplementary Fig. 3),
and small pebbles up to 2 cm in size are observed in some
aggregates and large nodules (Supplementary Fig. 2a and d).

Sulfur isotopic compositions. Individual pyrite concretions have
limited variations in sulfur isotope composition (δ34Spy), but
δ34Spy may vary substantially between different concretions or
between different sections. In basinal sections, concretions
display a smaller range of variation in δ34Spy [Tongle
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(13.5–19.3‰, mean= 16.5‰), Yuanjia (15.7–19.9‰, 18.5‰),
Yazhai (13.6–23.7‰, mean= 19.4‰)]. Concretions from the
slope sections have higher δ34Spy than those from the basinal
sections, and δ34Spy values display a wider range of variation
[Huakoushan (16.1–37.1‰, mean= 26.7‰) and Bahuang
(21.0–28.2‰, mean= 25.2‰)]. δ34S values of disseminated
pyrite extracted from gravelly siltstone in the top Nantuo For-
mation shows greater fluctuation (13.7–48.1‰, mean= 28.9‰)
in the Taoying section but limited variation (–5.0‰ to –5.7‰,
mean= –5.4‰) in the Bahuang section. In the outer shelf sec-
tions, pyrite concretions from the gravelly siltstone layers have
the lowest δ34Spy values [Songlin (8.1–12.6‰, mean= 11.1‰),
Youxi (−5.5‰ to −2.5‰, mean=−4.0‰)]. Δ33S (defined as
Δ33S= δ33S− 1000([1+ δ34S/1000]0.515− 1)) also exhibits a
wide but overlapping range of variation among different con-
cretions or among different facies [basin (–0.008‰ to 0.072‰,
mean= 0.027‰), slope (–0.010‰ to 0.067‰, mean= 0.032‰),
shelf (0.018‰ to 0.098‰, mean= 0.057‰)] (Fig. 2, Supple-
mentary Tables 2, 3).

Discussion
Pyrite can be generated by hydrothermal activities during late-
stage diagenesis, precipitated directly from seawater column, or
formed within sediment porewater during early diagenesis.
Postdepositional hydrothermal origin of the Nantuo pyrite con-
cretions can be ruled out on the basis of the following sedi-
mentological, petrological, and geochemical observations. First,
the stratigraphic distribution of pyrite concretions is controlled by
depositional environment (Fig. 1). Pyrite concretions can be
observed both in gravelly siltstone and massive diamictite in the
slope environment, whereas in the shallow water facies pyrite
nodules only occur in gravelly siltstone. Second, no fluid conduits
or hydrothermal veins are observed in connection with pyrite
concretions (Supplementary Fig. 2). Third, although the
diamictite-cap carbonate interface could serve as a conduit for
fluid circulation, pyrite nodules also occasionally occur in the
overlying cap carbonate (Supplementary Fig. 2e). Pyrite nodules
are preserved in the matrix of cap carbonate and predating the
early diagenetic sheet crack structures and arguing against a late
diagenetic or hydrothermal origin. Finally, highly positive δ34Spy
(>10‰) and variable Δ33S values are not characteristics of
hydrothermal pyrite25–27 (Fig. 2). Direct pyrite precipitation from
seawater is also inconsistent with observed euhedral pyrite
(Supplementary Fig. 2), because sedimentary pyrite formed in the
water column is typically framboidal in morphology28. Although
euhedral pyrite could be generated by the overgrowth of fram-
boidal pyrite29, no framboidal cores have been identified (Sup-
plementary Fig. 3e, f).

Petrological evidence suggest that the Nantuo pyrite concretions
were formed in sediment during early diagenesis. Pyrite crystals are
tightly packed with interstitial spaces filled with clasts or cemented by
silica, or float within a siliciclastic matrix, suggesting early concretion
formation before sediment compaction (Supplementary Figs. 2d and
3a, b). Furthermore, the matrix of pyrite-bearing diamictite and
gravelly siltstone also contains some disseminated euhedral pyrite,
(Supplementary Fig. 3g, h), suggesting an authigenic origin. Thus, the
euhedral pyrite in the Nantuo concretions most likely precipitated
from porewater within sediment.

In modern nonsulfidic oceans, authigenic pyrite precipitation is
fueled by dissimilatory sulfate reduction (DSR) in sediment
porewater, and DSR is sustained by sulfate diffusion from sea-
water30 (Supplementary Fig. 4a). Alternatively, DSR may occur in
a sulfidic water column, and authigenic pyrite can precipitate
from porewater within sediment, with H2S diffusing from the
overlying euxinic seawater (Supplementary Fig. 4b). In order to

differentiate these two scenarios, we develop numerical models to
simulate the sulfur isotope systematics of pyrite formation. In the
first scenario, DSR in sediment porewater is sustained by con-
tinuous diffusion of seawater sulfate, which is driven by a sulfate
concentration gradient that results from porewater sulfate con-
sumption by DSR. Here we simulate the processes utilizing a one-
dimensional diffusion-advection-reaction (1D-DAR) model.
Assuming a seawater sulfate sulfur isotopic composition (δ34Ssw)
of +30‰31 and biological fractionation (ΔDSR) in DSR at 40‰32,
our modeling results indicate a maximum δ34Spy value of +8‰
(Fig. 3a, b), and the amount of pyrite formation is variably
controlled by sedimentation rate, reaction rate of DSR, and sea-
water sulfate concentrations (Fig. 3c, Supplementary Figs. 5–9,
and Supplementary Table 4). Therefore, DSR in sediment pore-
water cannot explain the high δ34Spy values of the pyrite con-
cretions in slope and basinal sections (Fig. 2).

Heavy (34S-enriched) pyrite could be generated by DSR in a
closed porewater system (i.e., without sulfate supply from sea-
water), which can be simulated by a Rayleigh distillation model
(see Supplementary Note 2 and Supplementary Table 5). How-
ever, the Rayleigh process can only account for <0.1 vol% of
pyrite (Fig. 3a), and thus cannot explain the high pyrite content in
the top Nantuo Formation (Fig. 3a, Supplementary Table 1). On
the other hand, pyrite precipitation in porewater, driven by H2S
diffusion from sulfidic seawater, can be simulated by a combi-
nation of DSR in the water column and H2S diffusion/pyrite
formation in sediments. We simulated these processes using a
Rayleigh distillation model and a 1D-DR model (see Supple-
mentary Note 2 and Supplementary Table 6). Our modeling
result indicates that δ34Spy values are predominantly controlled
by DSR with high δ34Spy values resulting from a high degree of
DSR in the water column (Fig. 3d, e). In contrast, H2S diffusion
controls the pyrite content but not δ34Spy value (Supplementary
Fig. 10), because the reaction between H2S and reactive Fe to
generate pyrite is associated with negligible isotopic fractionation
(~1‰)33. Our modeling results indicate that precipitation of 34S-
enriched pyrite in the basin and slope sections was driven by a
higher degree of sulfate reduction than in outer shelf settings
(Fig. 3d, e).

Because δ34Spy mirrors the isotopic composition of H2S in
seawater33, the spatial variation in δ34Spy reflects the isotopic
heterogeneity of seawater H2S. The relatively consistent δ34Spy
values observed in the basinal samples suggest that the H2S
concentration was more or less homogenous in most distal sea-
waters. For the same reason, the more variable δ34Spy values of
the slope sections reflect a rapid oscillation of seawater H2S
concentrations.

Given high reactive Fe contents of siliciclastic sediments34–36,
the amount of pyrite formation was controlled by the availability
of H2S in seawater, which was a function of seawater H2S con-
centrations and the volume of seawater. Thus, abundant pyrite in
the top Nantuo Formation implies vigorous DSR and a high
concentration of dissolved H2S in the seawater, which is also
consistent with the lack of bacterial sulfate disproportionation as
shown in the Δ33S–δ34S plot (Fig. 3f)37. The decrease of pyrite
content from deep to shallow settings is attributed to the bathy-
metric differences of the depositional environments38. Deeper
water in the basin may have a thicker sulfidic water layer,
resulting in more pyrite precipitation. While the absence of pyrite
concretions in the inner shelf setting is the consequence of an
absence of sulfidic seawater in the near shore, shallow, and more
oxic waters39,40.

Abundant pyrite concretions in the top Nantuo Formation
imply the development of oceanic euxinia before the pre-
cipitation of cap carbonate41. Oceanic euxinia can only be
sustained by sufficient supplies of sulfate and organic

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05423-x

4 NATURE COMMUNICATIONS |  (2018) 9:3019 | DOI: 10.1038/s41467-018-05423-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


matter36,42,43. Riverine influx is the major source of nutrients
(e.g., P) and seawater sulfate30,44,45. We hypothesize that,
during the deglaciation of the Marinoan glaciation, enhanced
continental weathering20 could have delivered abundant
nutrients and sulfate into the ocean. Because the deglacial

continental weathering may predate oceanic euxinia20 due to
the delayed recovery of productivity in acidified seawater, both
nutrients and sulfate might be accumulated in seawater from
riverine inputs. Once surface ocean productivity was resumed
at high levels, high nutrient content could sustain high
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productivity, while DSR in water column would be fueled by
sufficient supplies of organic matter and sulfate, driving
oceanic euxinia.

The pyrite-rich interval in the topmost Nantuo Formation
marks a brief yet widespread euxinic condition in the aftermath of
the Marinoan glaciation immediately before cap carbonate pre-
cipitation. It is an interval with rising sulfate levels17, and high
nutrient fluxes from the continents. This is also an interval
characterized by redox stratified oceans where a large quantity of
H2S was scavenged by Fe(II) in the glacial diamictite sediments.
Importantly, this is also an interval prior to the deposition of the
well-known cap carbonates, a time when seawater pH values or
alkalinity were still below the threshold of carbonate precipitation
or pCO2 levels were sufficiently high in the atmosphere12,46. The
current study extends previous efforts to reconstruct from sedi-
mentary records the sequence of events in the aftermath of the
Marinoan meltdown47 in order to test the predictions of snowball
Earth glaciations2.

Methods
Sample preparation and sulfur isotope analysis. Pyrite concretions were first
split by a rock saw and then slabs were polished before sampling. Pyrite samples
were collected by a hand-held micromill from the polished slabs. To capture the
isotopic variations within a single pyrite concretion, multiple samples were
sequentially collected from rim to core. Sulfur isotopic compositions of pyrite were
measured at the Oxy-Anion Stable Isotope Consortium in Louisiana State Uni-
versity, at the EPS Stable Isotope Laboratory in McGill University, and at the
Geochemistry laboratory in University of Maryland.

For δ34S analysis, about 0.05mg pyrite-rich powder was mixed with 1–2mg V2O5,
and was analyzed for S isotopic compositions on an Isoprime 100 gas source mass
spectrometer coupled with a Vario Microcube Elemental Analyzer. Sulfur isotopic
compositions are expressed in standard δ-notation as permil (‰) deviations from the
Vienna-Canyon Diablo Troilite standard. The analytical error is <0.2‰ based on
replicate analyses of samples and laboratory standards. Samples were calibrated on two
internal standards: LSU-Ag2S-1: −4.3‰; LSU-Ag2S-2: +20.2‰.

Multiple sulfur isotope analyses were conducted by converting pyrite samples
to H2S(g) via the chromium reduction method. H2S gas was then carried through
a N2 gas stream to a Zn acetate solution where it precipitated as ZnS. ZnS was
then converted to Ag2S through addition of AgNO3. Samples were then filtered
and dried at 80 °C. Ag2S samples were converted to SF6(g) through reaction with
F2(g) in heated Ni bombs. Generated gas was then purified through a series of
cryo-focusing steps followed by gas chromatography. The purified samples were
then analyzed on a Thermo MAT-253 on dual-inlet mode. The total error on
the entire analytical procedure is less than (1σ) 0.1‰ for δ34S and 0.01‰ for
Δ33S.

Geochemical models of pyrite formation. Sedimentary or authigenic pyrite can
precipitate either from sediment porewater or water column. In sediment pore-
water, pyrite formation can occur in a closed or an open porewater system. For a
closed system, DSR occurs within sediment porewater with no additional sulfate
supply from seawater. In contrast, open system DSR refers to sulfate supply via
diffusion from the overlying seawater and pyrite formation in sediment porewater
(Supplementary Fig. 4).

The close system reaction can be simulated by the Rayleigh distillation model,
whereas the open system pyrite formation can be modeled by the 1D-DAR or the
1D-DR model.

Rayleigh distillation model. The Rayleigh distillation model can be expressed as
follows:

δ34Sr ¼ δ34Ssw � 1000 ´ f ðα�1Þ � 1
� �

ð1Þ

where δ34Ssw is the isotopic composition of seawater, δ34Sr is the isotopic
composition of remaining sulfate in sediment porewater or in water column. f is
the fraction of sulfate remaining, and α is the fractionation factor for DSR. The
isotopic composition of H2S (δ34SH2S) or pyrite (δ34Spy, assuming negligible
fractionation between H2S and pyrite) can be described as:

δ34Spy ¼
δ34Ssw � δ34Sr ´ f
� �

1� f
ð2Þ

The amount of pyrite (Mpy) formation can be calculated by:

Mpy ¼
; ´ 1� fð Þ ´ SO4½ � ´Mr

2 ´ ρpy ´ 1� ;ð Þ ´ 1000 ð3Þ

where ∅ is the porosity of sediment (estimated at 60%), ρpy is the density of pyrite
(4.9 g cm–3), Mr is the relative molecular mass of pyrite, [SO4] is seawater/
porewater sulfate concentration (mol L–1).

1D-DAR model. The 1D-DAR model can be applied to quantify the
geochemical profiles in sediment porewater. The DAR model describes three
physio-chemical processes: molecular diffusion, advection, and chemical
reaction. During DSR in porewater, sulfate is supplied from seawater by
diffusion. The diffusion is driven by the sulfate concentration gradient between
seawater and sediment porewater, which is generated by sulfate consumption in
sediment porewater by DSR. To model sulfur isotopic profiles of porewater, we
treat 34S and 32S separately. The 1D-DAR model is expressed as:

∂ 3iSO4½ �
∂t

¼ DS
∂2 3iSO4½ �

∂z2
� s

∂ 3iSO4½ �
∂z

� R 3iSO4

� � ð4Þ

where [3iSO4] is the porewater concentration of 34SO4 and 32SO4, z is the depth
below the redox boundary of DSR, Ds is the vertical diffusivity coefficient of bulk
sediment (m2 year−1), s is the sedimentation rate (cm ky−1), R is the first-order rate
constant during DSR.

Sulfur isotopic fractionation during DSR can be regard as the different reaction
rate constant between 34S and 32S. Assuming a steady state (∂

3iSO4½ �
∂t ¼ 0, with

invariant D, s, R), the solution of Eq. (4) is given by:

½ 3iSO4� ¼ ½ 3iSO4�0e
s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2þ4R3iDSð Þ

p� �
2DS

´ z ð5Þ

The porewater sulfur isotope (δ34SO4pw) profile can be calculated by:

δ34SO4pw ¼ ln½ 34SO4�=½ 32SO4� � ln½ 34S�std=½ 32S�std
� �

´ 1000 ð6Þ

The subscript std denotes the standard. At any depth below the upper bound
of DSR zone, the sulfur isotope of instantaneous H2S formation can be calculated
by:

δ34SH2S
¼ δ34SO4pw � ΔDSR ð7Þ

where ΔDSR is the biological sulfur isotope fractionation during DSR between
sulfate and H2S.

Pyrite precipitation within sediment is a continuous process within the DSR
zone with the lower bound marked by the depletion of porewater sulfate. To
calculate the instantaneous sulfur isotope of pyrite within the DSR zone, we divide
sediments into different depth slices (i) starting from the upper bound of DSR zone
(i= 0). Assuming no sulfur isotope fractionation during pyrite precipitation
between H2S and pyrite, δ34Spy at depth z can be calculated by:

δ34Spy ¼
Pi

0 δ34SH2S
´ ½SO4�i

� �
Pi

0½SO4�i
ð8Þ

The depth z of the slice i can be calculated as z= i × h, where h is the thickness
of each slice. Assuming all H2S is precipitated as pyrite, the cumulative amount of
pyrite formation within DSR (Mz) can expressed as:

Mz ¼
Xi

0
½SO4�i ´R ´

h
s

	 

ð9Þ

1D-DR model. Pyrite can precipitate in porewater with H2S diffusion from
overlying water column. This process can be quantified by the one-dimensional
diffusion-reaction (1D-DR) model. This model includes two processes: H2S
diffusion and pyrite precipitation. The sulfide diffusion is driven by the H2S
concentration gradient between sulfidic seawater and sediment porewater, which is
generated by pyrite precipitation in sediment porewater. The 1D-DR model is
expressed as:

∂½H3iS�
∂t

¼ Ds
∂2½H3iS�
∂z2

� R½H3iS� ð10Þ

Where the [H3iS] is the porewater concentration of H34S and H32S, z is the depth
below the water-sediment surface, Ds is the vertical diffusivity coefficient of bulk
sediment (m2 year−1), R is the first-order rate constant for pyrite formation via H2S
reaction with reactive Fe.

Assuming a steady state, the solution for this equation is,

½H3iS� ¼ ½H3iS�0e
�
ffiffiffiffiffiffiffiffi
4R3iDs

p
2Ds

´ z ð11Þ
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δ34SH2S profile can be calculated by:

δ34SH2S ¼ ln H34S
� �

= H32S
� �� ln 34S

� �
std=

32S
� �

std

� �
´ 1000 ð12Þ

[3iS]std represents the standard of 34S or 32S. The instantaneous δ34Spy can be
calculated by:

δ34Spy ¼ δ34SH2S � Δpy ð13Þ

where Δpy represents the sulfur isotope fractionation during pyrite precipitation.
The δ34Spy at depth z below water-sediment surface can be calculated by:

δ34Sz ¼
Pi

0 δ
34Spy ´ HS½ �iPi
0 HS½ �i

ð14Þ

The cumulative amount of pyrite formation can be calculated by Eq. (9).
Sulfur isotope model for Δ33Spy–δ34Spy plot. Assuming all the Nantuo pyrite

were formed within ferruginous porewater and pyrite formation was rapid and
irreversible. δ34Spy was modeled by a sulfate concentration model37. In a steady
state, sulfate concentration at specific depth can be expressed as:

SO4z ¼ SO40 � SO41
� �

´ e�
k
sz þ SO41 ð15Þ

where, SO4z
represents sulfate concentration at any given depth z, SO40

represents
the initial sulfate concentration, SO41 represent sulfate concentration at infinitive
depth, i.e., sulfate left after DSR, k is sulfate reduction rate constant, s is the
sedimentation rate.

As the little mass of 36S, here the equation of total mass of sulfate can be
simplified as SO4total

¼ 32SO4z
þ 33SO4z

þ 34SO4z
.

For sulfur isotope, Eq. (15) can be rewritten as:

δ3iSSO4
¼

3iSO4
32SO4

� �
3iS
32S

� �
CDT

� 1

2
4

3
5 ´ 1000 ð16Þ

Here, i equals 3 or 4.
δ3iS of porewater sulfate is controlled by the initial seawater sulfate δ3iS, sulfate

reduction rate constant k, sedimentation rate s and sulfur isotope fractionation
factor (α) for DSR37. Defined α as the ratio of sulfate reduction rate (SRR) of 33S or
34S over the 32S normalized with corresponding isotope concentration:

3iα ¼
3iSRR
3iS

� �
32SRR
32S

� � ð17Þ

Then, Δ33S of porewater sulfate can be calculated:

Δ33SSO4
¼ δ33SSO4

� 1000 ´ 1þ δ34SSO4

1000

 !
´ 33λ� 1

" #
ð18Þ

where, 33λ is the slope of terrestrial mass fractionation line.
The instantaneous H2S sulfur isotopic compositions can be calculated by the

ratios of DSR rate at corresponding depth:

δ3iH2S ¼
3iSRR
32SRR

� �
3iS
32S

� �
CDT

� 1

2
4

3
5 ´ 1000 ð19Þ

Pyrite sulfur isotopic compositions can be calculated by the accumulated
δ3iH2S.

Determination of pyrite concretion content. Pyrite concretion content was
determined by using the photograph area proportion method. Pyrite concretion-
bearing Nantuo diamictite and siltstone layer were photographed in field. For each
field photograph, pyrite concretion content (Cpy) can be calculated by:

Cpy ¼
Apy

AT
´ 100% ð20Þ

where Apy is pyrite concretion area in the photo and AT is the total area of host
rock in the photo.

The average content of pyrite concretion in each section can be calculated by:

C ¼
Pn

1 Cpy

h in
n

ð21Þ

where n is the total number of analyzed field photographs.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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