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Abstract

The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular
sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation
Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal
root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per
kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in
the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their
gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data
of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion
channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected
106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To
validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected
transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG
and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at
least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview
of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional
approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological
mechanisms of pain.
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Introduction

Sensory neurons that arise from cell bodies of the trigeminal
ganglia (TG) and dorsal root ganglia (DRG) are known to
detect a large variety of chemical agents and physical stimuli.
The DRG are located along the vertebral column. A wide range
of specialized neurons detect somatosensory stimuli at the
periphery and convey them to the central nervous system. The
TG are the cranial analogs of the DRG and are located at the
base of the skull (in front of the pons), extending sensory fibers
that terminate as free nerve endings in the facial skin and
mucosa [1]. By stimulating these neurons, chemical cues can
induce a variety of different sensations such as the cooling of
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menthol, tingling by sanshools, burning and stinging by acids or
pungency by capsaicin and mustard oil [2-5]. The trigeminal
system and the DRG are known to act as the pain and warning
system in mammals.

Previously, several classes of membrane receptors and ion
channels that are critical for trigeminal sensory perception and
pathophysiological pain behavior have been described and
studied on a molecular level. Much attention has been focused
on transient receptor potential (Trp) and potassium channels
that act as sensors of temperature, pain, and chemical stimuli
[6-8]. Furthermore, nicotinic acetylcholine receptors (nAChRs)
that sense nicotine, and voltage-gated sodium channels
(VGSCs) important for pain perception and signal transmission,
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drew considerable attention [9-14]. Today, G protein-coupled
receptors and ion channels represent two of the most important
targets for pharmacologically active substances [15-17], and
the expression pattern of these receptors and ion channels
remains to be fully understood. In a recent gene expression
study in mice, it has been shown that an alteration of the
common gene expression levels for ion channels can be linked
to pathophysiological pain diseases [18].

In addition to ion channels, the superfamily of G-protein-
coupled receptors (GPCRs) plays a central role in the
modulation of pain transmission [19] and in detecting a large
range of chemicals [20]. GPCRs are the largest superfamily of
cell surface proteins and have seven transmembrane
segments as their structural hallmark [21]. These membrane-
integral receptor proteins can be activated by either exogenous
ligands, such as odorants and taste substances, or by
endogenous ligands, such as neurotransmitters, hormones,
and inflammatory substances. The receptor family of GPCRs
plays a major role in physiological and pathophysiological
processes [22,23], and approximately 40-60% of all current
drugs target receptors of this class [15,24]. Several classes of
GPCRs that are critical for trigeminal pain and histamine-
independent pruritus have been identified, including P2Y,
opioid receptors, and Mas-related receptors [25-27]. There
remain many orphan GPCRs that may play important roles in
several physiological functions [28].

The trigeminal system is involved in a variety of cranial nerve
diseases such as trigeminal neuralgia or neuropathic pain
[29-31]. Common causes of neuropathic pain are diabetic
neuropathy, nerve compression syndromes, trigeminal
neuralgia, stroke, multiple sclerosis, and spinal cord injury
[32,33]. Chronic pain remains a major clinical challenge that
can significantly diminish the quality of life in affected
individuals [34].

To fully understand the mechanisms of chemosensation and
nociception, it is necessary to analyze the transcriptome of the
sensory ganglia and to describe comprehensive gene
expression patterns for all ion channels and GPCRs.

During the last few years, a dynamic development in
transcriptome analysis by Next Generation Sequencing (RNA-
Seq), in combination with rapidly dropping costs, led to a
revolutionary extension of available experimental approaches
in transcriptome analysis [35-39]. In contrast to previously
used tools, such as microarray analysis, RNA-Seq enables
higher resolution measurements of expression [39]. RNA-Seq
is a paradigm-shifting technology because of its great
sensitivity, highly accurate quantification of expression levels,
high dynamic range, and its potential to analyze transcriptomes
independently of existing genome annotations.

However, no attempts have thus far been made to
systematically describe the mammalian TG and DRG
transcriptome and to characterize their complete ion channel
and GPCR expression patterns.

We used RNA-Seq to analyze the murine TG and DRG
transcriptome and to compare the expression profiles of the TG
and DRG. lon channels and GPCRs were ranked according to
their expression level and tissue specificity. We primarily
detected all important receptors and ion channels with known
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trigeminal functions that are highly or specifically expressed in
the TG. Furthermore, we were able to identify the expression of
GPCRs, some of their major signaling compounds, and ion
channels whose expression in the TG had not been described
before, and we verified their expression by in situ hybridization.
A differential transcriptome analysis of the TG and DRG
identified transcripts that were specific for either of these
neuronal tissues.

Results and Discussion

Transcriptome Data

Using the lllumina Genome Analyzer Ga,,, approximately 36
million and 37 million 36-nucleotide (nt) reads were generated
for the TG and DRG by RNA-Seq, respectively. Both tissues
contain heterogeneous populations of neurons, such as
mechanosensitive, temperature-responding, and nociceptive
neurons, as well as glial cells. Each sample was a pool of RNA
from 8 male mice (~P28). The sequencing results were
analyzed by the TopHat and Cufflinks software. The reads
were mapped onto the mouse reference genome (mm9). From
the sequenced fragments, 80- 86% could be aligned for both
tissues (Table 1). The expression values were calculated for
each sample based on the number of fragments per kilobase of
exon per million reads mapped (FPKM) [40]. As an
approximation, 1 FPKM corresponds to weak expression, 10
FPKM to moderate expression, and 100 FPKM to high
expression. As a basis for comparison, we calculated the
FPKM values for typical housekeeping genes. For example, the
strongly expressed B-actin gene yields an expression value
between ~100-1000 FPKM, whereas the weakly to moderately
expressed TATA box binding protein (Tbp) is detected at
approximately 3-10 FPKM (Figure S1). For an overview of
FPKM values for the expression of different genes, we
calculated a histogram of the FPKM value distribution for the
DRG and TG tissues (Figure S2). Our analysis detected the
expression of 16034 genes in the TG and 15946 genes in the
DRG, with > 0.1 FPKM. However, to exclude the very weakly
expressed genes from our analysis, we set the expression
threshold at 1 FPKM, which is a similar threshold to that used
in a comparable study [41]. Gene expression at this level can
be regarded as reliably detected and is supported by
approximately 30 reads which map per 1 kb mRNA, as shown
in the Integrative Genomic Viewer (IGV) (Figure S3). Excluding
very weakly expressed genes, our analysis revealed the
expression of 12984 genes in the TG and 13195 genes in the
DRG (> 1 FPKM of all approximately 23000 genes). The
expression levels for all investigated approximately 23000
genes can be found in the supplementary data (Table S1). To
validate some selected genes, we prepared in situ hybridization
experiments, for which we used the TG-specific gene Pirt as a
positive control (Figure 1A-D).

The Superfamily of G-Protein-Coupled Receptors

In the next step, we analyzed the expression patterns for all
known non-olfactory GPCRs in mice. A list of 4568 GPCRs was
established based on several comprehensive studies of murine
GPCRs [42-46] (Table S2). Because of the many GPCR
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Figure 1. Representative in situ. hybridization slices from adult mice. A Schematic overview for the preparation of the mouse
head slices (14 um). The nose and the mandible were removed before the slices were prepared (blue line). The black arrow
indicates the cutting direction, while the red line indicates the intersecting plane that was used. B In situ hybridization for Pirt mRNA
(25-fold). C 100-fold. D 200-fold magnification of the TG segment. Single cells are strongly stained. Scale bar B: 560 ym, C: 140 pym

D: 75 uym.
doi: 10.1371/journal.pone.0079523.g001

Table 1. Sequencing details of the TG and DRG RNA-Seq
experiments.

Reads with at

Base Pair Total least one
Sequence Prepared reported Reads Failing
Sample Fragments Reads alignment (%) Alignment (%)
Trigeminal 31716353 5090879
36 nt 36807232
Ganglia (86.2%) (13.8%)
Dorsal Root 30227460 7288174
. 36 nt 37515634
Ganglia (80.6%) (19.4%)

doi: 10.1371/journal.pone.0079523.t001

genes, we investigated the subfamily of olfactory receptors
(OR) separately.

In total, the expression of 202 and 204 non-olfactory GPCRs
in the TG and DRG, respectively, could be detected with an
FPKM that was higher than 1 (Figure 2A). Non-neuronal and
non-sensory tissues (liver, muscle) had a significantly lower
level of GPCR expression than the neuronal tissues (brain,
olfactory epithelium (OE), TG and DRG). The same result can
be seen when all FPKM values for the GPCRs > 1 FPKM for
each tissue were summarized (sFPKM) (Figure 2B). We
analyzed the expression of the distinct GPCR subfamilies in
different tissues (Figure 2C). Members of the rhodopsin-delta
and adhesion groups show higher expression levels in the TG
and DRG than in the other tissues. Rhodopsin, adhesion, and
glutamate subfamilies are commonly highly expressed in
neuronal tissues.

The expression patterns for the different GPCR classes in
the DRG and TG are highly similar (Figure 2D). Furthermore,
nearly 50% of all non-olfactory GPCRs were found to be
expressed in the TG and DRG and are mostly rhodopsin-alpha
and rhodopsin-delta family members.
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G Protein-Coupled Receptors are Expressed at High
Levels in Trigeminal Ganglia

Within the 202 GPCRs that were detected in TG (> 1 FPKM),
106 GPCRs had not been previously described as expressed
in the TG, whereas 96 of them were mentioned previously
(Table S2). Taking weakly expressed receptors into account (

< 1 FPKM), additional 114 GPCRs were detected in the TG,
of which 31 were reported previously (Table S2). However,
because of this large number of expressed GPCRs, we
focused on the 30 most highly expressed GPCRs (Figure 3,
Ref. [47-61]).

Among the most highly expressed 30 GPCR genes in the
TG, we detected GPCRs that are known to play a role in
nociception, migraine, vasoconstriction, and inflammation. The
most highly expressed GPCRs were GABA(B) receptors,
endothelin B like Gpr3711, prostaglandin receptors, and Mas-
related receptors (Figure 3). Among the 30 most highly
expressed GPCRs, we identified 14 whose trigeminal
expression has not been previously described. In total, we
newly detected the expression of 107 GPCRs in the TG (Table
S2) and additionally list all common GPCR signal transduction
proteins (Figure S4). The ligands for several of the most highly
expressed GPCRs have not yet been identified. Next, we
describe the most prominent of the newly detected GPCRs in
TG.

Darc. The duffy antigen/chemokine receptor (Darc) is one of
the most highly expressed GPCRs in the TG. The expression
of Darc was previously shown for the DRG, basal ganglia,
thalamus, and other cortex regions but never for the TG [62].
Darc plays an important role in acute inflammation, infection,
and tumor malignancy [48]. We verified the expression of this
receptor in the TG by in situ hybridization and found this
receptor to be strongly expressed at the outermost regions of
the TG (Figure 4). In the center of the TG, the expression
pattern for Darc was punctate (Figure 4).

Pagr/Adipor. In the TG, six members of the progestin and
adipor receptor families (Adipor1-2, Paqgr4, 7, 8, 9) are highly
expressed; furthermore, several newly detected members of
this receptor family show FPKM values of 6-40 (Table S2),
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Figure 2. Expression pattern analysis of all detected GPCRs. A The bar diagram shows the number of detected GPCRs that
had FPKM values higher than 1 for the liver (L), skeletal muscle (SM), olfactory epithelium (OE), dorsal root ganglia (DRG), brain
(B), and trigeminal ganglia (TG). Black bars: expressed GPCRs, gray bars: not expressed GPCRs. The lowest number of GPCRs
was detected in liver (72) and skeletal muscle (89). The highest count was detected in the TG (197), OE (163), DRG (191), and
brain (193). B To investigate not only the number of expressed GPCRs but also the general cumulative expression level for each
tissue sample, we summarized all FPKM values (sFPKM). The brain (5079 sFPKM), TG (2808 sFPKM) and DRG (2871 sFPKM)
had the highest presence of GPCRs. The skeletal muscle had the lowest amount of sFPKM (845), which was followed by the liver
(933 sFPKM). C The bar diagram shows the expression pattern for all different GPCR subfamilies (secretin (Sec), adhesion (Adh),
glutamate (Glut), frizzle and taste (Fzd/Taste), rhodopsin-alpha to -delta (Rho A-D), and not yet classified GPCRs (others). The
rhodopsin-delta subfamily (shown without ORs) is expressed at a higher level in the DRG and TG compared with all other tissues. D
The comparison of the distribution of GPCR subfamilies between the DRG and TG. Most members belong to the rhodopsin-alpha
and rhodopsin-delta subfamiles.
doi: 10.1371/journal.pone.0079523.g002
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Gene Family Symbol L SM B OE DRG TG Exp Ligand Function
Y-Aminobutyric Acid Receptor Beta 1 Glut Gabbr1 Amino Acid Synaptic Inhibition [47]
Duffy Antigen/Chemokine Receptor Rho G Darc Chemokine  Inflammation [48]
Adiponectin Receptor Protein 1 Nc Adipor1 Adiponectin  Obesity [49]
Secreted Frizzled-Related Protein 5 Rho G  Sfrp5 Whnt Inflammation [50]
Progestin and AdipoQ Receptor 4 Nc Paqr4 Progesterone Unknown Function -
Y-Aminobutyric Acid Receptor Beta 2 Glut Gabbr2 Amino Acid Synaptic Inhibition [50]
G-Protein Coupled Receptor c5b Glut Gprc5b Orphan Unknown Function -
G-Protein Coupled Receptor 56 Adh Gpr56 Col3a1 Development [51]
G-Protein Coupled Receptor 137 Nc Gpr137 Orphan Unknown Function -
Endothelin B Receptor Rho B Ednrb Endothelin Inflammatory Pain [52]
Endothelin B Receptor-like Protein 2 RhoB Gpr37I11 Orphan Unknown Function -
Latrophilin-1 Adh Lphn1 Orphan Signal Transduction [53]
Lysophosphatidic Acid Receptor 11 RhoD Lpar1 LPA S. Muscle Contraction  [54]
G-Protein Coupled Receptor 158 Glut Gpr158 Orphan Unknown Function -
Progestin and AdipoQ Receptor 9 Nc Paqr9 Progesterone Unknown Function -
Mas-related GPCR Member D Rho D Mrgprd Beta-Alanin ~ Nociception [55]
Progestin and AdipoQ Receptor 6 Nc Paqré Progesterone Unknown Function -
Sphingosine 1-Phosphate Receptor 3 Rho A S1pr3 S1P Vasorelaxion [56]
Adiponectin Receptor Protein 2 Nc Adipor2 Adiponectin  Obesity [57]
Progestin and AdipoQ Receptor 7 Nc Paqr7 Progesterone Unknown Function -
Transmembrane 7 Superfamily Member 3  Nc Tm7sf3 Orphan Unknown Function -
G-Protein Coupled Receptor 155 Nc Gpr155 Orphan Unknown Function -
Golgi pH-Regulator Nc Gpr89 Orphan Unknown Function -
Leucine-Rich Repeat-Containing GPCR4 RhoD Lgr4 R-Spondin Cell Development [58]
Proteinase-Activated Receptor 3 RhoD F2ri2 Proteases Inflammation [59]
G-Protein Coupled Receptor 5¢ Glut Gprc5¢ Orphan Unknown Function -
Progestin and AdipoQ Receptor 8 Nc Paqr8 Progesterone Unknown Function -
G-Protein Coupled Receptor 137b Nc Gpr137b Orphan Unknown Function -
5-Hydroxytryptamine Receptor 1D Rho A Htr1d Serotonin Migraine [60]
Cannabinoid Receptor 1 Rho A Cnr1 Anandamide  Nociception [61]

>0 >01 >1 >3
FPKM |

>10 >30 >100 >300 >1000

Figure 3. The 30 most highly expressed GPCRs in trigeminal. ganglia. GPCRs are listed depending on their expression level in
the TG and DRG in comparison with the brain (B), liver (L), olfactory epithelium (OE), and skeletal muscle (SM). The FPKM value,
which is an indicator of the expression strength, is represented by the color intensity. Exp describes whether the expression in the
TG was previously known (+) or unknown (-). To the best of our knowledge, among the 30 most highly expressed genes, 14 GPCRs
have not been previously described as expressed in the TG. Most of the detected GPCRs have unknown functions.

doi: 10.1371/journal.pone.0079523.g003

which demonstrate that all members of the Pagr family are
expressed in nociceptive tissues, such as the TG and DRG. In
mammals, the Pagr-family consists of Class | (Adipor1-2,
Paqr3) and Class Il (Paqr4-9). Class | responds to adiponectin,
whereas the ligand for the Class Il receptors is progesterone
[63—65]. We validated the expression of Paqr6 by in situ
hybridization (Figure 4) and found that Paqr6 is strongly
expressed in all parts of the TG, which correlates well with the
detected FPKM of approximately 23. The physiological function
of the receptors in the TG is unclear; however, progesterone
has shown anti-nociceptive effects in the trigeminal nerve root
in a rat LPA-pain model [66].

S1pr. Furthermore, we could identify the expression of
sphingosine1-phosphate receptors (S1pr) in the TG. Meng and
colleagues previously showed that S1pr5 is expressed in the
TG of embryonic mice [67]. However, our study not only
revealed that S1pr3 is the predominant member in the adult TG
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(Figure 3) but also that S1pr1, -2, and -5 are expressed (Table
S2). This class of genes mediates vasodilatation, coordinates
angiogenesis with other lysophospholipid receptors, and is
known to be involved in developmental processes [56].

Lgrd. The leucine-rich repeat that contains GPCR is
involved in a variety of physiological functions, such as
embryonic growth, cell development [68], or in physiological
dysfunctions such as in cancer development [69]. Its
expression has never been described in the TG and its function
is unknown.

Orphan GPCRs. Based on their specific expression pattern
in sensory neurons, some of the most highly expressed orphan
GPCRs may serve as chemoreceptors. For example, we
detected high expression levels of Gpr158, Gprchb, and
Gprc5c in the TG. These three evolutionarily connected
receptors belong to the GPCR family C and share a high
sequence similarity with GABA(B) receptors, glutamate
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Figure 4. In situ hybridization experiments in the mouse TG. A Mrgprd (Mas-related Receptor D) B Mrgpre (Mas-Related
Receptor E), C Mrgprx1 (Mas-Related Receptor X1) D Cnr (Cannabinoid Receptor 1) E Gpr35 (G-Protein Coupled Receptor 35) F
Gpr126 (G-Protein Coupled Receptor 126) G Gpr155 (G-Protein Coupled Receptor 155) H Gpr158 (G-Protein Coupled Receptor
158) | Darc (Duffy/Antigen/Chemokine Receptor) J: Fzd3 (Frizzled 3) K Pagr (Progestin and AdipoQ Receptors) L Tac3
(Tachykainin 3) M Oprmd (mu-Opioid Receptor) N Tbx2 (Thromboxane A2 Receptor) O Drd3 (Dopamin Receptor D3) P O3far1
(Omega 3 Fatty Acid Receptor) Q OIfr78 (Olfactory Receptor 78/PSGR) R OIfr420 (Olfactory Receptor 420) S OIfr1417 (Olfactory
Receptor 1417) T Ntrs2 (Neurotensin Receptor 2) (Scale for A, C-T 200 ym, B 100 ym).

doi: 10.1371/journal.pone.0079523.g004

receptors, and different taste-1 receptors [70,71]. Gpr158 and binding sweet-tasting substances, such as cyclamate, or
Gprc5b/c both have a conserved region (pfam00003) that is inhibitors, such as lactisole. No specific ligands have been
also found in sweet-taste receptors, which is important for previously described for these receptors. We revealed the
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Gene Family Symbol L SM B OE DRG TG Exp Ligand Function
Mas-Related GPCR D RhoD Mrgprd + BetaAlanin Nociception [55]
Mas-Related GPCR A3 RhoD Mrgpra3 + Chloroquine Itching [26]
Mas-Related GPCR B5 Rho D Mrgprb5 + Orphan Unknown Function -
Mas-Related GPCR B4 Rho D Mrgprb4 + Orphan Unknown Function -
Mas-Related GPCR X1 RhoD Mrgprx1 + BAM-22 Itching [26]
Mas-Related GPCR A1 RhoD Mrgpra1 + Orphan Unknown Function -
Mas-Related GPCR A6 Rho D Mrgpra6 + Orphan Unknown Function -
Mas-Related GPCR A4 Rho D Mrgpra4 + Orphan Unknown Function -
Growth Hormone-Releasing Receptor Sec Ghrhr - Peptide Growth [72]
5-Hydroxytryptamine Receptor 1D Rho A Htrid - + Serotonin Migraine [60]
Type-1B Angiotensin Il Receptor Rho G Agtrib + Angiotensin Il Blood Pressure [73]
Prokineticin Receptor 1 Rho D Prokr1 + Prokineticin Inflammation [74]
Mu-Type Opioid Receptor Rho G Oprm1 - + Opioid Peptides Pain, Itching [75]
Mas-Related GPCR A2B Rho D Mrgpra2b + Orphan Unknown Function -
Prostacyclin Receptor Rho A Ptgir -- + Prostaglandin Nociception [76]
Mas-Related GPCR A9 Rho D Mrgpra9 + Orphan Unknown Function -
Mas-Related GPCR A2A Rho D Mrgpra2a + Orphan Unknown Function -
G-Protein Coupled Receptor 149 Nc Gpr149 - Orphan Unknown Function -
Proteinase-Activated Receptor 3 RhoD F2ri2 B + Proteases Inflammation [59]
5-Hydroxytryptamine Receptor 4 Rho A Htr4 + Serotonin Hyperalgesia [77]
Prokineticin Receptor 2 Rho D Prokr2 + Prokineticin Nociception [78]
5-Hydroxytryptamine Receptor 1F Rho A Htr1f + Serotonin Spasm [79]
Cholecystokinin Receptor Type A RhoB Cckar -- + Cholecystokinin Body Weight [80]
Cysteinyl Leukotriene Receptor 2 Rho D Cysltr2 = Leukotriene Nociception [59]
Orexin Receptor Type 2 Rho B Hertr2 - Orexins Nociception [81]
G-Protein Coupled Receptor 64 Adh Gpr64 P - orphan Unknown Function -
Galanin Receptor Type 1 Rho G Galr1 + Galanin Nociception [82]
G-Protein Coupled Receptor 139 RhoD Gpr139 - Orphan Unknown Function -
G-Protein Coupled Receptor 35 RhoD Gpr35 [ - KynurenicAcid  Unknown Function .
Oxytocin receptor RhoB  Oxtr + Oxytocin Interpersonal Relation  [83]

>0 >01 >1 >3
FPKM |

>10 >30 >100 > 300 >1000

Figure 5. The most TG-specific GPCRs. GPCR genes are ranked according to their specific expression in the TG, which is
calculated by the quotient of the FPKM values of TG and the mean FPKM values of brain (B), liver (L), olfactory epithelium (OE),
and skeletal muscle (SM). Members of the Mrgprs are the most specific GPCRs that have been detected in the TG and DRG.
Among the 30 most specific GPCRs, seven newly detected GPCRs in the TG were identified. Twelve of the most specifically
detected GPCRs are still orphans and, based on their specific expression patterns in the TG and DRG, may be important for tissue-

specific functions.
doi: 10.1371/journal.pone.0079523.g005

expression of Gpr158 in the TG by in situ hybridization
experiments (Figure 4). Furthermore, highly expressed orphan
GPCRs (Gpr155, Gpr126, Gpr137, Gpr137b or Gpr149) could
be detected in our RNA-Seq study. Based on their specific
expression patterns in the DRG and TG, these orphan GPCRs
may be involved in specific functions of the trigeminal sensory
system (Table S2). Some of these orphan GPCRs were
investigated by in situ hybridization experiments (Figure 4).

G Protein-Coupled Receptors that are Specifically
Expressed in Trigeminal Ganglia

To identify the most specific GPCRs for the TG, we
calculated a list of genes that are expressed at a higher level in
the TG relative to the mean expression in brain, liver, OE, and
skeletal muscle (Figure 5, Ref.

PLOS ONE | www.plosone.org

[65,26,72,60,73-76,59,77-80,59,81-83]). Many of the top 30
candidates that were thereby identified are involved in
nociception, migraine, pruritus, inflammation, vasodilatation,
and vasoconstriction.

Mrgpr. The most specific and predominantly expressed
GPCRs in the TG and DRG belong to the gene family of Mas-
related receptors (Mrgpr) [84—-86]. The Mrgpr gene family
encompasses 20 members, most of which are exclusively
expressed in the TG and DRG (Figure S5). Eleven of them
belong to the 30 most specific GPCRs for the TG. Mrgpre,
Mrgprf, and Mrgprh are also expressed in other tissues (Figure
S5). The family of Mrgpr is a relatively newly investigated class
of receptors of which only three members have been
deorphanized. Mrgprd is involved in (-alanine-mediated pain
transmission [55] and influences the perception of mechanical
and thermal stimuli [87]. Mrgprx1 and -a3 are receptors for
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chloroquine and BAMS8-22, which induce histamine-
independent pruritus [26]. Furthermore, the function for
Mrgprb4 was recently shown to be involved in sensing touch or
the massage-like stroking of hair [88]. Although the expression
of Mrgprs has already been described in several studies, our
analysis currently provides the most comprehensive overview
for the TG and DRG expression profiles in comparison with
various other tissues. Judging by the specific expression of this
gene family, our data show that Mrgprs are as specific to the
TG and DRG as ORs are to the OE, or pheromone receptors
are to the vomeronasal organ (Figure S5). Because of their
specific expression pattern, the Mrgpr family may be the most
important class of chemo- or somatosensory GPCRs in the TG
and DRG. The expression of Mrgprd and Mrgpre was validated
by in situ hybridization (Figure 4).

Other well-known TG-specific GPCRs were members of 5-
hydroxytryptamine receptors (Htr), the mu-opioid receptor
(Oprm1), glutamate receptor 8 (Grm8), the prostacyclin
receptor (Ptgir), and prokineticin receptor 1 (Prokr1). Prokr1,
which is one of the most specifically expressed GPCRs in the
TG is involved in nociception similar to Trpv1. Negri and
colleagues showed an impairment of nociception and
inflammatory pain sensation in mice that lacked Prokr1 [74].

Among the 30 GPCRs that are most specifically expressed in
the TG, we identified 7 new candidate transcripts that have not
been previously described.

Ghrhr. One of the newly found candidates that is specifically
expressed in the TG but not the DRG is the growth hormone-
releasing receptor (Ghrhr) (Figure 5). This receptor is
expressed in the pituitary gland, and its activation leads to the
synthesis of growth hormones. Ghrhr is associated with the
growth disease Dwarfism of Sindh [72].

Hcrtr2. Another interesting candidate transcript is that of the
orexin receptor 2 (Hcrtr2/Ox2). Orexin receptors are
responsible for sleeping disorders, such as narcolepsy, and
can induce sedative effects [89]. In addition to this function,
anti-nociceptive effects were reported for Htcr1, but fewer or
none were reported for Hcrtr2 [81]. The pathophysiological
involvement of Hcrtr2 in pain remains to be investigated. The
expression of this receptor in the DRG was recently shown
[90].

Htr. Several 5-hydroxytryptamine receptors (Htr) are, among
others, the most specific receptors that are expressed in the
TG (Figure 5). We detected the expression of Htr1a, Htr1b,
Htr1d, Htr1f, Htr2a, Htr4, Htr5a, Htr5b, and Htr7 (> 1 FPKM).
The presence of Htr1a, Htr1b, Htr1d, Htr1f [91,92] Htr2a, and
Htr7 [93,94] mRNA in the human TG was detected by PCR. To
the best of our knowledge, we could not find any previous
reports regarding the expression of Htr4 and Htr5b in the TG,
which were weakly expressed with an FPKM of 1-3 (Figure
S6). When comparing both types of sensory ganglia, Htr1d
expression is 2-fold higher in the TG (~19 FPKM) than in the
DRG (~9 FPKM). The expression of serotonin receptors in the
TG, cerebral blood vessels, and meningeal tissues is of major
interest to understanding the pathophysiology of migraines
[95,96].

Cysltr2. The expression of the cysteinyl leukotriene
receptors 1 and 2 was shown in the spinal cord in rat. Cysltr1 is
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involved in the development of neuropathic pain [97]. The
physiological function of Cysltr2 is unknown; however, Cysltr2
may be involved in cancer progression in other tissues [98].
Other GPCRs: Other newly detected TG-specific GPCRs
were as follows: Gpr149, Gpr139 and Gpr35. Gpr35 is a
recently deorphanized receptor that is activated by agonists
such as kuynurenic acid or gallic acid [99,100]. Gpr35
activation causes analgesia in the DRG [100]. Regarding the
recently identified ligands, it seems possible that Gpr35 serves
as a nociceptor in the TG or as a chemoreceptor. The
expression of Gpr35 was validated by in situ hybridization in
the mouse TG, where we show an expression pattern that is
primarily located at the margin of the TG tissue (Figure 4).

Other G Protein-Coupled Receptors that are expressed
in Trigeminal Ganglia

In addition to the 21 new receptors in the top 30 groups
(Figure 3-4), we detected another 79 GPCRs (> 1 FPKM)
whose trigeminal expression was not known (Table S2). We
surveyed the expression of some of these GPCRs by in situ
hybridization in TG tissue. Here, we will briefly describe the
most interesting newly detected GPCRs as well as some well-
characterized GPCRs, which were not among the 30 most
specific or highest expressed GPCRs.

Tac3. The neuromedin-K receptor (Tac3/Nk3) is expressed
in the spinal dorsal horn, the spinal trigeminal nucleus, and
several brain regions [101]. Its expression in the TG has never
been reported. Tac1 and Tac3 are suggested to be involved in
formalin and capsaicin-caused nociception [102,103]. In situ
hybridization experiments reveal a clear and specific
expression of Tac3 in several cells of the TG (Figure 4).

Tbxa2r. The thromboxane receptor 2A (Tbxa2r) is a GPCR
that we found to be specifically expressed in the TG, which we
could also detect by in situ hybridization (Figure 4). The
expression of Thxa2r seems to be higher in a subset of
trigeminal cells (Figure 4). Tbxa2r is involved in cancer
development, anti-platelet aggregation, and vasoconstriction
[104-107]. Additionally, Tbxa2r has been suggested to be
involved in migraine development (US Patent No: 4.839.384),
and new blockers of this receptor may be useful for migraine
treatment.

Lgr5. Recent studies have shown that the impairment of
Lgr5 is highly up-regulated in various types of cancer cells
[108,109]. One study describes how the Lgr5-associated
substance fexofenadine induces the relief of symptoms of
seasonal allergic rhinitis, including nasal congestion. However,
these mechanisms remain unclear [110].

Cnr. For the cannabinoid receptor 1 (Cnr1), we detected an
FPKM value of 12 in the TG. The expression of Cnr1 in
medium and large diameter neurons of the TG is well-known
[111]. Nevertheless, we confirmed the expression of Cnr1 by in
situ hybridization experiments (Figure 4). Cnr1 regulates the
pre-synaptic inhibition of neurotransmission by reducing the
GABA release by GABAergic axons [112]. Cnr1 is coupled to
specific types of potassium channels, mobilizes Htr3 receptors,
and is negatively coupled to L-type voltage-gated calcium
channels (VGCCs) [113-115]. Several previous studies
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demonstrate the importance of Cnr1 in neuronal anti-
inflammatory and nociceptive processes [116,117].

Hrh. Histamine receptors (Hrhs) are involved in the
perception of pain and in histamine-dependent pruritus
[118,119]. Hrhs were detected in the TG by several previous
studies, although with different expression patterns [120,121].
In our RNA-Seq analysis, we found that only Hrh3 is expressed
at an FPKM value that is higher than 1 (~3 FPKM), which fits
well with the expression analysis of Hrh3 in rat embryonic
tissues from Heéron and colleagues in 2001 (Table S2) [119].
Hrh1 mRNA in the TG was reported by Kashiba and Senba in
2001 [120] and was found to be weakly expressed in our study
(0.9 FPKM).

Other GPCRs. Most of the newly identified GPCRs that are
expressed in the TG are orphan receptors, and some of them
seem to be specific for the TG and DRG, such as Gpr126 and
Gpr149. The expression of Gpr126 was verified by in situ
hybridization (Figure 4). We confirmed a few weakly expressed
genes (0.1- 1 FPKM) with in situ hybridization experiments to
show that RNA-Seq is able to detect weakly expressed genes
such as the dopamine D3 (Drd3) and the fatty-acid receptor
omega-3 (O3far). However, due to their low expression in the
TG and DRG, it is unclear whether these receptors play any
important physiological role in these tissues.

Olfactory Receptors

In 1991, Buck and Axel discovered ORs that form the largest
superfamily of GPCRs [122]. ORs are primarily expressed in
the OE but also in non-olfactory tissues, such as the testes,
spermatozoa, prostate, and many other tissues [123-129]. In
non-olfactory tissues, these receptors are involved in the
proliferation of cancer cells [130] and in the swimming behavior
of spermatozoa [127]. In general, ectopically expressed ORs
are less represented and less strongly expressed than in the
OE [129]. Therefore, we included in our analysis ORs with
lower expression levels (> 0.1 FPKM). Of 1125 OR genes, we
could detect the expression of 98 ORs in the TG and 33 ORs in
the DRG with low abundances (0.1-1 FPKM) (Figure S6). In
almost all cases, the expression of ORs was lower than 1
FPKM. In the TG, we found few moderately expressed ORs,
such as OIfr920 and OIfr420 with an FPKM higher than 1, that
are both expressed exclusively in the TG and OE. We verified
the expression of 3 ORs with FPKM levels of 0.1-1 by in situ
hybridization (Figure 4). The expression of OIfr78, which is a
weakly expressed OR (0.2 FPKM) that is also known as PSGR,
was validated by our analysis. The human orthologous gene of
OIlfr78 (PSGR) is a well-known ectopically expressed receptor
and evokes calcium responses in the prostate cancer cell line
LNCaP and primary prostate epithelium cells that are mediated
by steroid hormones (androstenone derivatives). The activation
of PSGR inhibits the proliferation of these cancer cells [130].

Finally, we compared the cumulated FPKM values for all
ORs to investigate not only the number of expressed ORs but
also the general cumulative expression level and their
presence in TG compared with well-known receptors and
channels (Figure 6). Regarding those cumulative values, the
presence of ORs (24 sFPKM) is comparable to the cumulative
expression of Cnrs (28 sFPKM), P2Y (38 sFPKM), and
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mGIuRs. This high cumulative value argues for the possible
functional involvement of the ORs in trigeminal
chemosensation. The low FPKM values of individual ectopically
expressed ORs may result from a mosaic gene expression
pattern, which was also suggested in other studies [129] and
was shown for TAARs [131]. It is conceivable that not all TG
neurons express ORs and that these receptors might be
located only in a few trigeminal neurons, as was shown for
OIfr1417 (Figure 4). It is also conceivable that a single TG
neuron expresses many different ORs similar to the expression
patterns that were shown for bitter taste receptors [132]. The in
situ hybridization staining patterns for 2 ORs (OIfrf78 and
OIfr420) argue for the expression of these receptors in a larger
number of neurons (Figure 4). Probably all odorants are able to
stimulate the TG [133], whereas ORs that are in the TG may
support the trigeminal chemosensation of odorants in the nasal
mucosa. A detailed table containing the total amount of ORs
that are expressed in the TG and DRG can be found in the
supplementary data (Figure S7).

lon Channels that are Expressed in Trigeminal Ganglia

lon channels play an important role in the trigeminal
perception of chemical and physical stimuli [134,9,6,135]. We
assembled a table of 227 ion channels (potassium channels
were analyzed separately) and analyzed their expression in the
TG (Table S3). In total, 136 ion channels were detected (> 1
FPKM). Of these ion channels, 103 have already been
described in previous studies, whereas the trigeminal
expression of 33 ion channels was first detected in the present
study. In the class of weakly expressed genes (0.1- 1 FPKM),
24 were known and 27 were new (Table S3).

Highest Expressed lon Channels in Trigeminal Ganglia

We listed the 30 most highly expressed ion channels for the
TG and found 7 new transcripts among these ion channels
(Figure 7, Ref. [136—138,136,139-158,155,159,160]).

Ano. One of the most recently detected families of ion
channels in the TG is the anoctamin family of proteins (Ano)
that are calcium-activated chloride channels with eight
transmembrane domains [161]. Ano1 (Tmem16a) and Ano2
(Tmem16b) are expressed in sensory and respiratory tissues of
the nose, trigeminal ganglia, septal organ, vomeronasal organ,
and Grueneberg ganglion [162]. Ano1 and Ano2 contribute to
secretory processes and sensory signal transduction
[163—-166]. In a recent study, the expression of Ano1, Ano3,
Ano4, Ano6, Ano8, and Ano10 was be shown in the TG, some
of which may have a role in signal amplification in TG neurons
[167]. We validated the expression of the most dominantly
expressed Ano3 (52 FPKM) in the TG by in situ hybridization
(Figure 8).

Scn. The expression of various voltage-gated sodium
channel a-subunits (VGSC/Scn/Na,) in the TG was already
shown in recent studies. The best-characterized channels in
peripheral neurons are Scn9a (Na,1.7), Scn10a (Na,1.8), and
Scn11a (Na,1.9), which play a role in orofacial pain, trigeminal
neuropathic pain, and toothache [168—171]. Scn9a is localized
in the axons [172]. A mutation of Scn9a in the OE causes a
painful insensitivity or even anosmia [173,174,150,175].
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Figure 6. Comparison of cumulative FPKM values (sFPKM).
where compared to the sFPKM values of the ORs. The expression of potassium channels is most pronounced in the TG (sFPKM
1551) and DRG (sFPKM 1230), followed by the VGSCs (TG: 963 sFPKM, DRG: 695 sFPKM). Mrgprs, iGlut, P2X, and GABA(A) are
expressed at a similar level. Nevertheless, the cumulated FPKM of ORs (TG: 24 sFPKM, DRG: 10 sFPKM) can be compared with
the cumulated FPKM of Cnr (TG: 22 sFPKM, DRG: 10 sFPKM), mGlut (TG: 41 sFPKM, DRG: 29 sFPKM), and P2y (TG: 38 sFPKM,
DRG: 51 sFPKM). Mrgprs are expressed almost 3-fold higher in the DRG (197 sFPKM) than in the TG (76 sFPKM).

doi: 10.1371/journal.pone.0079523.g006

Odorants such as thymol or menthol are able to block VGSC
currents as effectively as the local anesthetic lidocaine and
thereby prevent nociception [176]. VGSCs are mainly thought
to be important in synaptic signaling and in the initiation and
propagation of action potentials in neurons [177,178].
addition to the previously described VGSCs, we detected
SCN1a (Na,1.1) to be highly and specifically expressed in the
TG and DRG (Figure S8). Scn1a can enhance persistent
inward sodium currents, and recent studies indicate that a
mutation in this gene might play a role in migraine development
and in epilepsy [179,180]. We verified the expression of Scn1a
and Scn9a by in situ hybridization (Figure 8).

GlyR. The glycine beta subunit (GlyRb) is highly expressed
in the TG (Figure S9). The presence of GlyRs in neurons of the
TG is not yet known. Glycine is the most prominent inhibitory
mediator in the whole PNS, and both GABA and glycine are the
two best-established inhibitory transmitters. Normally, GlyRb is
part of a heteromultimeric complex with GlyR alpha subunits;
however, the corresponding alpha subunits are virtually absent
in the TG (

< 1 FPKM, Table S3). Potential partners of GlyRs are the
GABA(A) receptor subunits (Gabra1/2; Gabrg2), which are
highly expressed in the TG (Figure 7 and Figure S9) [167];
however, the existence of such a heteromeric receptor in vivo
is elusive. GlyRs can modulate chronic and neuropathic pain
[181], and a potentiation of GlyRs that are expressed in the
spinal cord contributes to the analgesic effects of cannabinoids
[182]. The RNA-Seq detection of GlyRb was confirmed in our
study by in situ hybridization (Figure 8).

Tmem38b. The trimeric intracellular cation channel B is
highly expressed in the TG. This gene codes for an
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sFPKM values for some prominent ion channels and GPCRs

intracellularly expressed channel that releases calcium from
intracellular stores. A dysfunction of this gene in muscle leads
to recessive osteogenesis [158].

Clic. Chloride intracellular channels (Clics) has been shown
to be involved in a variety of chloride ion transports within
different types of cellular compartments. Berryman and
Bretscher suggest a central role for Clic1, Clic4, and Clic5 in
cellular chloride transport [183]. The function of the protein
Clic6, which is a novel member of this ion channel class
remains elusive [184]. In TG, all members of the Clic channel
family could be identified, whereas Clic1 is the most highly
expressed subunit (Table S3). Chloride homeostasis plays a
crucial role in several functions, which include signal
transduction, control of the membrane potential, and the
involvement of various secretory and absorptive cellular
processes [185].

Piezo2. Fam38B (Piezo2) is a mechanically activated cation
channel. Coste and colleagues showed the expression of
Piezo2 in the DRG and suggested its involvement in
mechanically induced sensations such as pain and touch
[142,186]. We detected Piezo1 (Table S3) and Piezo2 (Figure
7) in the TG where its physiological role might be the same as
in the DRG.

Cacng. Voltage-gated calcium channels (VGCCs) are
calcium permeable ion channels that are expressed in
excitatory cells of muscles and the nervous system. Some
members of the voltage-gated calcium channel y-subunits
(Cacng) act as AMPA-receptor regulators in the brain [187].
However, the physiological function of Cacng7 in the TG needs
to be investigated, and according to previous made studies, the

November 2013 | Volume 8 | Issue 11 | €79523



Gene Symbol
Sodium Channel Type 1 Beta Scn1b
Voltage-Dependent Anion-Selective Channel 1 Vdac1
Sodium Channel Type 4 Beta Scn4b
Sodium Channel Type 10 Alpha Scn10a
Sodium Channel Type 7 Alpha Scn7a
Voltage-Dependent Anion-Selective Channel 3 Vdac3
Voltage-Dependent Calcium Channel Gamma-7  Cacng7
Voltage-Dependent Calcium Channel Beta-3 Cacnb3
Piezo-Type Mechanosensitive lon Channel 2 Fam38b
Amiloride-Sensitive Cation Channel 3 Accn3
Sodium Channel Type 11 Alpha Scn11a
Glycine Receptor Subunit Beta Girb
Sodium Channel Type 8 Alpha Scn8a
Hyperpolarization-Activated CNG Channel 2 Hcn2
NMDA Glutamate Receptor Zeta-1 Grin1
Chloride Intracellular Channel 1 Clic1
Anoctamin-3 Ano3
Sodium Channel Type 9 Alpha Scn9a
Transient Receptor Potential Channel M8 Trpm8
5-Hydroxytryptamine Receptor 3A Htr3a
Gamma-Aminobutyric Acid Receptor Alpha-1 Gabra1
P2X Purinoceptor 3 P2rx3
Gamma-Aminobutyric Acid Receptor Alpha-2 Gabra2
Chloride Channel Protein 3 Clen3
Hyperpolarization-Activated CNG Channel 1 Hen1
Trimeric Intracellular Cation Channel Type B Tmem38b
Gamma-Aminobutyric Acid Receptor Gamma-2  Gabrg2
Sodium Channel Type 1 Alpha Scn1a
Chloride Channel Protein 6 Clcn6
Kainate Glutamate Receptor 1 Grik1
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L SM B OE DRG TG Exp Function

Modulating VGSC [136]
Alzheimer [137]
Modulating VGSC [138]
Nociception [136]
Nociception [139]
Development [140]
Unknown Function -

QT Syndrome [141]
Mechanotransduction  [142]
Migraine [143]
Chronic Pain [144]
Chronic Pain [145]
Nociception [146]
Neuropathic Pain [147]
Nociception [148]
Cancer Development  [149]
Unknown Function -

Nociception [150]
Temp. Detection [151]
Anti-Nociceptive [152]
Nociception [153]
Migraine [154]
Nociception [155]
Vascular Hypertension [156]
Neuropathic Pain [157]
Osteogenesis [158]
Nociception [155]
Nociception [159]
Unknown Function -

Peripheral Neuropathy [160]

>0

>01 >1 >3 >10 >30 >100 >300 >1000

FPKM |

Figure 7. Ranking of the most highly expressed ion channels in the TG. We investigated the expression in the brain (B), liver
(L), olfactory epithelium (OE), skeletal muscle (SM), DRG, and TG. Seven of the 30 most highly expressed ion channels have never
been described as expressed in sensory ganglia in previous studies (marked with (-)). Many of the most highly expressed ion
channels in the TG and DRG are involved in the sensation of pain.

doi: 10.1371/journal.pone.0079523.g007

participation of VGCCs
[188-190].

in pain processing is possible

lon Channels that are Specifically Expressed in the
Trigeminal Ganglia

To identify the most specific ion channels for the TG, we
calculated a list of genes that are expressed at a higher level in
the TG relative to the mean expression levels found in the
brain, liver, OE, and skeletal muscle (Figure 9, Ref.
[138,151,144,8,191,192,139,193,194,152,195,155,142,195,155
,159,152,196-198,157,153,199-204]). Many of the highly
expressed ion channel types (Figure 7 and Table S3), such as
VGSCs, ionotropic glutamate receptors (iGluRs),
purinoreceptors (P2Xs), 5-hydroxytryptamine receptors (Htr3s),
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Hcen, and GABA(A), also belong to the most specific 30 of the
trigeminally expressed ion channels. The most specific ion
channels for the TG have been thoroughly investigated, which
the exception of the four channels Trpc6, Piezo2, GlyRb, and
Scn1a, which have not previously been detected in the TG.
iGIuR. There are three classes of iGluRs: the a-amino-5-
methyl-3-hydroxy-4-isoxazole propionic acid (AMPA) receptors
(Gria/Grid), N-methyl-D-aspartate (NMDA) receptors (Grin),
and kainite receptors (Grik). iGIuRs are expressed in the cell
membranes of neurons and are highly concentrated in
postsynaptic regions [205]. These channels are involved in
signal transduction between neurons, learning, and in a range
of neurological dysfunctions [206,207]. iGluRs that are
localized in the TG play a fundamental role in processing
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Figure 8. In situ hybridization for some ion channel in mouse TG. A Trpv1 (Transient Receptor Potential Channel 1) B Trpm7
(Transient Receptor Potential Channel M7) C Trpm8 (Transient Receptor Potential Channel M8) D Trpc6 (Transient Receptor
Potential Channel C6) E Scn1a (Voltage-Gated Sodium Channel 1A) F Scn9a (Voltage-Gated Sodium Channel 9A) G GlyRb
(Glycine Receptor Beta) H Ano3 (Anoctamin 3) | Kcnk3 (Potassium Channel K3) J Kcnk9 (Potassium Channel K9) K Kcnk18
(Potassium Channel 18) L Kcna4 (Potassium Channel A4) M Grik2 (Glutamate Receptor, lonotropic, Kainate 2) N Pgr
(Progesterone Receptor) O Pirt (Phosphoinositide-Interacting Regulator of TRP) P Tir1 (Toll-Like Receptor 1) Q Grik2 (Glutamate
Receptor, lonotropic, Kainate 2) R Ano3 (Anoctamin 3) 8 Trpm7 (Transient Receptor Potential Channel M7). Weak signals are
marked by arrows. Scale for A-P 250 ym, Q-S 75 pm.

doi: 10.1371/journal.pone.0079523.g008
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Gene Symbol L SM B OE DRG TG Exp Function

Sodium Channel Type 10A Scn10a + Nociception [138]
Transient Receptor Potential Channel M8 Trpm8 - + Temp. Detection [151]
Sodium Channel Type 11A Scn11a - + Nociception [144]
Transient Receptor Potential Channel V1 Trpv1 - + Thermal Hyperalgesia [8]
ASIC Amiloride-Sensitive Cation Channel 3 Accn3 [ ] + Acid Sensing [191]
P2X Purinoceptor 3 P2rx3 [ ] + Chronic Pain [192]
Sodium Channel Type 7A Scn7a - + Nociception [139]
Anoctamin-3 Ano3 [ ] + Unknown Function -
Transient Receptor Potential Channel A1 Trpa1 - + Inflammentory Pain [193]
Kainate Glutamate Receptor Inotropic 1 Grik1 - + Neurotransmission [194]
5-Hydroxytryptamine Receptor 3A Htr3a - + Nociceptive [152]
Neuronal Acetylcholine Receptor Alpha-6 Chrna6 - + Neurotransmission [195]
Gamma-Aminobutyric Acid Receptor Gamma-1 Gabrg1 + Nociception [155]
Piezo-Type Mechanosensitive lon Channel 2 Fam38b - - Mechanotransduction  [142]
Neuronal Acetylcholine Receptor Beta-3 Chrnb3 + Neurotransmission [195]
Gamma-Aminobutyric Acid Receptor Alpha-2 Gabra2 - + Nociception [155]
Sodium Channel Type 1A Scnla I - Nociception [159]
5-Hydroxytryptamine Receptor 3B Htr3b + Nociceptive [152]
Anoctamin-4 Ano4 + Unknown Function -
Voltage-Dependent L-Type Calcium Channel Beta-4 Cacnb4 - + Neuropathic Pain [196]
Neuronal Acetylcholine Receptor Alpha-7 Chrna7 [ ] + Neuropathic Disorders  [197]
Short Transient Receptor Potential Channel 6 Trpc6 - Mechanotransduction  [198]
Hyperpolarization-Activated CNG Channel 1 Hen1 - + Neuropathic Pain [157]
Gamma-Aminobutyric Acid Receptor Alpha-1 Gabra1 - + Nociception [153]
Ryanodine Receptor 2 Ryr2 + Vital Brain Functions [199]
Acetylcholine Receptor M2 Chrm2 + Cognition [200]
AMPA Glutamate Receptor 4 Griad I + Neuropathic Disorders  [201]
P2X Purinoceptor 7 P2rx7 - + Chronic Pain [202]
Glycine Receptor Beta Glrb - = Chronic Pain [203]
Sodium Channel Type 8A Scn8a + Neuropathic Disorders [204]

>10 >30 >100 >300 >1000

>0

>01 >1 >3

FPKM |

Figure 9. Ranking of TG- and DRG-specific ion channels. We compared the expression levels of the most specific ion channels
of the TG and DRG with those in the brain (B), liver (L), olfactory epithelium (OE), and skeletal muscle (SM). Four previously
unreported ion channels could be identified among the 30 most specific ion channels in the TG (marked with (-)). Most ion channels
are involved in TG thermosensation, mechanosensation and pain perception.

doi: 10.1371/journal.pone.0079523.g009

orofacial pain [208]. The expression pattern of these receptors
in the DRG and TG was widely similar (Figure S9). In
invertebrates, receptors belonging to the iGIuR class respond
to several odorants. Furthermore, Benton and colleagues
suggest that iGluRs represent a novel class of chemosensory
receptors [209].

P2X. P2X-receptors are ATP-gated cation-permeable ion
channels. Seven members (P2X1-7) have been functionally
characterized previously [210,211]. In the TG, the expression
of P2X2-7 is well-described [212—-215]. Our RNA-Seq results
show the same expression pattern. Additionally, in our
experiments, P2X1 is expressed at low levels (~0.1 FPKM) that
are consistent with the low expression of P2X1 in rat TG that
was found by Kuroda et al. in 2012 by gqPCR [214]. The
predominant and specific expression of P2X3 in the sensory
ganglia that was revealed by our RNA-Seq data (Figure S9) fits
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well with the existing immunohistochemical data [212]. P2X-
receptors are involved in a wide range of pathophysiological
pain mechanics, such as migraine-induced, inflammatory,
neuropathic, or acute pain [216,217]. Spehr and colleagues
showed that an alteration of the expression of P2X-receptors in
rat cultured dissociated trigeminal neurons defines their
chemosensory properties [218]. Odors with an aromatic ring
structure  specifically modulate  P2X-receptors in a
concentration-dependent manner. Spehr and colleagues
suggest that this odor-induced activation of trigeminal neurons
could be one of the first steps that contribute to odorant
perception by the trigeminal sensory system [218].

Htr3. Both alpha and beta subunits of inotropic 5-
hydroxytryptamine receptors (Htr3a/b) are strongly expressed
in the TG, as demonstrated by in situ hybridization [219] and by
our RNA-Seq data (Figure 7 and Table S3). The most
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important role of Htr3 in the PNS is the regulation of pain and
hyperalgesia that is caused by tissue injury or inflammation
[220]. The inhibition of Htr3-evoked currents in cultured
trigeminal neurons through synthetic derivates of cannabinoids
is discussed as a possible new method of peripheral analgesia
[221].

GABA(A). In 2006, Hayasaki and coworkers investigated
the expression of ionotropic y- aminobutyric acid receptors
(GABA(A)) in rat TG cells [222]. Corresponding with our RNA-
Seq data, they detected the expression of the GABA(A)
subunits a1-6, p1-3, y1-3, and & by RT-PCR (Figure S9).
Hayasaki showed a strong immunoreactivity for all GABA(A)
subunits in the majority of neurons. The & and a6 subunits
were only observed in small neurons. The most prominently
expressed subunits in the TG were a1 and a2 (~50 FPKM), B2
and B3 (~20 FPKM), and y2 (~44 FPKM). These highly
expressed subunits might account for the majority of GABA(A)
receptors in the TG. The most common GABA(A) receptor
constellation in the CNS is a1 B2 y2 [223]. GABA(A) receptors
are involved in craniovascular nociception, whereas mainly
substances such as valproate, allopregnanolone, or propofol
may effectively block the neurogenic inflammation that is
mediated by GABA(A) receptors [224,225]. GABAergic
signaling along with intracellular chloride accumulation plays a
critical role in the regulation of signal transmission and pain
processed by neurons of the DRG [226-228].

Hen.  Hyperpolarization-activated cyclic nucleotide-gated
channels (Hcn1-4) are known to be expressed in the TG
[229,230]. As in previous studies, our RNA-Seq data revealed
that Hcn1-2 are predominately expressed in the TG (40-48
FPKM), whereas Hcn3-4 are expressed at a weaker level (4- 5
FPKM) (Figure S9). Cho and colleagues showed that Hen4 is
mainly present in 9% of all small-diameter TG neurons and in
4.7% of the DRG neurons, consistent with our results (TG: ~4
FPKM, DRG: ~3 FPKM) [230]. The non-selective Hcn cation
channels cause an inward cation current and are essential for
the maintenance of the neuronal membrane potential. In the
PNS, Hcns are involved in several pathoneurological
mechanisms such as inflammation-induced pain [231].

Trp channels. Transient receptor potential (Trp) channels
are possibly the best investigated ion channel subfamily that is
expressed in sensory ganglia, and their diverse functions,
which include nociception, thermo-, and chemosensation, have
been the focus of research in the last few decades
[8,232—-236]. Trp channels participate in a variety of sensory
processes and serve as receptors for environmental and
endogenous stimuli and some of them are involved in the
signal transduction cascades downstream of metabotropic
receptors [237]. In short, 28 members have been described,
that fall into six mammalian Trp-subgroups: Trpc (classical-
Trp), Trpv (vanilloid-Trp), Trpm (melastatin-Trp), Trpa
(ANKTM1-Trp), Trpp (polycystin-Trp), and Trpml (mucolipin-
Trp). The best characterized channels that are expressed in
the TG and DRG are Trpv1, which senses heat (43°C) and
capsaicin, Trpm8, which senses cold (23°C) and menthol, as
well as Trpa1, which has been suggested as a sensor of cold
(17°C) and isothiocyanates [5,8,134,238-244,151]. In line with
previous reports, our analysis confirmed that Trpv1, Trpm8,
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and Trpa1 are among the 30 most specifically expressed ion
channels in the TG (Figure 9). In total, our RNA-Seq detected
16 Trp channels expressed in the TG (Figure S10), which
mostly overlap with the most recent RT-PCR study [245],
where 17 of the 28 Trp channels were detected and were
primarily consistent with our RNA-Seq analysis. Differing from
the study of Vandewauw, we detected Trpc2 (1 FPKM), Trpc6
(2 FPKM), and Trpp5 (3 FPKM). As shown in the analysis of
Vandewauw, Trp-members, such as Trpv3 (~0.2 FPKM) and
Trpv6 (~0.4 FPKM), were also found to be expressed at low
levels in our study (Figure S10). Comparing the DRG and TG,
we detected differences in the expression levels for Trpc1 (TG:
11 FPKM, DRG: 5 FPKM), Trpom8 (TG: 49 FPKM, DRG: 8
FPKM), and Trpvl (TG: 12 FPKM, DRG: 29 FPKM). We
verified the expression of Trpm7 and Trpc6 in the TG by in situ
hybridization (Figure 8).

The Trpc- channel subfamily that was newly detected in the
TG, seems to play an important role in somatosensation. In
2009, Staaf et al. showed that the expression of Trpc3, Trpc4,
and Trpch5 changes after spared nerve injury of the DRG,
suggesting an involvement in nociception [246]. Furthermore, a
recent study showed that not only the common Trp channels,
such as Trpm8 or Trpa1, are involved in noxious temperature
detection but also Trpcb, which can serve as a cold transducer
in nociceptive and thermosensory nerve endings [247]. In
contrast, Trpc6 is known to play an important role in
vasoconstriction [248]. Additionally, these results indicate that
the less-studied Trpc channels may be involved in a variety of
trigeminal functions.

Potassium Channels that are Expressed in Trigeminal
Ganglia

In recent years, potassium channels have become a focus of
investigation for the mechanisms of somatosensation and
nociception [249]. Potassium channels are subgrouped as
voltage-gated channels (Kcna-Kcnd, Kcenf-Kenh, Keng and
Kcns), calcium-activated (Kcnm-Kcnn), inwardly rectifying
(Kcnj), and background/leak, 2 pore channels (Kcnk) [250].
Kenk channels are a major fundamental determinant for
membrane potential and membrane input resistance in
excitable cells [251]. Three Kcnk channels (Kcnk3, 9, and 18,
also named TASK-1, 3, and TRESK) function as
chemoreceptors for hydroxyl-a-sanshool in trigeminal neurons
[9], which causes a tingling sensation. Other channels, such as
Kcnk2, are heat-activated potassium channels and are
important for thermosensation in sensory neurons [252]. We
identified Kcnk18 as the most TG-specific potassium channel
(Figure 10, Ref. [253-262,256,263-267,256,268-277]).
Further, Kcnk18 was the first gene in which a mutation leads to
a non-functional channel protein, linked to migraine [278]. To
the best of our knowledge, among the 30 most specific
potassium channels, 15 of them had not been previously found
to be expressed in the TG. Some of these potassium channels,
such as Kcns3, are involved in common migraine development
processes [256] or are a focus of the therapeutic treatment
against diverse neurological diseases and pain, such as
Kcnma and Kenmb, which had already been identified in DRG
neurons but not in the TG [279].
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Gene Symbol L M B OE DRG TG Exp Function
Potassium Channel K18 (TRESK) Kcnk18 + Migraine [253]
Potassium Voltage-Gated Channel D1 Kend1 - + Iga-Current [254]
Potassium Voltage-Gated Channel H5 Kcnh5 - Hyperpolarization [255]
Potassium Voltage-Gated Channel B2 Kcnb2 [ + Migraine [256]
Potassium Voltage-Gated Channel H7 Kenh7 - Shizophrenia [257]
Potassium Voltage-Gated Channel A1 Kcna1 - + Isaaks Syndrom [258]
Calcium-Activated Potassium Channel Beta-1 Kenmb?1 [ + Neuronal Excitability [259]
Potassium Voltage-Gated Channel KQT4 Kcng4 [ + Tune Mechanoreceptors  [260]
Potassium Voltage-Gated Channel G3 Keng3 - Cell Excitability [261]
Potassium Voltage-Gated Channel A4 Kcna4 + Neuronal Excitability [262]
Potassium Voltage-Gated Channel KQT3 Kcng3 + Migraine [256]
Potassium Voltage-Gated Channel S1 Kcns1 - - Neuropathic Pain [263]
Potassium Voltage-Gated Channel D3 Kend3 - - Neuronal Excitability [264]
Potassium Voltage-Gated Channel A2 Kcna2 [ | ] + Neuropathic Pain [265]
Potassium Channel T2 Kent2 = Neuronal Excitability [266]
Potassium Voltage-Gated Channel H2 Kcnh2 - - - Physical Excitation [267]
Potassium Voltage-Gated Channel S3 Kens3 I - Migraine [256]
Potassium Voltage-Gated Channel C2 Kcnc2 - Cell Development [268]
Voltage-Gated Potassium Channel beta-2 Kcnab2 - - + Epilepsy [269]
Potassium Voltage-Gated Channel H1 Kenht [ ] || - Touch and Pain [270]
G Protein-Activated Inward Rectifier Potassium Channel 1 Kcnj3 - = Neurological Disorders  [271]
Voltage-Gated Potassium Channel beta-1 Kcnab1 - - - Neuronal Excitability [272]
Potassium Voltage-Gated Channel V1 Kenv1 - I-Current [273]
Potassium Voltage-Gated Channel H6 Kcnhé I Unknown Function -
Potassium Voltage-Gated Channel H8 Kcnh8 - Slow VD-Ii -Currents [274]
Potassium Channel T1 Kent1 - -- + Epilepsy [275]
ATP-Sensitive Inward Rectifier Potassium Channel 14 Kenj14 + Unknown Function -
Potassium Voltage-Gated Channel G2 Keng2 = Unknown Function -
Conductance Ca?*-Activated Potassium Channel 4 Kcnn4 - Neuronal Excitability [276]
Potassium Channel K1 Kenk1 -- - Nociception [277]
>0 >01 >1 >3 >10 >30 >100 >300 >1000
FPKM | T

Figure 10. Ranking of potassium channels that are most specifically expressed in the TG and DRG. A comparison of the
most specific potassium channels in the TG and DRG compared with the brain (B), liver (L), olfactory epithelium (OE), and skeletal
muscle (SM). For the TG, newly detected channels are marked with (-).

doi: 10.1371/journal.pone.0079523.g010

In summary, only a few potassium channels of the ~80
members have been well investigated to date and are known to
play a role in sensing temperature, chemical substances, and
pain in the peripheral sensory system [250,280-288,12,289,9].
A detailed list of all potassium channels that are expressed in
the TG and DRG can be found in the supplementary data
(Figure S11).

Other Channels and Proteins that are Expressed in
Trigeminal Ganglia

In addition to the 30 most specific or most highly expressed
ion channels or GPCRs, we found other genes that are highly
or specifically expressed in the TG.

TIr. Toll-like receptors (Tlrs) are a type of pattern recognition
receptor and recognize molecules that are shared by
pathogens (pathogen-associated molecular patterns)
[290-293]. Recent studies have shown that TIr2 and TIr4 are
also involved in inflammation processes or in chemically
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induced nociception [294,295]. Eleven members of the Tir
family are known today. In addition to the two known TG-
expressed TlIrs, we detected TIr1, -3, -4, and -5 (Figure S12).
The expression of TIr1 in the TG was confirmed by in situ
hybridization (Figure 8).

Aqgp. Aquaporins (Agp) are a family of membrane-spanning
water channels that are involved in fluid transport [296]. Recent
studies indicate the fundamental role of Agp as a potential
therapeutic target for migraines [297]. The water-selective
channels Agp1 and Aqp4 are involved in the pathophysiology
of several neurological diseases. Aqp3, Agp8, and Agp9 can
also transport glycerol or larger solutes. The expression
patterns for several Agps are shown in the supplementary data
(Figure S12).

Calm. We found members of the calmodulin (calcium
modulated protein: Calm1-3) protein family to be highly
expressed (> 500 FPKM) in the TG (Figure S12). Additionally,
we found all members and subunits of the calcium/calmodulin-
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dependent protein kinase types (Camk) in the TG (Figure S12).
Calm binds intercellular calcium and alters the signals of
different target proteins, which influences signal transmission
and neurotransmitter release, as shown for Ano1 in epithelial
cells [298]. Camk2a is a well-investigated protein that is
important for synaptic plasticity and for the regulation of
excitatory synaptic transmission in neurons [299]. It was shown
that inhibition of Camk2a in rat TG effectively decreased pain-
evoked signals though Trpv1 [300]. Camk2a plays an important
role in nociception, inflammation, and injury-evoked events in
Sensory neurons.

Cgrp. It has been suggested that the pathology of migraine
relies on the activation of TG nociceptive neurons by the
vasodilatation of intracranial extracerebral blood vessels and
the subsequent release of vasoactive sensory neuropeptides,
most prominently in the calcitonin gene-related peptide Cgrp,
which results in an increase in pain [301]. From the trigeminal
nuclei, signals are sent to higher centers and pain is perceived.
Recently, it was shown that there are two different mechanisms
by which Cgrp can induce migraines: the proton-regulated
release of Cgrp (with Asic3) and a calcium and synaptosomal-
associated pathway (with Trpv1) [302]. In agreement to other
studies, we detected a much higher expression of Cgrpa (325
FPKM) and a weaker expression of Cgrpp (40 FPKM) in the
TG [303]. Compared with the TG, Cgrpa-B expression is ~3-
fold higher in the DRG (Figure S12).

Pirt. The phosphoinositide-interacting regulator of Trp
channels (Pirt) is specifically expressed in sensory ganglia
[304]. In all vertebrates, Pirt is a highly conserved membrane
protein that binds to PiP2 [305]. In our RNA-Seq analysis, Pirt
is highly expressed in the TG and DRG, with an FPKM value of
160 and 174, respectively (Figure S12), but is absent in all
other tissues except for the OE (6 FPKM). We used Pirt as a
TG-specific marker for in situ hybridization experiments (Figure
1 and Figure 8). It is suggested that Pirt plays a fundamental
role in many aspects of somatosensation. Pirt is able to interact
with different Trp channels and possibly other channels, which
indicates a possible regulatory role in neurons [306]. A recent
study showed that Pirt is an essential modulator of Trpv1 [307]
and Trpm8 function [308].

Pgr. In recent studies, the expression of the progesterone
receptor (Pgr) was shown in the caudal part of the trigeminal
nucleus, which is located in the pons [309]. We could show Pgr
expression (3 FPKM) in the TG. Pgr is possibly involved in the
development of migraines [310] and in anti-nociceptive effects
in the DRG of mice [311]. Because the expression of Pgr has
never been shown in the TG, we validated our RNA-Seq data
by in situ hybridization experiments (Figure 8).

Nkcc. The sodium-potassium-chloride-cotransporter 1
(Nkece1, Slc12a2) is a chloride importer that is involved in the
regulation of intracellular chloride levels. Nkcc1 is highly
expressed in several peripheral sensory tissues and the
embryonic CNS. In the embryonic and early postnatal CNS,
downregulation of Nkcc1 accompanied by an upregulation of
chloride-extruding transporters is linked to the so-called GABA
switch that renders GABA-induced signals inhibitory [312,313].
In the olfactory sensory neurons, Nkcc1 maintains high
intracellular chloride concentrations crucial for the generation of
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the receptor potential [314,315]. Our RNA-Seq data revealed
the expression of Nkcc1 in the TG (63 FPKM) and DRG (47
FPKM) (Figure S12). Nkcc1 is one of the transporters that is
most specifically expressed in the TG and OE. In trigeminal
sensory neurons, Nkcc1-mediated intracellular chloride
accumulation is crucial for the amplification of capsaicin-
induced responses [167]. In the DRG, Nkcc1 activation could
be associated to neurite regeneration [316] and Nkcc1 knock-
out mice displayed reduced pain sensitivity [317]. In agreement
with previous studies, we did not detect Nkcc2 expression in
the TG or DRG.

IL. Several members of the interleukin receptor family (IL)
were found to be moderately to highly expressed in the TG and
DRG. In more detail, the analysis revealed marked expression
of IL-1, IL-4, IL-6, IL-10, IL-13, IL-15, IL-17, IL-18, IL-31, and
IL-36 receptor subunits. Of special interest are the IL-6 and
IL-31 receptors. IL-6 receptor alpha (FPKM 6.7) dimerizes with
the promiscuous signal transducer IL-6 receptor beta subunit (=
gp130) which we found to be highly expressed in the DRG and
TG (FPKM 81.6, 110.6). The heteromeric IL-6 receptor,
composed of one IL-6 receptor alpha subunit and two gp130
transducers, mediates the elevation of [CI]; in DRG neurons via
the JAK/STAT pathway in an axotomy model of neurite
regeneration [316]. Beyond that, gp130 is required for signaling
induced by activation of the IL-6 receptor family member
oncostatin regulator beta (OSMR beta) which we found to be
expressed in the TG and DRG (FPKM 5, 9.2). Stimulation of
OSMR/gp130 was shown to potentiate capsaicin-induced
currents in small diameter DRG neurons [318] and appears to
be involved in pathological pain processes [319].

The IL-31 receptor alpha subunit (FPKM 3.7, 8.8) was found
to be highly expressed in human DRG and its ligand
IL-31showed marked overexpression in human pruritic atopic
skin inflammation samples [320]. In accordance with that, the
cytokine IL-31 is associated with pruritus and atopic dermatitis
in mice [321]. In the supplementary data we listed the
expression profile for all IL members (Figure S12).

Differential Expression Pattern Comparing Trigeminal
Ganglia and Dorsal Root Ganglia

TG and DRG are equally important for the detection of
chemicals and the physiology of pain [322]. However, a
detailed differential expression analysis of both tissues has
never been conducted before. Therefore, the main differences
between the TG and DRG were analyzed.

One main anatomical difference of the TG and DRG is that
the TG lacks cell bodies of large-diameter proprioceptors,
which rises from the mesencephalic trigeminal nucleus
[323,324] and are not included in our RNA-Seq analysis. This
could probably be the reason why some classes of GPCRs and
ion channels are detected with a higher FPKM in the DRG
compared to the TG.

However, the distribution of the FPKM values that were
obtained by our RNA-Seq analysis is highly similar between the
TG and DRG, and expression patterns for both tissues are
highly correlated (R?= 0.73, Figure 11A, 11B), whereas the
correlation of the TG with other tissues such as the OE is low
(R?=0.52) (Figure S13).
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Figure 11. Comparison of expression profiles of the TG and DRG. A Differences in the gene expression pattern of the TG and
DRG. Of all the genes detected in the TG and DRG, 98.6% were similar (> 1 FPKM), 8113 genes were detected in neither the DRG
nor the TG (< 1 FPKM), and 0.5% of the genes were TG- and 0.9% DRG-specific (> 1 FPKM). B FPKM distribution for both tissues
is highly similar when plotting FPKM values against the number of detected genes. C The regression graph visualizes the
correlation of the expression patterns for all detected transcripts in the TG and DRG. R?= 0.73.

doi: 10.1371/journal.pone.0079523.g011

Our intention was to identify genes with a pronounced
differential expression. Therefore, we used Cuffdiff analysis to
calculate the amount of significantly differentially expressed
genes, and found 19 and 23 genes were significantly higher
expressed in the TG and DRG, respectively (Figure 12).
Therefore, the relative low number of significantly represented
genes is due to the statistically correction for the approximately
23000 parallel comparisons, which makes it difficult to reach a
significant level. In addition to the Cuffdiff analysis, we added
genes that had at least 10-fold higher differential expression
levels, similar to the recently published RNA-Seq analysis of
the OE [41] (Figure 12). According to this criterion, the
expression of 65 genes is higher in the TG compared with the
DRG, and 117 genes have higher expression levels in the DRG
compared with the TG (Figure 11C, Figure 12).

We found 12373 genes that were expressed in both tissues
with an FPKM > 1 (Figure 11A). Of these genes, 0.5% were
detected only in the TG with an FPKM > 1, whereas 0.9% of
the genes were only detected in the DRG (

<1 FPKM).
To gain a functional overview for the gene expression
differences we used a gene ontology tool (http://

compbio.charite.de) (Table 2). Interestingly, the TG-specific
expression reveals a couple of genes (15) that are involved in
the chemosensory detection of volatile odorants (marked red in
Figure 12). We detected several specifically expressed
odorant-binding proteins, such as Lcn3 and Len4, Mup3, Mup4,
Obp1a, Gm14744, Gm14743, Gm5938, Gm1006, Aox3l1,
Gm13629, and 5430402E10Rik, which are primarily expressed
only in the OE and TG. Odorant-binding proteins are able to
transport hydrophobic molecules through the mucus to
receptors [325]. Lcn3 is a putative pheromone-carrier in the
vomeronasal organ [326]. The expression of this gene was
detected in the nasal septum and in the sensory epithelium of
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the vomeronasal organ. Miyawaki and colleagues suggested
that Lcn3 is involved in the sexual and reproductive behavior of
mice [326].

Many of these detected TG-specific transcripts are linked
directly into olfactory signal transduction, such as the cyclic
nucleotide-gated channel (Cnga2), which is involved in the
signal transduction of ORs [327], and the OR OIfr420, which is
specifically expressed in the TG and OE. Furthermore, we
detected the trigeminal expression of Ga,, which is the
olfactory G-protein alpha subunit (Figure S4). The TG- and OE-
specific expression of the hemophilic adhesive molecule Kirrel2
has been shown to be impaired in the olfaction signal
processing in a Cnga2 knockout mouse [328]. A comparison
with the OE transcriptome showed that most of the specific TG
transcripts are also highly abundant in the OE; additionally, 15
of the 65 genes are virtually exclusively expressed in both, the
OE and TG and are involved in diverse functions of olfaction.

In contrast, the DRG-specific genes that we found are
primarily involved in cellular processes such as cell growth,
localization, development, or cell death (71 of 117). Among the
117 genes, 2 voltage-gated calcium channel subunits
(Cacnatls and Cacng1) and one GPCR (Cxcl1) were identified.

Conclusions

Using the RNA-Seq method, we established a
comprehensive analysis of genes that are expressed in the TG
and DRG of mice. As we aimed to analyze genes that are
involved in sensory processes, we primarily focused our
analysis on GPCRs and ion channel expression.

Our catalog of the most highly or specifically expressed ion
channels in the TG demonstrates that nearly all of these ion
channels are involved in the sensation of pain or in the
detection of chemicals. Although the specific expression and
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Ripply2 Max  1.OE+00 Hspb7 >10fold 1.26-01
Hoxc9 [ | Max 2.4E-01 Hrc >10fold 5.4E-02
cul | | Max 1OE+00 Neurog3 >10fold 1.0E+00
Ear12 Max  1.OE+00 2210404007Rik >10fold 2.7E-01
Ear1 Max  8.0E-03 Plac8 | >10fold 2.2E-01
Hoxb3 Max 2.4E-01 Mybph | | ] >10fold 3.4E-01
Nrap [ |- Max 1.3E-01 Hsd17b14 >10fold 2.1E-01
Kihi31 [ | Max 2.1E-01 Cdkn2a >10fold 1.7E-01
Hoxa5 Max 2.5E-01 Pmp2 [ | >10fold 4.5E-04
Hfe2 I [ ] Max 2.56-01 Clec3b [ [ ] ] >10fold 2.1E-02
Igfn1 [ | Max 8.9E-02 Car3 | | >10fold 2.2E-03
Hoxb4 Max 25E-01 Cel2 >10fold 3.56-02
Mylkd | [ Max 1.2E-01 Bglap >10fold 2.0E-03
Obsen [ | Max  25€-03 Gal* >10fold 1.66-03
Has2 Max 8.9E-02 Fgl2* [ >10fold 5.0E-05
Trdn* [ I Max 1.5E-04 Ndufss | | > 10 fold_9.26-01

Trim54* [ ] Max__5.0E-05

Figure 12. Genes expressed differentially in the TG and DRG. A 65 genes are expressed at least 10-fold higher in the TG than
in the DRG. Brain (B), liver (L), olfactory epithelium (OE), and skeletal muscle (SM) were used to visualize the global expression
patterns for the selected genes. The expression of genes that are marked with (*) is significantly different between the TG and DRG.
Interestingly, 15 of the trigeminally-expressed genes are also expressed in the OE and have a function in olfaction. B In the DRG,
many of the 117 specifically expressed genes play a role in the development or regulation of gene expression, such as Ampd1 or
Cfd. Of the 117, 23 genes were significantly expressed at higher levels in the DRG than in the TG. In contrast to the TG, we found
several Hox genes with higher expression in the DRG than in the TG.

doi: 10.1371/journal.pone.0079523.g012

function of most of these channels in trigeminal sensory channels, only a few are well investigated, whereas the
neurons is well-characterized, we nevertheless identified four function of the majority is still unknown.

new trigeminally-expressed ion channels. In addition, we found Little is known about GPCRs expressed in the TG, and many
many moderately expressed Trp channels whose expression more than we know today may be involved in somatosensation.

Interestingly, most of the highly expressed GPCRs that we
found in the TG are still orphan receptors. Beyond that, our
study revealed the expression of a greater number of GPCRs
that are highly expressed in the TG. Our analysis emphasizes
the idea that Mrgprs are a family of specifically expressed
genes in the sensory ganglia. This receptor type clearly
dominates the group of specific GPCRs in the sensory ganglia.

We created a detailed list of all potassium channels that are Judged by their specific expression pattern, these GPCRs can
expressed in the TG. In our analysis, we detected the be best compared with ORs in the OE or to bitter taste
expression of a couple of potassium channels that have not yet receptors (Tas2rs) in the tongue. In contrast to other
been described in the TG. Of the ~80 members of potassium chemosensory receptor families, much less is known about

was not detected in the TG before, except in a very recent
study [245]. This observation is surprising because the function
of Trp channel in the TG and DRG has been in the focus of
research for many years. However, a potential function for
these newly detected Trp channels in trigeminal sensation is
elusive.
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Table 2. Classification of differentially expressed genes.

GO-Terms TG detected DRG detected Gene Functions
G0:0005549 12 0 Odorant Binding
GO0:0004984 1 0 Olfactory Receptor
G0:0050955 1 0 Thermoception
GO0:0005179 6 2 Hormone Activity
G0:0032502 12 46 Developmental Process
GO0:0005244 1 2 Voltage Gated lon Channel
soaiE % G-Protein Coupled Receptor
Binding
GO0:0007154 17 16 Cell Communication
G0:0048878 0 10 Chemical Homeostasis
G0:0042221 10 15 Response to Chemical Stimulus
G-Protein Coupled Signaling
G0:0007186 12 1

Pathway

doi: 10.1371/journal.pone.0079523.t002

ligands for the Mrgprs, and only three of the 20 members are
deorphanized. Nevertheless, the characterization of the
remaining Mrgprs and other orphan GPCRs with potential
chemosensory function (e.g., Gprcbb, Gprcbe, Gpr178, or
Gpr158) is a prerequisite to further our understanding of the
sensory functions of the DRG and TG. Our RNA-Seq study
may help to identify the important candidates that will be the
basis of future studies.

Differences in tissue-dependent sensory functions are
correlated with differences in the expression patterns for genes
that code for membrane receptors. A differential transcriptome
analysis of the TG and DRG identified several genes with
pronounced expression variances. Several of the genes that
are specific for the TG are also highly expressed in the OE and
are involved in the chemical detection of odorants. This
observation implies that the TG has a better capacity than the
DRG to detect chemical cues. Similarly, the higher cumulative
FPKM values for ORs in the TG and for Mrgprs in the DRG
strongly argue for a more chemosensory or somatosensory
specialization of these two sensory systems, respectively.

In general, a detailed expression profile of all genes can be
an important tool to promote our understanding of the function
of the TG and DRG. In particular, the analysis of GPCRs and
ion channels helps to identify new candidates that participate in
chemical detection or nociception. This analysis generates a
basis for comparison, aims to encourage further studies on ion
channels and GPCRs that are expressed in the TG and DRG,
and sheds light on the main differences between these
functionally and anatomically similar structures.

Materials and Methods

Animals

All experiments involving animals were carried out in
accordance with The European Union Community Council
guidelines and approved by the competent state office of the
Federal Land of Northrhine Westphalia (file
87-51.04.2010.A180) and the German Tierschutzgesetz (law
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on animal protection). Adult male CD1 mice were obtained
from Charles River (Sulzfeld, Germany).

Excision of the TG and DRG

For preparation of the TG, mice were sacrificed, sculls were
opened, the brains removed, and the exposed TG were
dissected using forceps. The ganglia were washed in PBS and
then further processed for RNA extraction as described below.
For preparation of the DRG, the same animals were used. The
spines were opened along the midline by cutting through the
vertebral canal and the spinal marrow was removed to expose
the DRG located in between the vertebral bodies. The
thoracaic, lumbal, and sacral DRG were removed, washed in
PBS, and then further processed for RNA extraction.

RNA Isolation and Next Generation Sequencing

RNA from murine DRG or TG of pooled tissues from 8 male
adult CD1 mice was isolated with the RNeasy Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s protocol,
which included DNasel digestion. At the Cologne Center for
Genomics NGS unit, libraries for sequencing were constructed
from the total RNA and were subjected to DSN normalization.
RNA-Seq was performed on the lllumina GA,, sequencing
platform with a 36-nucleotide length. We essentially analyzed
the sequence data as described previously [36]. The raw
sequence data were aligned to the mouse genome reference
sequence (mm9) using the TopHat aligner. To avoid the
alignment of highly repetitive reads, a multiread-correction was
used, which allowed up to 5 hits per read.

Consequently, we could map 33 million or 32 million reads
for the TG or DRG. Output BAM-files were sorted and indexed
using the SAM tools software package [329]. FPKM values
were subsequently calculated by the Cufflinks program using
the mm9 RefSeq reference transcriptome. We further used a
masked command M and the mask GTF rmsk.gtf to hide all
possible reads that were RNA repeats, including tRNA, rRNA,
snRNA, scRNA, and sprRNA, short as well as long
interspersed nuclear elements (SINE, LINE), and other
different classes of repeats. In order to investigate the
expression differences between the TG and DRG, we used
Cuffdiff with the common RefSeq reference transcriptome.

Schébel and colleagues already presented a small subset of
our generated data, which describe the expression of Ano1-10
and Ttyh1-3 channels in the TG [167].

For comparison, we reanalyzed the already-published raw
RNA-Seq data from the brain, liver and skeletal muscle in the
same manner as our own data. The data sets were available in
the NCBI SRA archive and the following accession number:
mouse brain (SRR006488, SRR006489), mouse liver
(SRR006490, SRR006491, SRR001360, SRR001359) and
mouse  skeletal muscle (SRR001361, SRR001362,
SRR006492) [38]. The transcriptome from the OE of 4-week-
old CD1 mice was calculated using 37 million (male) or 52
million (female) 36 bp that were reads generated by lllumina
sequencing on a GA,, platform. The analysis of the pooled OE
was performed with the same parameters that were used for
the TG and DRG. A detailed analysis on the OE transcriptome
will be presented else-where.
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The identification of genes that were enriched in the TG and
DRG was essentially performed as described in previous RNA-
Seq comparison studies for the OE [41,330]. We focused only
on protein coding genes that were expressed with at least 1
FPKM and at least 10-fold difference.

Calculation of GO-terms

Go-Terms were calculated with a free online tool that is
available at http://compbio.charite.de/contao/index.php/

ontologizer2.html.

In Situ Hybridization

Digoxigenin-labeled sense and antisense RNA-probe
fragments, which were typically approximately 200-500
nucleotides in length, were generated from cDNA fragments
cloned into pCDNAS3 (Invitrogen, Freiburg, Germany) by in vitro
transcription that was performed with the DIG RNA labeling mix
(Roche, Palo, Alti, CA) and T7 or SP6 RNA polymerase
according to the manufacturer’s instructions. The primer pairs
used were as follows:
Ano3:
forward: GCATATGAATTCCTTTGGTGAGAAGATTGGCTTA,
reverse: GCATATGCGGCCGCTTGGCTTTCGTTCATTGTGA;
Cnr1:
forward: GCATATGAATTCGCTTGCGATCATGGTGTATG,
reverse: GCATATGCGGCCGCGTGTTATTGGCGTGCTTGTG;
Darc:
forward: GCATATGAATTCCAAGGGGCTGAAGATAGCAC,
reverse:
GCATATGCGGCCGCGTAGCCACACAGTGCAGCAT;
Drd3:
forward:
GCATATGAATTCGAGCACATAGAAGACAAACCATATC,
reverse: GCATATGCGGCCGCCGAGCACAATGACCACCAT;
Fzd3:
forward: GCATATGAATTCGCCACCATGTCCCAATATGT,
reverse:
GCATATGCGGCCGCCTACTCGGTCCTCCAGCAAA;
GlyRb:
forward: GCATATGAATTCGCATCTTCTCCGTGCTCAGT,
reverse:
GCATATGCGGCCGCCTGCAAAGTGCTGATATGAAC;
Gpr35:
forward: GCATATGAATTCCTGCTTCCGTCAACAACTTCT,
reverse:
GCATATGCGGCCGCGCCCTGCAAAGAGCAGAAGACC;
Gpr126:
forward: GCATATGAATTCCCAAAGTTGGCAATGAAGGT,
reverse:
GCATATGCGGCCGCCAATGGAGCCCCAAGAATTA;
Gpr155:
forward: GCATATGAATTCTGGGACTTGGATTTCTACGC;
reverse: GCATATGCGGCCGCTCAGTCGCCTGATTTTTCCT;
Gpr158:
forward: GCATATGAATTCCCTTTCACGAACAGCACAAA,
reverse: GCATATGCGGCCGCTGATCAGATGTTTGCCCTTG;
Grik2:
forward: GCATATGAATTCCACATTCAGACTCGCTGGAA,
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reverse: GCATATGCGGCCGCGTCTTCGTACACCACCGTCA,;
Kcnka4:

forward: GCATATGAATTCAGGTGGTTCTGAGGAGAGTGAG,
reverse:
GCATATGCGGCCGCGGGCTTCGGCATAGAAAGTA;

Kenk3:

forward: GCATATGAATTCGATCGTGAGGTACCTGCTGCAC,
reverse:
GCATATGCGGCCGCGATGTGTCGGACGTGGAGAGGT;
Kenk9:

forward:
GCATATGAATTCGATTATATCCTGGTGGGCCTGAC,
reverse:
GCATATGCGGCCGCGATAAAACGGACCGGAAGTAGGT;
Kenk18:

forward:
GCATATGAATTCGATACCAGGCTCGGTAAGTTCCT,
reverse:
GCATATGCGGCCGCGATGGTGGTCAGTGTCACAAAGC;
Mrgprd:

forward: GCATATGAATTCGCAGAGGTCTCCCTTCTGTG,
reverse:
GCATATGCGGCCGCTACCAGATGGGGAAAAGCAC;
Mrgpre:

forward: GCATATGAATTCCAGGGAGAAATGGCTTTCAA,
reverse:
GCATATGCGGCCGCTTCAGGGAAGTTCAGCTGGT;
Mrgprx1:

forward: GCTATGAATTCTCGCTCTCACAGTGATGGC,
reverse: GCATATGCGGCCGCTGTCCTCCAGAGCCCTCTTA;
Ntrsr2:

forward: GCATATGAATTCGTGAACGTGCTGGTCTCCTT,
reverse:
GCATATGCGGCCGCGCCCCAGGGAGAGGGTCTTTCT;,
O3far1:

forward: GCATATGAATTCACTTCCCTTTCTTCTCGGATG,
reverse:
GCATATGCGGCCGCCGAGTAACCCCATATGAAAGC;
Olfr78:

forward: GCATATGAATTCGGTGGCTCTGGTCCGGGGAT,
reverse:
GCATATGCGGCCGCGCCACAGGAGGCAGCAGCAGGT;
Olfr420:

forward: GCATATGAATTCCCCAGCTGACCCTCGGTTGC,
reverse:
GCATATGCGGCCGCGCTCAGGTGCGAGACGCACGTGGAA
A;
Olfr1417:

forward: GCATATGAATTCGGCCATCTGTCACCCTCTGCG,
reverse:
GCATATGCGGCCGCGCAAGCAGGAGGAAGCTTATCACCA
CC;

Oprd:

forward: GCATATGAATTCAGACCGCCACCAACATCTAC,
reverse:
GCATATGCGGCCGCCTTTGACAGGATGGCAGACA,;
Paqr6:

forward: GCATATGAATTCGCCACCAGCTGTTCCATATC,
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reverse:
GCATATGCGGCCGCGCAAGGAGGCCGTGAAAGCAG;
Pgr:
forward: GCATATGAATTCTTCCTTTGGAAGGACTGAGG,
reverse:
GCATATGCGGCCGCGCATCATGCAAGCTGTCGAGAA;
Scn1a:
forward: GCATATGAATTCGATCCAGTCGGTGAAGAAGC,
reverse:
GCATATGCGGCCGCTCCAGTCAAACTCGAACACG;
Scn9a:
forward: GCATATGAATTCGCCCTGATCCAATCAGTGAA,
reverse:
GCATATGCGGCCGCTCTAATGTTTCATTCTGCTCAAGG;
Tac3:
forward: GCATATGAATTCGGGTCCCATACAGGGAATCT,
reverse:
GCATATGCGGCCGCGGGCCAAGATGATCCAAATA;
Tbxa2r:
forward: GCATATGAATTCTGGTTCGCTGCGTCCTTT,
reverse: GCATATGCGGCCGCAGAAGGGCCGTGTGATGC;
Tir1:
forward:
GCATATGAATTCATGACTAAACCAAATTCCCTCATC,
reverse:
GCATATGCGGCCGCGCGAAGAGATTCGGGGTCTTCTTT;
Trpc6:
forward: GCATATGAATTCGCATGATATGGGCTGAATGT,
reverse:
GCATATGCGGCCGCGCCCAGATTGTAGTATTTAACGTTGT
CG;
Trpm7:
forward: GCATATGAATTCAGTGGAGCAGATGAGCATTC,
reverse:
GCATATGCGGCCGCGCAAATCTTGTCCAAACAGATTATAT
TG;
Trpm8:
forward: GCATATGAATTCGCCATCAACACCTCTGTCAA,
reverse: GCATATGCGGCCGCCCATTTGATCCAGCTCTCAA;
In situ hybridization experiments of the TG were performed
with male and female P7 CLB6 mice. The mouse brains were
fixed overnight in 4% paraformaldehyde in PBS at 4°C (7.5
pH). The next day, the brains were incubated in 10% and 20%
sucrose for 1 h each and additionally overnight in 30% sucrose.
The mandibular and the frontal part of the nose were removed.
Afterwards, transversal sections (14 um) of quickly frozen
heads, which were embedded in the tissue freezing medium
OCT that supports tissue during cryotomy (Leica
Microsystems, Bensheim, Germany), were cut on a cryostat
(Leica Microsystems, CM 3050S, Bensheim, Germany) and
mounted on Superfrost® Plus Slides (Menzel-Glaser,
Braunschweig, Germany). After dehydration using an
increasing ethanol series, slices were stored at -80°C until
further use. In situ hybridizations were performed as described
with minor modifications [74]. Briefly, fixed cryosections were
incubated in RIPA-buffer, followed by an acetylation step with
acetic anhydride in TEA buffer. Next, a prehybridization step in
50% deionized formamide, 10% dextran sulfate, 5x Denhardts
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solution, 5x SSC, 10 mM DTT, 250 pg/ml yeast tRNA 500
ug/ml sheared and denatured herring sperm, 50 ug/ml heparin,
2.5 mM EDTA, and 0.1% (v/v) Tween-20 was carried out for 1
h at 55°C to prevent the nonspecific binding of riboprobes.
Each incubation step was followed by wash step with SSC or
PBST -buffers.

Finally, 50 ng antisense riboprobes was hybridized at
55-65°C on cryosections that were mounted on slides
overnight. The hybridized mRNA was visualized using an
alkaline phosphatase-conjugated antibody to digoxigenin and
the hydrolysis of nitro-blue tetrazolium chloride/5-bromo-4-
chloro-3-indolylphosphate p-toluidine. An antisense and a
control sense probe were tested in parallel. The slides were
covered with cover slips using polyvinyl-alcohol that contained
embedding medium (Mowiol®, Immo-Mount, Thermo-Scientific,
Braunschweig, Germany). Digital images were obtained with
an Axiocam camera on an Axioscope2 microscope (Zeiss,
Oberkochen, Germany). All images of sense and antisense
samples were recorded under the same conditions (brightness
contrast and light exposure time).

A signal was considered positive when the antisense labeling
was noticeably darker visually than the sense labeling. We
used Pirt as a positive control, which is highly and specifically
expressed in the TG.

Supporting Information

Figure S1. Expression strength for housekeeping genes in
all analyzed tissues. Expression analysis for known
expressed housekeeping genes. To show that our calculated
FPKM values for all tissues is comparable in principle, we
analyzed the expression of known expressed housekeeping
genes, which could be detected in all of our tested samples.
(TIF)

Figure S2. Distribution of FPKM values compared with the
different tissues used. The highest numbers of genes are
expressed between 1-10 FPKM in all tissues. There are fewer
highly expressed genes with an FPKM of > 100.

(TIF)

Figure S3. Integrative Genomic Viewer. Mapped reads for 1-
kb large genes, which are expressed with 0.1 FPKM, 1 FPKM,
and 10 FPKM.

(TIF)

Figure S4. Expression profile for all common GPCR signal
transduction proteins.
(XLSX)

Figure S5. Expression profile for the TG and DRG specific
family Mrpgrs.
(XLSX)

Figure S6. Expression profile for the Htr family.
(XLSX)
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Figure S7. Expression profile for all existing ORs in the
TG and DRG.
(XLSX)

Figure S8.
VGSCs.
(XLSX)

Expression profile for all members of the

Figure S9. Expression profile for GlyRs, GABA(A), iGluts,
P2Xs, and Hcns.

(XLSX)

Figure S10. Expression profile for all existing Trp
channels in the TG and DRG.

(XLSX)

Figure S11. Expression profile for all existing potassium
channels and subunits in the TG and DRG.

(XLSX)

Figure S12. Expression profile for other interesting
membrane proteins.

(XLSX)

Figure S13. Comparison of the gene expression between
the OE and TG and the OE and DRG.
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