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Abstract

Diffusion MRI tractography produces massive sets of streamlines that need to be clustered 

into anatomically meaningful white-matter bundles. Conventional clustering techniques group 

streamlines based on their proximity in Euclidean space. We have developed AnatomiCuts, 

an unsupervised method for clustering tractography streamlines based on their neighboring 

anatomical structures, rather than their coordinates in Euclidean space. In this work, we show 

that the anatomical similarity metric used in AnatomiCuts can be extended to find corresponding 

clusters across subjects and across hemispheres, without inter-subject or inter-hemispheric 

registration. Our proposed approach enables group-wise tract cluster analysis, as well as studies 

of hemispheric asymmetry. We evaluate our approach on data from the pilot MGH-Harvard­

USC Lifespan Human Connectome project, showing improved correspondence in tract clusters 

across 184 subjects aged 8–90. Our method shows up to 38% improvement in the overlap 

of corresponding clusters when comparing subjects with large age differences. The techniques 
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presented here do not require registration to a template and can thus be applied to populations with 

large inter-subject variability, e.g., due to brain development, aging, or neurological disorders.

Keywords

Hierarchical clustering; Normalized cuts; Tractography; Diffusion MRI

1. Introduction

The human brain undergoes structural changes from birth to adulthood (Giedd et al., 1999; 

Sowell et al., 1999; Zuo et al., 2017). Understanding and characterizing typical brain 

development, maturation, and aging is crucial for early detection of neurological diseases 

(Dinstein et al., 2011; Mahone et al., 2011; Peters and Karlsgodt, 2015) and to inform 

treatment and intervention approaches (Lindenberger, 2014; Raz and Rodrigue, 2006).

Postmortem studies have found age-related differences in various morphological aspects of 

the brain, such as size, weight, expansion of cerebral ventricles, axon diameter, and myelin 

sheath thickness (Benes, 1989, 1994). MRI provides in-vivo insights into morphological 

changes during the lifespan, such as in gray and white matter (WM) volumes (Paus, 

1999; Sullivan and Pfefferbaum, 2006; Tamnes et al., 2010; Taki et al., 2012). Changes 

in connectivity as measured by functional MRI (fMRI) have also been demonstrated during 

normal development. Young populations appear to have more efficient networks (Betzel et 

al., 2014), while aging increases local segregation and thus requires interaction between 

networks (Chan et al., 2014; Fair et al., 2009; Reuter-Lorenz, 2002; Tsang et al., 2017). 

Although such macrostructural functional network changes have been shown, it is still 

unclear whether these are accompanied by WM microstructural alterations (Baum et al., 

2017; Betzel et al., 2014; Tsang et al., 2017).

White matter undergoes conspicuous growth during the early years of life and continues 

to develop at a slower pace into adulthood (Lebel et al., 2017; Paus, 1999). Diffusion 

MRI (dMRI) provides indirect measurements of the microstructural changes in WM. 

Neurodevelopmental studies have used diffusion tensor imaging (DTI) (Basser et al., 1994) 

to analyze changes in fractional anisotropy, mean, radial, and axial diffusivity, which are 

presumed to be markers of myelination, axonal density and coherence (Betzel et al., 2014; 

Lebel et al., 2008; Sullivan and Pfefferbaum, 2006; Tsang et al., 2017). Studies show 

that diffusion anisotropy, which may be a marker of coherence or myelination, increases 

in several WM bundles until young adulthood, reaching a peak during adulthood, before 

decreasing with age. More recent studies investigated age-related changes in other dMRI­

based microstructural measures, which attempt to distinguish among the various factors 

that contribute to diffusion anisotropy, such as measures from diffusion kurtosis imaging 

(Grinberg et al., 2017; Paydar et al., 2013) or neurite orientation, dispersion and density 

imaging (Chang et al., 2015; Genc et al., 2017; Kodiweera et al., 2016).

White matter changes through the lifespan are non-linear and their rates differ between 

bundles. For example, maturation in callosal and projection pathways appear to be mostly 

complete by the end of adolescence, while maturation in certain fronto-temporal association 
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pathways continues into the twenties. The most commonly used models for lifespan 

trajectories of WM microstructural measures are linear (Kodiweera et al., 2016; Sullivan 

and Pfefferbaum, 2006), quadratic (Betzel et al., 2014) and exponential (Lebel et al., 2008; 

Paydar et al., 2013; Tamnes et al., 2010). However, these models are not necessarily linked 

to any particular biological process and their accuracy may depend on the age range and 

target WM bundle (Lebel et al., 2017).

The study of WM development relies on the delineation of anatomically meaningful 

bundles. Most lifespan studies of WM microstructure to date have focused on a small 

set of predefined WM pathways. The majority did not use tractography to delineate these 

tracts, instead resorting to region of interest (ROI) volumes that were defined manually in 

each individual (Lebel et al., 2008; Paydar et al., 2013; Sullivan et al., 2001), obtained by 

growing an individual cortical parcellation into the WM (Tamnes et al., 2010), or mapped 

to the individual from an atlas (Chang et al., 2015; Genc et al., 2017; Grinberg et al., 2017; 

Kodiweera et al., 2016; Pohl et al., 2016; Tamnes et al., 2010). Alternatively, some studies 

performed tractography in individuals and used ROIs from an atlas to define tracts of interest 

(Clayden et al., 2012; Lebel et al., 2008, 2012). Any approach that relies on ROIs from 

an atlas requires accurate alignment of each individual to the atlas template space, which 

can be challenging for populations with large age ranges or other sources of morphological 

variability. Using priors on the anatomical neighborhood of the tracts of interest is an 

alternative approach that does not require perfect alignment in template space and that can 

be readily applied to longitudinal studies of age-related WM change (Fjell et al., 2016, 2017; 

Storsve et al., 2016).

Here we focus on the problem of performing exploratory, data-driven analysis of whole­

brain tractography data, rather that analyzing predefined tracts of interest. This can be 

done by applying unsupervised clustering to the whole-brain tractography streamlines of 

each individual and then establishing correspondence between the clusters of different 

individuals. A multitude of tract clustering algorithms exist in the literature. When it comes 

to across-subject analysis of clusters, some follow a supervised approach, i.e., require input 

from experts to define a set of tracts of interest and constrain the analysis to clusters 

that match those tracts (Garyfallidis et al., 2018; Jin et al., 2014; Guevara et al., 2012; 

O’Donnell and Westin, 2007; Ros et al., 2013; Zhang et al., 2018; Ziyan et al., 2009). Purely 

unsupervised approaches usually register all subjects to a common template space and match 

clusters across subjects based on their Euclidean distance in that space (Guevara et al., 2012; 

Ros et al., 2013; Visser et al., 2011; Wang et al., 2011; Ziyan et al., 2009). Unsupervised 

approaches that do not require inter-subject registration rely either on shape descriptors of 

the clusters (Zhang et al., 2014) or on the anatomical regions that the clusters terminate in. 

The termination regions may be used in a post-processing step after unsupervised clustering 

(Wassermann et al., 2010) or in the similarity metric of the clustering algorithm itself (Tunç 

et al., 2014). The method that we present here generalizes the approach of using individual 

anatomical regions in the tract similarity metric, as it quantifies the similarity of streamlines 

and clusters based on all their anatomical neighbors, and not just their termination points.

In addition to inter-subject correspondence for group-wise tract cluster analysis, the method 

that we present may be used to find corresponding tract clusters between a subject’s 
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hemispheres, which can be useful for studying laterality. When focusing on predefined 

tracts of interest one can readily compare the left and right counterparts of the same tract 

(Garic et al., 2018; Propper et al., 2010; Wu et al., 2012). When following an unsupervised 

approach, however, this becomes less straightforward. Prior work computed the similarity of 

streamlines from contralateral hemispheres by assuming that they are mirror images of each 

other (O’Donnell et al., 2010) or performed a nonlinear registration between hemispheres 

(Park et al., 2004).

In this work, we build upon our previously proposed method for unsupervised clustering 

of streamlines based on anatomical similarity (Siless et al., 2016, 2018). Previously, we 

evaluated this similarity for clustering the whole-brain tractography streamlines of a single 

subject, showing that it produces clusters more similar to WM bundles defined manually 

by a human rater, even though it does not use any manually labeled training data (Siless 

et al., 2018). Our similarity metric compares the histograms of neighboring anatomical 

structures of two streamlines for different directions. Here we take this approach a step 

further, showing that, once this clustering has been performed in each individual subject, 

an extended anatomical similarity metric with canonical directions can be used to find 

corresponding clusters between individuals and between hemispheres, without inter-subject 

or inter-hemispheric registration. We evaluate the approach on data from the MGH-Harvard­

USC lifespan human connectome project (Fan et al., 2016). We compare our method with 

a conventional similarity metric based on Euclidean distances, which does rely on inter­

subject registration, and show that our approach improves correspondence of tract clusters 

across subjects aged 8–90. This work expands substantially on the preliminary results 

presented in (Siless et al., 2017) and extends the methodology to finding corresponding 

clusters between hemispheres, for studies of symmetry. Our method is particularly relevant 

to the analysis of populations with large morphological variability, such as healthy subjects 

across the lifespan or subjects with neurodegenerative diseases and healthy controls.

2. Methods

We propose an unsupervised method for finding corresponding WM structures across 

subjects without the need for inter-subject registration. Briefly, we group each subject’s 

whole-brain tractography streamlines into clusters with our recently developed algorithm 

for hierarchical clustering based on anatomical similarity, AnatomiCuts (Siless et al., 2018). 

Diffusion measures for each cluster can be extracted in each subject’s native space and 

compared between subjects without aligning subjects to a template. In the following we 

define our measure of anatomical similarity between two streamlines, as well as a more 

conventional one based on Euclidean distance, which we use for comparison. We then 

generalize these definitions to quantify similarity between two clusters of streamlines that 

may come from different subjects or from different hemispheres of the same subject. The 

procedures described below are summarized in Fig. 1.

2.1. Streamline similarity metrics

Let fi = [xi1,…, xiN] be a streamline defined as a sequence of N points xik ∈ ℝ3, k = 

1,…,N. A tractography dataset is a set of M streamlines, F = {f1,…, fM}. In the following, 
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we assume that all streamlines have the same number of points N. This can be enforced 

by downsampling, which is performed commonly to make computation for clustering 

algorithms tractable (Garyfallidis et al., 2012; Guevara et al., 2012; O’Donnell and Westin, 

2007; Siless et al., 2013, 2018; Visser et al., 2011; Wu et al., 2012).

2.1.1. Euclidean similarity—This similarity metric has been used widely for tract 

clustering and consists in the mean Euclidean distance between the corresponding points of 

two streamlines fi and fj (Garyfallidis et al., 2012; Guevara et al., 2012; Siless et al., 2013, 

2018; Visser et al., 2011; Wu et al., 2012):

ω E(fi, fj) ≜ 1 + 1
N ∑

k = 1

N
∣ ∣ xik − xjk ∣ ∣2

−1
.

The ordering of points is not consistent across streamlines, i.e., it is possible for the first 

point of fi to be closer to the last point of fj and vice versa. It is typical to account for this 

by also evaluating the similarity between fi and the reversed fj. This leads to the following 

definition for the similarity metric:

w E(fi, fj) ≜ max ω E(fi, fj), ω E fi, fj
rev , (1)

where fj
rev = [xjN, …, xj1].

2.1.2. Anatomical similarity—In (Siless et al., 2018) we introduced a streamline 

similarity metric that makes use of a whole-brain cortical and subcortical segmentation, 

S(x), x ∈ ℝ3. Each point x on a streamline is associated with a set of segmentation labels, 

S(x + dl(x)vl), l = 1, …, P, where dl(x) is the minimum d > 0 such that S(x + dvl) ≠ S(x). 

That is, for each point x, we find the nearest neighboring segmentation labels in a set of 

directions vl, l = 1, …, P. Here we modify the definition of those directions, to ensure that 

they are consistent across different subjects. Specifically, a neighborhood of P = 26 elements 

includes neighboring labels in the directions vl = U · el, where U ≜ [uLR uAP uSI], e ≜ [e1 

e2 e3]T, e1,2,3 ∈ {−1,0,1} and we use v0 = [0,0,0] to represent the segmentation label that 

the streamline passes through. The columns of the matrix U are unit vectors in the left-right, 

anterior-posterior, and superior-inferior direction. We find these vectors as follows. We fit 

the mid-sagittal plane using the FreeSurfer segmentation labels of the mid-sagittal section 

for the corpus callosum and the third ventricle. We define uAP by projecting the line 

that connects the center of mass of the anterior and posterior cingulate labels onto the 

mid-sagittal plane. We define uSI as perpendicular to uAP within the mid-sagittal plane, and 

uLR as perpendicular to that plane.

For each direction l = 0,…,P, we compute a label histogram Hil ∈ ℝK, where K is the total 

number of labels in the anatomical segmentation. This histogram represents the frequency 

with which different segmentation labels are the l-th neighbor across all points on the i-th 

streamline. The anatomical similarity measure between two streamlines fi and fj expresses 

the joint probability of their anatomical neighborhoods:
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w A(fi, fj) ≜ ∣ Li ∩ Lj ∣ ∑
l = 0

P
〈Hil, Hjl〉, (2)

where ⟨·, ·⟩ is the inner product, and Li, Lj are the sets of all labels found to be neighbors 

of streamlines fi, fj. The normalization factor ∣Lj∩ Lj∣, which is the number of common 

neighbors between the two streamlines, penalizes trivial streamlines with too few neighbors.

2.1.3. Inter-hemispheric anatomical similarity—Let fi and fj be streamlines in 

a subject’s left and right hemisphere, respectively. Let SL(x) and SR(x) be anatomical 

segmentations of the left and right hemisphere, such that each structure and its contralateral 

counterpart (e.g., the left and right amygdala) have the same label ID. We define the 

inter-hemispheric anatomical similarity of streamlines fi and fj as:

w A
LR(fi, fj) ≜ ∣ Li ∩ Lj ∣ ∑

l = 0

P
〈Hil

L, Hjl
R〉, (3)

where the neighbor histograms Hil
L, Hjl

R are computed for the segmentations SL(x), SR(x), 

respectively, and, if the l-th neighbor is defined by el
L = [e1 e2 e3]T  in the left hemisphere, 

then it is defined by el
R = [ − e1 e2 e3]T  in the right.

2.2. Cluster similarity metrics

We define the Euclidean-distance similarity of two streamline clusters as the Euclidean­

distance similarity of their centroid streamlines. This definition has been previously used in 

the literature (Guevara et al., 2012; Ros et al., 2013). The centroid streamline is the closest 

streamline to the average of all streamlines in a cluster. The centroids of two clusters must 

be in a common space to compute this similarity metric. We define the anatomical similarity 

of two streamline clusters by substituting the cumulative histogram of anatomical neighbors 

of all streamlines in each cluster in equation (2) or (3). Such histograms can be compared 

between two clusters even if the clusters are not in the same space.

2.3. Matching clusters across subjects

Let C be the number of streamline clusters per subject. This number can be fixed 

by stopping the hierarchical clustering of each subject’s tractography dataset when the 

hierarchical tree has C leaf nodes. Given the C × C matrix W = {wmn}, where wmn is the 

similarity of the m-th cluster from one subject and the n-th cluster from another, our goal is 

to find the permutation n1,…,nC of 1,…,C that maximizes ∑m = 1
C wmnm, i.e., the matching 

of clusters between the two subjects that maximizes the total cluster-to-cluster similarity. We 

solve the problem efficiently with the Hungarian algorithm (Kuhn, 1955, 2009), which has 

been previously applied to tract matching (Tunç et al., 2014). A subject is chosen at random 

and the Hungarian algorithm is used to assign correspondence between the clusters of that 

subject and those of every other subject, based either on Euclidean distance or on anatomical 

similarity between clusters.
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Note that this implementation enforces one-to-one correspondence of clusters between 

subjects, which may be a stringent requirement. Thus we investigate the use of inter-subject 

consistency, quantified by the coefficient of variation (CV), as a means for detecting outlier 

clusters with inconsistent similarity across subjects. For the Euclidean-distance similarity 

metric, these would be clusters with inconsistent alignment across subjects in template 

space. For our anatomical similarity metric, they would be clusters with inconsistent 

anatomical neighbors across subjects. Inter-subject consistency has been used previously to 

threshold the edges of brain networks for graph-theory analysis (Baum et al., 2018; Roberts 

et al., 2017).

2.4. Matching clusters across hemispheres

In this case, the Hungarian algorithm is applied to the inter-hemispheric anatomical 

similarities of clusters from a subject’s left and right hemispheres. Before computing the 

similarity matrix, every streamline that switches hemispheres is removed. Clusters with 

more than 20% of streamlines switching hemispheres are excluded from this computation 

entirely. There is no guarantee that the two hemispheres will have the same number of 

clusters. This, however, is not a requirement for the Hungarian algorithm and any excess 

clusters of low inter-hemispheric similarity will remain unmatched.

2.5. Data acquisition

In the following experiments, we use dMRI and structural MRI (sMRI) data from 

184 healthy subjects, scanned as part of the pilot MGH-Harvard-USC Lifespan Human 

Connectome project (Fan et al., 2016). Subjects’ ages range from 8 to 90 years as shown in 

Fig. 2. T1-weighted images were acquired with 3D multi-echo magnetization prepared rapid 

gradient echo (MEMPRAGE) (Van der Kouwe et al., 2008) at 1mm isotropic resolution with 

an acquisition time under 4 min. Diffusion data were acquired using a 2D spin echo echo­

planar imaging (EPI) sequence with a generalized autocalibrating partial parallel acquisition 

(GRAPPA) factor of 3, combined with fast low angle excitation echo-planar technique with 

auto-calibration signal (FLEET-ACS) (Polimeni et al., 2016). A simultaneous multi-slice 

(SMS) factor of 2 was used, allowing for faster data acquisition. The dMRI acquisition 

scheme used two b-values, 2500s/mm2 and 7500s/mm2, with 60 and 180 diffusion-encoding 

directions, respectively. Data were acquired on the MGH 3T Skyra Connectom scanner, 

featuring a maximum gradient strength of 300mT/m (Setsompop et al., 2013). The T1­

weighted data were processed in FreeSurfer to extract cortical parcellations and subcortical 

segmentations (Fischl et al., 2002, 2004). The dMRI data were corrected for eddy-current 

(Andersson and Sotiropoulos, 2016) and magnetic susceptibility artifacts (Andersson et al., 

2003).

2.6. Data analysis

We reconstructed orientation distribution functions from the dMRI data using the 

generalized q-sampling imaging model (Yeh et al., 2010) and performed whole-brain, 

deterministic tractography using DSI Studio (Yeh et al., 2013). We seeded every voxel in the 

segmentation map computed by FreeSurfer. Following (Siless et al., 2018) we focused only 

on long-range connections, as analysis methods can be better optimized for long- and short­

range connections separately (Guevara et al., 2012, 2017; Román et al., 2017; Zhang et al., 
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2014). We obtained a large number of long-range connections while keeping computation 

tractable by generating a total of 500,000 streamlines per subject and then excluding any 

streamlines shorter than 55 mm. This yielded between 100,000 and 150,000 streamlines per 

subject. For reference, (Román et al., 2017) defined short connection streamlines as shorter 

than 80mm, thus our criterion was less stringent. We downsampled all streamlines to N = 10 

equispaced points. Previously we found that increasing N did not have enough of an impact 

on the clustering to justify the increased computational cost (Siless et al., 2018). The dMRI 

data were registered to the individual’s T1 volume by applying a boundary-based, affine 

registration (Greve and Fischl, 2009) to the b = 0 volumes.

We clustered each subject’s streamlines using the normalized cuts algorithm, with our 

anatomical similarity and with the conventional, Euclidean-distance similarity, as in (Siless 

et al., 2018). For the anatomical similarity, segmentation labels came from each subject’s 

cortical, subcortical and white-matter segmentations computed by Freesurfer. The number of 

anatomical neighbors was set to P = 26, as we have previously found this to perform better 

than smaller neighborhoods (Siless et al., 2018). In our previous evaluations, we have found 

that 200 clusters outperformed smaller numbers of clusters when comparing the overlap of 

tract clusters with a set of WM bundles that were defined manually by a human rater (Siless 

et al., 2018). Hence, we obtained 200 clusters per subject with each method. We then used 

each of the two similarity metrics to find one-to-one correspondence of clusters between 

subjects with the Hungarian algorithm.

Although our anatomical similarity metric does not require inter-subject registration to find 

inter-subject cluster correspondence, the conventional, Euclidean-distance similarity metrics 

do. Clusters from different subjects must be mapped to a common template space before 

Euclidean distances between them can be computed. For this purpose, we performed a 

combined volume and surface (CVS) registration (Postelnicu et al., 2009) between each 

subject’s T1 and a template T1 volume. We opted to use a single-subject template, i.e., the 

T1 of a randomly selected subject from the young adult cohort (age 25). We mapped each 

individual’s clusters to this template by composing the affine registration from individual 

dMRI to individual T1 space and the nonlinear registration from individual T1 to template 

T1 space. We compared this to a more standard nonlinear inter-subject registration approach 

for dMRI data. We stress once again that this registration is required only for computing the 

Euclidean-distance similarity metric, and not our proposed anatomical similarity metric.

Finally, we fit tensors to the b = 2500 dMRI data of each individual and computed fractional 

anisotropy (FA) and mean/radial/axial diffusivity (MD/RD/AD) maps from the tensors.

2.7. Evaluation metrics

2.7.1. Inter-subject overlap—For each cluster, we generated a binary volume with 

values of 1 in the voxels that intersected the streamlines of the cluster and 0 elsewhere. We 

quantified the overlap for a pair of corresponding clusters from two subjects by computing 

their Dice coefficient (Dice, 1945; Sørensen, 1948), which is defined as 2 ∣ A ∩ B ∣
∣ A ∣2 + ∣ B ∣2

 for 

two sets A and B. For each pair of ∣Ar+∣Br subjects, we averaged the Dice coefficients of 

all 200 corresponding clusters. We investigated how the overlap of two subjects’ clusters 
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changed as the age difference between subjects increased. Clusters that had been generated 

and matched based on anatomical similarity had to be mapped to the template space to 

compute their inter-subject overlap. Clusters that had been generated and matched between 

subjects based on Euclidean distance were already mapped to template space.

Previously, CVS registration was shown to perform better than other nonlinear methods 

at aligning WM bundles between subjects in a cohort with a smaller age range than ours 

(Zöllei et al., 2010). For comparison, we used FSL tools (Jenkinson et al., 2002, 2012) 

to perform nonlinear registration of each subject’s FA map to the FMRIB FA template. 

We compared the image difference between target and source FA images for the two 

inter-subject registration methods.

2.7.2. Inter-subject consistency—We quantified the variability of corresponding 

clusters across subjects by the coefficient of variation (CV), σ
μ , where σ is the standard 

deviation and μ is the mean. We first computed the CVs of the Dice coefficients of 

corresponding clusters between pairs of subjects.

We also computed histograms of the CV of the anatomical and Euclidean-distance 

similarities, for different numbers of clusters per subject. The goal of this evaluation was 

to understand how the number of clusters can impact the inter-subject consistency of 

corresponding clusters, and whether the latter can be used for outlier exclusion.

2.7.3. Inter-hemispheric vs. inter-subject similarity—We expected anatomical 

similarity to be comparable between corresponding clusters in different hemispheres and 

in different subjects, as it is based on histograms of neighboring anatomical structures, and 

the same structures exist in both hemispheres and all subjects. Thus, we compared the mean 

anatomical similarity between corresponding clusters obtained with the inter-hemispheric 

(intra-subject) or the inter-subject Hungarian algorithm. We evaluated this for different 

numbers of clusters.

2.7.4. Fitting age-related changes of diffusion measures—We computed the 

average FA, MD, RD and AD for each cluster in the individual dMRI space. After 

establishing cluster correspondence across subjects, we used these measures for a cross­

sectional study of microstructure changes in each of the 200 clusters across the lifespan. 

We fit the models that are most commonly used to study age-related WM changes in the 

literature: linear, quadratic and Poisson (exponential).

• Linear: y = β0 + β1 · t + β2 · s

• Quadratic: y = β0 + β1 · t + β2 · t2 + β3 · s

• Poisson: y = β0 + β1 · t · e−β2 · t + β3 · s

Here y is a microstructural measure (FA/MD/RD/AD), t is age, and s is a discrete variable of 

gender. We performed least-squares estimation of βi. We used the residual errors to compare 

the goodness-of-fit for clusters generated with each of the similarity metrics.
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2.7.5. Computation time—The computational complexity of the Hungarian algorithm 

is O(C3) (Jonker and Volgenant, 1987). The complexity of computing the similarity matrix 

is O(CD), where D is the complexity of the similarity metric, which is O(N) and O(NP) 

for the Euclidean and anatomical similarity, respectively. However, the Euclidean-distance 

similarity requires a registration step whose complexity is variable and not accounted for in 

the above. As explained in previous sections, our experiments used C = 200, N = 10, P = 26.

3. Results

3.1. Inter-subject overlap

Fig. 3 shows the overlap (Dice coefficient) of corresponding clusters between pairs of 

subjects, as a function of the age difference between the subjects. Fig. 3(a) plots the average 

overlap over all 200 clusters, for clusters generated and matched across subjects with the 

anatomical and the Euclidean-distance similarity metric. Fig. 3(b) plots the percent change 

between the former and the latter. Our anatomical similarity metric yielded clusters with 

greater inter-subject overlap than the conventional, Euclidean-distance similarity metric, and 

it also led to less pronounced deterioration of the overlap as the age difference between 

subjects increased (p < 0.0001 based on a two-sided T-test on the linear regression of percent 

improvement vs. age difference). The average improvement in inter-subject cluster overlap 

afforded by using the anatomical over the Euclidean-distance similarity metric ranged from 

31% for subjects of the same age to 38% for subjects who were 80 years apart in age.

In Fig. S1 we show that inter-subject mean squared differences between registered FA 

images were smaller with CVS registration to a single-subject T1 template composed with 

the mapping between T1 and diffusion space, than nonlinear registration to an average 

FA template. Hence we proceed with using CVS registration for the Euclidean-distance 

similarity in all remaining analyses.

3.2. Inter-subject consistency

Fig. 4 shows the CV of the Dice coefficients of corresponding clusters between pairs of 

subjects. We evaluated the effect of the subject that is chosen at random as the target for 

the Hungarian algorithm by repeating the CV calculation for different target subjects. The 

plot shows the average and standard error of these CV values. The inter-subject overlap had 

lower CV for clusters produced with the anatomical than the Euclidean-distance similarity 

metric, with few outliers. The choice of target subject had a negligible effect on this 

outcome. Hence we proceed with a single, randomly selected target subject for all remaining 

results.

We show histograms of the CV of the similarities between corresponding clusters, for 

different numbers of clusters, in Fig. 5. For all numbers of clusters, the distribution of 

cluster CVs for the Euclidean-distance similarity did not allow the detection of outliers. 

Histograms for the anatomical similarity had a few easily discernible outlier clusters of high 

CV. In Fig. 6 we show the clusters with the highest and lowest CV of similarities. The 

heat maps are binary images of corresponding clusters from all subjects in an age group, 

summed in template space. For the anatomical similarity, the cluster with lowest CV shows 
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a portion of the inferior longitudinal fasciculus, and the cluster with highest CV shows the 

corticospinal tract that decussated for some age groups but not others. This illustrates a 

clear differentiation, in terms of anatomical consistency, between the low-CV and high-CV 

clusters and confirms that it would be reasonable to exclude the latter as outliers. For the 

Euclidean-distance similarity metric, the cluster with lowest CV contains a portion of the 

thalamic radiation and the cluster with highest CV mixes portions of the inferior longitudinal 

fasciculus and the corpus callosum.

3.3. Inter-hemispheric vs. inter-subject similarity

Fig. 7 shows the mean anatomical similarity between clusters, when the Hungarian 

algorithm is used to find inter-hemispheric and inter-subject cluster correspondence. 

Anatomical similarity for corresponding clusters between hemispheres and subjects is 

comparable. Fig. S2 shows the effect of the percentage of streamlines crossing hemispheres 

that clusters were allowed to have to be included in this analysis. We did not find this to 

affect the results noticeably. In Fig. 8 we show examples of clusters that were found to 

correspond between hemispheres. For display, individual tract clusters were transformed to 

binary images, summed across subjects by age group in template space and converted to 

isosurfaces at 10% of the maximum number of subjects.

3.4. Fitting age-related changes of diffusion measures

Fig. 9 shows the residual errors of the Poisson, quadratic and linear fits of FA, MD, AD, 

and RD vs. age, averaged over all 200 clusters. The anatomical similarity metric led to lower 

residual errors for all three models and all four diffusion measures. As the Poisson model 

had the lowest residual errors, we show examples of Poisson curves for some clusters of 

interest in Figs. 10 and 11. Clusters in Fig. 10 were selected based on their anatomical 

similarity to some of the manually labeled tracts from (Siless et al., 2018), and clusters 

in Fig. 11 were not included in that manually labeled set. Consistent with the literature, 

inter-hemispheric connections, such as the forceps major of the corpus callosum, show 

little to no changes in FA after age 8 (Clayden et al., 2012; Lebel et al., 2008; Pohl et 

al., 2016), while MD continues to decrease until early adulthood (Lebel et al., 2008). The 

superior longitudinal fasciculus develops until late adolescence, with FA increasing and MD 

decreasing until adulthood (Lebel et al., 2008; Pohl et al., 2016). This increase in FA is only 

seen with the anatomical similarity metric. The cingulum bundle shows the greatest changes 

during development, with FA increasing substantially until adulthood (Clayden et al., 2012; 

Lebel et al., 2008; Pohl et al., 2016). This is better captured by clusters produced with the 

anatomical similarity measure. In Fig. 11 we show Poisson curves of structures that have 

been reported on less frequently in the literature. A mid-component of the corpus callosum 

shows subtle increase of FA into adulthood (Pohl et al., 2016; Tamnes et al., 2010) but large 

decrease of MD. The FA trend is only seen in the clusters produced with the anatomical 

similarity metric. This subtle change would be missed if FA were averaged over the entire 

corpus callosum, instead of decomposing it into smaller clusters. Another structure that is 

analyzed less frequently is the frontal aslant tract, where only clusters obtained with the 

anatomical similarity metric show an FA increase in both hemispheres until early adulthood 

(Garic et al., 2018). Clusters produced with the Euclidean-distance similarity metric show no 

development in the right hemisphere.
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Fig. S3 shows residual error plots for smaller numbers of clusters, i.e., when the hierarchical 

clustering tree was pruned at 50, 100 or 150 clusters. In all cases, clusters produced with 

the anatomical similarity metric yielded lower residual errors than those produced with the 

Euclidean-distance similarity metric. Fig. S4 shows Poisson, quadratic, and linear fit of 

diffusion measures vs. age for each individual cluster, at the 200-cluster level. These confirm 

that, overall, our data are able to capture expected lifespan trends, with FA increasing during 

development and decreasing during aging, while MD/AD/RD follow opposite trends. Fig. 

S5 shows the same for different numbers of total clusters, only for the Poisson model.

3.5. Computation time

Computation time for finding corresponding clusters across subjects, when each subject’s 

hierarchical clustering tree is pruned at different levels, is shown in Table 1 for the 

anatomical and the Euclidean-distance similarity metric. Times are reported for a quadcore 

Xeon 5472 with 3.0 GHz CPUs and 7 GB of RAM.

3.6. Visual evaluation

For visual evaluation, we show corresponding clusters obtained with the anatomical and 

Euclidean-distance similarity metrics in two individuals from each age group in Figs. S6, S7, 

S8. The clusters shown in the three figures represent portions of a long-range (corticospinal 

tract, S6), a short-range (frontal aslant tract, S7) and an inter-hemispheric (corpus callosum, 

Fig. S8) connection.

Fig. S9 shows clusters with high anatomical similarity with some of the manually labeled 

tracts from (Siless et al., 2018). Here clusters were transformed to binary images, summed 

over subjects in each age group in template space, and converted to isosurfaces at 10% of the 

maximum number of subjects. These clusters show portions of various known tracts.

4. Discussion

We present a method for comparing whole-brain tract clusters across subjects without the 

need for inter-subject registration. It relies on an extended version of our recently proposed, 

anatomical similarity metric, which groups tractography streamlines based on the similarity 

of their anatomical neighbors, rather than their distance in Euclidean space. Previously, we 

used this similarity metric to cluster whole-brain tractography streamlines in an individual 

subject, and evaluated it in a small group of young to middle-aged adults (Siless et al., 

2018). Here we extend this approach to across-subject analysis, and evaluate it on a large 

cohort of subjects aged 8–90. We show that our anatomical similarity metric can be extended 

to match clusters across subjects without co-registering them. It leads to much greater 

overlap of corresponding clusters across subjects, in comparison to a conventional similarity 

metric based on Euclidean distance, which relies on accurate inter-subject registration. The 

improvement ranges from 31% for subjects of the same age to 38% for subjects who are 

80 years apart in age (Fig. 3). The improved inter-subject consistency is also demonstrated 

by lower CV of cluster similarities across subjects (Fig. 5) and lower residual error in the 

fitting of lifespan trajectories of microstructural measures (Fig. 9). Our anatomical similarity 

metric can also be used to match clusters between hemispheres, without the need for 
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inter-hemispheric registration (Fig. 8). This could be used for unsupervised analysis of the 

laterality of WM bundles, which is observed in many neurological disorders.

Unsupervised streamline tractography may produce artifactual bundles, e.g., a truncated 

section of a true WM pathway or merged sections of different pathways, in a manner that 

is inconsistent across subjects. Hence the requirement for one-to-one correspondence of 

clusters between subjects may be too stringent. One way to relax this requirement is by 

detecting clusters that are outliers in terms of inter-subject consistency. We found that the 

anatomical similarity metric produced a few easily discernible outliers of low consistency 

(high CV) (Figs. 4 and 5). These outlier clusters were predominantly due to tractography 

artifacts (Fig. 6), hence it would be appropriate to exclude them from a population study. 

Note, however, that the reverse is not necessarily true, i.e., high inter-subject consistency 

does not guarantee anatomical validity. It is possible for a certain tractography error to occur 

consistently across subjects. This is a limitation of unsupervised tractography that could only 

be remedied by the introduction of prior anatomical information.

It is important to note that unsupervised clustering of whole-brain tractography is a purely 

data-driven analysis that is not optimized for reconstructing specific named tracts from the 

neuroanatomical literature (e.g., the arcuate fasciculus, uncinate fasciculus, etc.). Supervised 

approaches, which incorporate prior information on such tracts, are specifically designed for 

this task. Such approaches may use ROI-based rules (Clayden et al., 2008; De Groot et al., 

2013; Yeatman et al., 2012; Zhang et al., 2008) or cluster similarity metrics (Garyfallidis 

et al., 2018; Guevara et al., 2012; Jin et al., 2014; O’Donnell and Westin, 2007; Ros et 

al., 2013; Zhang et al., 2018; Ziyan et al., 2009) to identify named tracts after performing 

tractography; may introduce prior anatomical information in the tractography itself (Yendiki 

et al., 2011); or may forgo tractography entirely, performing volumetric segmentation 

instead (Bazin et al., 2011; Hagler et al., 2009; Ratnarajah and Qiu, 2014; Wasserthal et 

al., 2018). The named tracts reconstructed by these supervised algorithms represent the 

main highways of the brain. However, it is known from anatomical studies that these large 

pathways are not monolithic structures, but instead comprise many smaller bundles, each 

projecting to different anatomical regions (Lehman et al., 2011). These sub-bundles may be 

topographically organized within the large white-matter pathways, and disease effects may 

be specific to certain sub-bundles (Safadi et al., 2018). Therefore, statistical power to detect 

these effects may be reduced when diffusion measures are averaged over a large pathway. 

As a result, it is useful to have an anatomically meaningful way of subdividing white-matter 

bundles that goes beyond the large, named tracts. The unsupervised, hierarchical clustering 

based on anatomical similarity that we have presented here is suitable for studying the 

entire white matter, and can divide it into arbitrary small tract clusters, within the limits 

posed by the granularity of the anatomical segmentation. We have shown previously that 

our anatomical similarity metric leads to clusters that resemble manual dissections of named 

tracts more than the clusters produced by the conventional, Euclidean-distance similarity 

(Siless et al., 2018). Encouragingly, the unsupervised approach proposed here yielded 

several findings on WM microstructural development in agreement with prior studies that 

had used supervised tractography to study specific pathways.

Siless et al. Page 13

Neuroimage. Author manuscript; available in PMC 2021 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clusters that were generated and matched across subjects with our anatomical similarity 

metric yielded results consistent with previous findings on the development of the forceps 

major of the corpus callosum, the arcuate fasciculus, and the cingulum bundle (Clayden 

et al., 2012; Lebel et al., 2008; Pohl et al., 2016). Clusters produced by a conventional 

Euclidean-distance similarity metric do not show the expected increase in FA of the arcuate 

or as large an increase in FA of the cingulum into late adulthood. While the corpus callosum 

as a whole shows little development of FA into adulthood (Pohl et al., 2016), subdividing 

the corpus callosum based on anatomical similarity resulted in a mid-callosal cluster whose 

FA showed late increases. This finding would be missed if clustering were preformed based 

on Euclidean similarity or if FA were averaged in the entire corpus callosum. The frontal 

aslant tract is believed to have functional lateralization (Catani et al., 2013; Dick et al., 2019) 

but its developmental trajectory in terms of FA does not differ between hemispheres (Broce 

et al., 2015; Garic et al., 2018). In agreement with this, clustering of anatomical similarity 

shows an increase in FA for both hemispheres until early adulthood. However, clustering 

based on Euclidean similarity shows no development on the right hemisphere.

We fit three commonly used models for WM microstructural changes through the lifespan: 

linear, quadratic, and Poisson. Clusters that were generated and matched across subjects 

based on our anatomical similarity metric exhibited lower residual errors than clusters 

produced with a conventional, Euclidean-distance similarity metric, for all models (Fig. 9) 

and all levels of granularity of the hierarchical clustering (Fig. S3). The improved fitting of 

lifespan trajectories is likely to stem from the higher inter-subject consistency of clusters 

produced with our anatomical similarity metric (Fig. 4). Overall, we found lower residual 

errors with the Poisson model than the quadratic and linear ones. In the future, it may 

be worth investigating more flexible approaches to modeling lifespan trajectories, such as 

generalized additive models. It is worth noting that the dataset used in this study lacks 

subjects of ages between 30 and 50. Although the majority of development and aging is 

hypothesized to happen outside that range, this may be a limitation of this study. Despite 

this gap, all models fit here show the expected trends in anisotropy and diffusivity changes 

across the lifespan (Figs. S4 and S5). Given that in our previous report (Siless et al., 2018) 

we evaluated our methodology on data from subjects who were predominantly in the 30–50 

age range, we do not expect that adding this age group here would alter our conclusions 

on the benefits of our anatomical similarity metric over more conventional metrics for 

unsupervised clustering.

5. Conclusion

This work builds upon our previously proposed method for tract clustering based on 

anatomical similarity, AnatomiCuts, and extends it for across-subject analyses. Specifically, 

we use our anatomical similarity metric to find corresponding clusters across subjects 

or hemispheres without the need for registration. We evaluate this approach on a large 

cohort of subjects aged 8–90 and we show that it yields clusters that are more consistent 

across subjects than those produced by a conventional, Euclidean-distance similarity metric. 

The improvement in inter-subject overlap of clusters increases with the age difference 

between subjects. Furthermore, our approach leads to lower residual errors when fitting 

several commonly used models for age-related changes in WM microstructure across the 

Siless et al. Page 14

Neuroimage. Author manuscript; available in PMC 2021 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lifespan. We expect this method to facilitate exploratory analyses of WM microstructure in 

populations with large inter-subject variability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Algorithm overview: Whole-brain tractography streamlines from each individual (a) are 

grouped into a fixed number of clusters (b) with our anatomical similarity metric, which 

utilizes a cortical and subcortical segmentation from Freesurfer. Clusters from different 

subjects are matched based on their anatomical similarity (c), which does not require inter­

subject registration. Clusters are also matched between each subject’s hemispheres based on 

their anatomical similarity, for symmetry analysis (d).
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Fig. 2. 
Age distribution of the 184 volunteers.
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Fig. 3. 
Inter-subject overlap. For each pair of subjects we average the Dice coefficients of the 200 

corresponding clusters. We plot the average Dice coefficient of corresponding clusters for 

each pair of subjects, for clusters obtained with the anatomical and the Euclidean-distance 

similarity metric (a) and the percent difference between them (b), as a function of the age 

difference between subjects.
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Fig. 4. 
Coefficient of variation of the overlap of corresponding clusters across subjects for each 

similarity metric. Average values and standard error bars are plotted across different subjects 

chosen as the target for the Hungarian algorithm.
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Fig. 5. 
Histograms of the CV of anatomical (top row) and Euclidean distance (bottom row) inter­

subject similarities. This is shown for different numbers of clusters per subject.
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Fig. 6. 
Examples of clusters with low (top 2 rows) and high (bottom 2 rows) CV of inter-subject 

similarity. Images show heat maps of binary cluster images, summed across subjects from 

each age group in template space.
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Fig. 7. 
Mean anatomical similarity of corresponding clusters between subjects and between 

hemispheres. This is shown for the hierarchical tree pruned at 50, 100, 150 and 200 clusters. 

Similarity values are normalized by the maximum value over all for display.
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Fig. 8. 
Inter-hemispheric cluster correspondence shown in alternate rows. We show isosurfaces 

color-coded by age group: pink (8–11), yellow (12–14), orange (15–17), red (18–28), purple 

(50–65), and blue (66–90).
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Fig. 9. 
Residual errors of Poisson, quadratic, and linear fits of the average FA, MD, AD, and RD vs. 

age, averaged over 200 clusters obtained with the anatomical (blue) and Euclidean-distance 

(orange) similarity metric. The bars represent standard deviation.
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Fig. 10. 
Poisson curves fit to average FA/MD/AD/RD of clusters obtained with the anatomical 

(blue) and the Euclidean-distance (orange) similarity metric. Results are shown for the 

three clusters of the left, where isosurfaces are color-coded by age group: pink (8–11), 

yellow (12–14), orange (15–17), red (18–28), purple (50–65), and blue (66–90). The clusters 

represent portions of the forceps major of the corpus callosum (top), left arcuate fasciculus 

(middle), and left cingulum bundle (bottom).
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Fig. 11. 
Poisson curves fit to average FA/MD/AD/RD of clusters obtained with the anatomical 

(blue) and the Euclidean-distance (orange) similarity metric. Results are shown for the 

three clusters on the left, where isosurfaces are color-coded by age group: pink (8–11), 

yellow (12–14), orange (15–17), red (18–28), purple (50–65), and blue (66–90). The clusters 

represent portions of the corpus callosum (top), right frontal aslant tract (middle), left frontal 

aslant tract (bottom).
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Table 1

Computation times for finding inter-subject cluster correspondence.

#clusters Anatomical Euclidean

200 6:37 min 4:38 min

150 6:11 min 4:27 min

100 5:90 min 4:20 min

50 4:44 min 4:18 min
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