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Abstract: For people with Parkinson’s disease (PD), considered the most common neurodegenerative
disease behind Alzheimer’s disease, accurate diagnosis is dependent on many factors; however,
misdiagnosis is extremely common in the prodromal phases of the disease, when treatment is thought
to be most effective. Currently, there are no robust biomarkers that aid in the early diagnosis of
PD. Following previously reported work by our group, we accurately measured the concentrations
of 18 bile acids in the serum of a prodromal mouse model of PD. We identified three bile acids at
significantly different concentrations (p < 0.05) when mice representing a prodromal PD model were
compared with controls. These include ω-murichoclic acid (MCAo), tauroursodeoxycholic acid
(TUDCA) and ursodeoxycholic acid (UDCA). All were down-regulated in prodromal PD mice with
TUDCA and UDCA at significantly lower levels (17-fold and 14-fold decrease, respectively). Using the
concentration of three bile acids combined with logistic regression, we can discriminate between
prodromal PD mice from control mice with high accuracy (AUC (95% CI) = 0.906 (0.777–1.000))
following cross validation. Our study highlights the need to investigate bile acids as potential
biomarkers that predict PD and possibly reflect the progression of manifest PD.

Keywords: prodromal Parkinson’s disease; bile acids; mass spectrometry; biomarkers;
α-synuclein aggregates

1. Introduction

Parkinson’s Disease (PD) is a common, long-term neurodegenerative disease. Adjusting for age
and gender, the incidence of PD has been estimated to affect 1 in every 100 people over the age of 60 [1].
PD motor symptoms are believed to originate from striatal dopamine loss which occurs due to the
death of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The loss of dopaminergic
neurons in the SNpc is the hallmark indicator for the post-mortem diagnosis of PD [2]. Lewy bodies
and Lewy neurites, composed mainly of misfolded α-synuclein (α-syn) protein also feature in PD
brains. Clinical diagnosis of PD is based on several criteria including bradykinesia in combination with
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rigidity, resting tremor, or both and response to dopaminergic drugs [3]. In addition to the classical
motor symptoms, a wide range of non-motor symptoms and signs are apparent in PD patients [4],
some of which are already present long before the onset of motor symptoms, in the PD prodrome [5].
However, misdiagnosis is common in the prodromal phase, when a potential disease-modifying
treatment is thought to be most effective [6,7]. Currently, no robust biomarkers for early and more
precise diagnosis of PD exist [8] and as several new potentially disease-modifying treatments emerge
this is becoming a major unmet medical need [6,9].

In a previous study by our group, we identified Bile Acid metabolism as one of the major
biochemical pathways to be perturbed in the brain of a mouse model of prodromal PD [10].
Bile acids are molecules derived from cholesterol in hepatocytes and are used to emulsify fats in
the small intestine and promote fat digestion and absorption [11,12]. In addition to their role in lipid
digestion and absorption, bile acids function as signaling molecules, participating as ligands in both
membrane-bound receptors and nuclear hormone receptors [13,14]. It has been reported that certain
bile acids, including ursodeoxycholic acid (UDCA) and tauroursodeoxycholic acid (TUDCA) can
pass the blood–brain barrier [14] with their presence also being noted in cerebrospinal fluid (CSF),
plasma, urine, and serum [15–18]. To date, several reports implicate bile acids in neurodegenerative
diseases and suggest a possible role in modulating neuronal proliferation. One such study links
statistically significant increases in levels of deoxycholic acid (DCA), glycodeoxycholic acid (GDCA),
and lithocholic acid (LCA) in plasma, to Alzheimer’s disease and mild cognitive impairment [19].
Abdelkader et al. observed a neuroprotective effect from administration of UDCA on a murine rotenone
model of PD [20]. Further, it has been reported that cholic acid is a ligand for liver X receptors which
promote ventral midbrain neurogenesis and cell survival [21]. Bile acids have also been reported to be
potential biomarkers of other neurodegenerative diseases including Alzheimer’s disease (AD) [22–24].

In the current study, we accurately measured the concentrations of 18 bile acids in the serum
of a prodromal mouse model of PD. Following on from our previous metabolomics work using this
model, we believe that bile acids may prove to be essential for the development of a robust biomarker
panel capable of accurately diagnosing PD.

2. Results

2.1. Univariate Analysis

To investigate bile acids in a model of prodromal PD, we used a mouse model previously
developed by our group which consists of WT mice injected with α-syn fibrils into the olfactory
bulb [7,10]. The injection of α-syn fibrils leads to the propagation of α-syn aggregates throughout
several interconnected regions in the brain. The progressive spreading of α-synucleinopathy shows
many similarities with that which has been suggested to occur in PD [23,25–27]. Using mass
spectrometry, we analyzed the serum of the α-syn fibrils-injected mice (PFF mice) and of α-syn
monomers-injected mice (HuMonomers mice; controls), collected 3 months post injection.

Of the 18 bile acids profiled, all were within the limits of detection and quantification.
Of these, we found three to be significantly perturbed in PFF mice compared to HuMonomers mice:
Omega-murichoclic acid (MCAo), tauroursodeoxycholic acid (TUDCA) and ursodeoxycholic acid
(UDCA) (Table 1). Of the three bile acids, we found UDCA and its taurine conjugated form TUDCA to
be extremely decreased (17- and 14-fold, respectively) in the mice injected with PFFs.
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Table 1. Results of the univariate analyses for bile acids measured in serum from mice injected with HuMonomers and PFFs. p-Values were calculated using
the Wilcoxon–Mann–Whitney test. LOD-Limit of detection; LLOQ-Lower limit of quantification. Those bile acids highlighted in bold are considered statistically
significantly different (p < 0.05; q < 0.05).

HMDB# Name Mean (SD) of
HuMonomer Mean (SD) of PFF p-Value q-Value (FDR) Fold Change LOD LLOQ

HMDB0000619 Cholic Acid 11.09 (20.89) 10.12 (18.99) 0.24 0.39 1.10 0.004 0.03

HMDB0000518 Chenodeoxycholic acid 0.89 (1.22) 0.77 (1.53) 0.06 0.19 1.15 0.005 0.02

HMDB0000626 Deoxycholic acid 1.63 (2.07) 1.52 (2.61) 0.20 0.39 1.08 0.005 0.02

HMDB0000138 Glycocholic acid 0.07 (0.07) 0.06 (0.06) 0.67 0.85 1.14 0.003 0.03

HMDB0000637 Glycochenodeoxycholic acid 0.06 (0.14) 0.07 (0.14) 0.19 0.39 −1.07 0.01 0.02

HMDB0000631 Glycodeoxycholic acid 0.66 (0.77) 0.35 (0.46) 0.37 0.55 1.90 0.01 0.01

HMDB0000733 Hyodeoxycholic acid 0.65 (0.51) 0.44 (0.52) 0.04 0.16 1.47 0.005 0.02

HMDB0000761 Lithocholic acid 0.10 (0.13) 0.10 (0.15) 0.76 0.85 −1.04 0.002 0.01

HMDB0000506 Alpha-Muricholic acid 0.83 (1.42) 0.65 (1.23) 0.06 0.19 1.28 0.007 0.01

HMDB0000415 Beta-Muricholic acid 7.49 (10.54) 5.72 (8.760) 0.09 0.23 1.31 0.008 0.02

HMDB0000364 Omega-Murichoclic acid 4.58 (2.04) 2.00 (2.03) <0.0001 0.01 2.28 0.007 0.01

HMDB0000036 Taurocholic acid 11.02 (17.81) 9.20 (20.59) 0.93 0.98 1.20 0.008 0.02

HMDB0000951 Taurochenodeoxycholic acid 0.75 (1.22) 0.79 (1.56) 0.99 0.99 −1.05 0.005 0.01

HMDB0000896 Taurodeoxycholic acid 0.29 (0.23) 0.35 (0.42) 0.74 0.85 −1.22 0.001 0.01

HMDB0000722 Taurolithocholic acid 0.01 (0.02) 0.02 (0.03) 0.40 0.55 −1.41 0.001 0.01

HMDB0000932 Tauromuricholic acid (sum of α and β) 1.07 (1.85) 0.42 (0.96) 0.22 0.39 2.52 0.001 0.01

HMDB0000874 Tauroursodeoxycholic acid 1.67 (2.71) 0.12 (0.12) <0.0001 <0.001 14.14 0.001 0.01

HMDB0000946 Ursodeoxycholic acid 0.55 (0.58) 0.03 (0.05) <0.0001 <0.0001 17.55 0.001 0.02
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Figure 1 displays the Box and Whisker plots for the top three significantly different (p < 0.05;
FDR < 0.05) metabolites in both the HuMonomer- and PFF-injected mice. As is evident from the plots,
all are at significantly lower concentrations in PFF-injected mice.
Metabolites 2018, 8, x 4 of 10 
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Figure 1. The mean distribution (±SEM) for each of the three significantly different bile acids between 
mice injected with HuMonomers and PFFs. 

2.2. Logistic Regression Analysis 

Using the concentrations of taurolithocholic acid (TLCA), glycochenodeoxycholic acid (GCDCA) 
and TUDCA, we developed a diagnostic algorithm capable of accurately differentiating between 
HuMonomer- and PFF-injected mice with 91.4% accuracy following 100-fold cross validations.  

logit(P) = log(P/(1 − P)) = −0.893 + 11.152 TLCA + 8.917 GCDCA − 18.221 TUDCA  
where P is Pr(y = 1|x). The best threshold (or Cutoff) for the predicted P is 0.52. Original Label: 0/1 --
> Labels in Logistic Regression: 0/1 Note) The class/response value is recommended as (Case: 1 and 
Control: 0). 

Table 2 lists the summary of each feature used to produce the diagnostic algorithm. Table 3 
details the performance values of the logistic regression model following 10-fold cross validation with 
Figure 2 displaying the ROC plot for said model. The model was significant following 1000-
permutation tests with p = 0.003. Figure 2 displays the ROC curve for the logistic regression analysis 
following 10-fold cross validation. 

Table 2. Logistic Regression Model—Summary of Each Feature. 

 Estimate Std. Error z Value Pr (>|z|) Odds 
(Intercept) −0.893 2.857 −0.313 0.755 - 

TLCA 11.152 7.264 1.535 0.125 69675.46 
GCDCA 8.917 9.571 0.932 0.352 7455.77 
TUDCA −18.221 7.762 −2.347 0.019 0 

Table 3. The performance values for the logistic regression model. 

 AUC Sensitivity Specificity 
Training/Discovery 0.992 (0.985~0.998) 0.958 (0.929~0.986) 0.944 (0.907~0.982) 

10-fold Cross-Validation 0.906 (0.777~1.000) 0.952 (0.952~1.000) 0.938 (0.819~1.000) 

Figure 1. The mean distribution (±SEM) for each of the three significantly different bile acids between
mice injected with HuMonomers and PFFs.

2.2. Logistic Regression Analysis

Using the concentrations of taurolithocholic acid (TLCA), glycochenodeoxycholic acid (GCDCA)
and TUDCA, we developed a diagnostic algorithm capable of accurately differentiating between
HuMonomer- and PFF-injected mice with 91.4% accuracy following 100-fold cross validations.

logit(P) = log(P/(1 − P)) = −0.893 + 11.152 TLCA + 8.917 GCDCA − 18.221 TUDCA

where P is Pr(y = 1|x). The best threshold (or Cutoff) for the predicted P is 0.52. Original Label: 0/1 –>
Labels in Logistic Regression: 0/1 Note) The class/response value is recommended as (Case: 1 and
Control: 0).

Table 2 lists the summary of each feature used to produce the diagnostic algorithm. Table 3 details
the performance values of the logistic regression model following 10-fold cross validation with Figure 2
displaying the ROC plot for said model. The model was significant following 1000-permutation tests
with p = 0.003. Figure 2 displays the ROC curve for the logistic regression analysis following 10-fold
cross validation.

Table 2. Logistic Regression Model—Summary of Each Feature.

Estimate Std. Error z Value Pr (>|z|) Odds

(Intercept) −0.893 2.857 −0.313 0.755 -
TLCA 11.152 7.264 1.535 0.125 69,675.46

GCDCA 8.917 9.571 0.932 0.352 7455.77
TUDCA −18.221 7.762 −2.347 0.019 0
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Table 3. The performance values for the logistic regression model.

AUC Sensitivity Specificity

Training/Discovery 0.992 (0.985~0.998) 0.958 (0.929~0.986) 0.944 (0.907~0.982)
10-fold Cross-Validation 0.906 (0.777~1.000) 0.952 (0.952~1.000) 0.938 (0.819~1.000)
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Figure 2. The ROC plot for the logistic regression diagnostic algorithm.

3. Discussion

This is the first study to accurately quantify bile acids from the serum of a validated mouse
model of prodromal PD. Our study was primarily driven by the results from a previous study by
our group [10]. In total, we profiled 18 bile acids of which only three were found to be statistically
significantly different in PFF mice when compared with HuMonomer controls (p < 0.05). All three
were found to be significantly decreased in PFF mouse serum, with TUDCA and UDCA at 14- and
17-fold lower concentrations, respectively.

Using the concertation of three bile acids (TLCA, GCDCA and TUDCA), we developed
a predictive model capable of differentiating between PFF mice and HuMonomer controls with an AUC
(95 % CI) = 0.906 (0.777–1.00) with high sensitivity and specificity values (0.952 (0.952–1.000) and
0.938 (0.819–1.000), respectively) following cross validation. This eclipses work previously reported by
our group in which we report a predictive logistic regression model developed using the concentration
of three phosphocholines and trans-4-hrdroxyproline [10]. This previous model achieved an AUC
(95% CI) = 0.836 (0.696−0.9777) high sensitivity and specificity values (0.800 (0.800−0.975) and 0.889
(0.744−1.00), respectively); however, following cross validation, those results are less precise than
what we report herein.

Bile acids play pivotal roles in many physiological and pathological activities which include
acting as signaling molecules that regulate lipid, glucose and energy metabolism [28]; however, very
little is known about the molecular mechanisms of bile acids in the central nervous system [29]. It has,
however, been shown that following primary bile acid synthesis in the liver, bile acids are subsequently
secreted into the gut where they are modified by the intestinal bacteria to produce secondary bile acids.
These can be further modified in the liver or gut and may be conjugated with glycine or taurine [30].
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Figure 3 displays a simplified depiction of the biochemistry. In Figure 3, we show which bile acids
have been reported as being cytotoxic and neuroprotective [31,32]. Of the neuroprotective bile acids
measured in this study, UDCA and TUDCA were found to be at markedly lower concentrations in the
serum of PFF mice as compared to controls (17-fold and 14-fold, respectively). UDCA and TUDCA
are secondary bile acids, produced in the gut and not in the liver. They have been reported to have
neuroprotective effects in the brain, functioning partly as chaperones, decreasing the formation of toxic
aggregates in protein folding disorders [33,34]. Further, they have also been reported to reduce reactive
oxygen species formation [35], inhibit apoptosis [36] and prevent mitochondrial dysfunction [37].
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Figure 3. Depiction of Bile Acid Metabolism in the liver and gut of mice. Bile acids outlined
in blue are neuroprotective, bile acids outlined in red are cytotoxic and those bile acids in red
with an accompanying asterisk are statistically significantly different between HuMonomer- and
PFF-injected mice. The section detailing Muricholic acid (MCA) only occurs in mice.

A recent emerging and exciting concept in health and disease is the ability of the guts microbiota to
communicate with the brain and subsequently modulate behavior [38]. This bidirectional signaling axis
between the gut and the brain is believed to be essential for conserving homeostasis which is regulated
at the hormonal, immunological and neuronal levels (central and enteric nervous systems) [38].
While a lot of attention has been placed on the gut microbiome and neurodegenerative diseases, most
of the reported studies have focused on the gut as being the driver. In this study, we show that by
inducing α-synucleinopathy in the brain with PFFs to mirror what is observed in prodromal PD,
we see a significant decrease in the concentrations of secondary bile acids which have neuroprotective
properties. As depicted in Figure 3, the production of these secondary, neuroprotective bile acids
only occurs in the gut by intestinal bacteria. So, is the formation of the α-syn aggregates in the
brain directly affecting the PFF mouse gut bacteria and the formation of secondary bile acids deemed
neuroprotective? Or is it possible that these neuroprotective bile acids are being degraded faster in
the prodromal PD brain due to the developing α-synucleinopathy which subsequently leads to lower
blood concentrations? Both hypotheses need further exploration in the future.

We report, for the first time, a bile acid biomarker panel capable of identifying mice with
developing α-synucleinopathy. Using bile acids as biomarkers is a marked improvement on our
previous metabolomics work and highlights the potential of bile acids for the prediction of those
patients at greatest risk of developing PD, particularly in the prodromal phase when a treatment aiming
at slowing disease progression is potentially most effective and might even delay the onset of motor
symptoms [8,9]. Further, our results demonstrate a potential novel therapeutic area for prodromal PD
and developing α-synucleinopathy which needs future exploration. More work is required to verify
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these initial hypotheses, using mouse models and, most importantly, large clinical cohorts of people
who exhibit several signs of prodromal PD.

4. Materials and Methods

4.1. Animals

Under 12 h light/12 h dark cycles, C57Bl/6J mice (Jackson Laboratory) were housed four to five
per cage with ad libitum access to food and water. As previously described by our group, all procedures
relating to the animals followed The Guide for Care and Use of Laboratory Animals (National Research
Council) and were validated by the Van Andel Research Institute’s Institutional Animal Care and Use
Committee (Animal Use Protocols 14-01-001 and 16-12-033).

4.2. Purification of Recombinant α-syn, Assembly of Preformed Fibrils and Stereotactic Injections

Recombinant α-syn purification, assembly of the fibrils and stereotactic injections were previously
described by our group [7,10,39]. In brief, we cultured BL21 E. coli and induced them to express human
α-syn. The bacteria were then pelleted, and lysed by sonication. We boiled the lysate for 10 min
and collected the supernatant after centrifugation. The supernatant was then dialyzed overnight in
10 mM Tris, pH 7.5, 50 mM NaCl, and 1 mM EDTA. The lysate was then purified by chromatographic
separation using a Superdex 200 Column (GE Healthcare Life Sciences, Marlborough, MA, USA)
and a Hi-trap Q HP anion exchange column (GE Healthcare Life Sciences, Marlborough, MA, USA).
Extracts from the different fractions were then migrated by SDS-PAGE and we identified the fractions
containing α-syn after Coomassie staining. The selected fractions were then collected and dialyzed
against PBS buffer (GE Healthcare Life Sciences, Marlborough, MA, USA). We then measured the final
concentration of purified recombinant α-syn using a NanoDrop 2000 (Thermofisher Scientific, Waltham,
MA, USA) and concentrated if needed. Aliquots were stored at −80 ◦C until use. For fibril assembly,
purified recombinant α-syn was thawed and diluted to 5 mg/mL in PBS and under continuous shaking
at 1000 rpm at 37 ◦C in a Thermomixer (Eppendorf, Hamburg, Germany) for 7 days. Fibrils were
aliquoted and frozen at −80 ◦C until use.

Before injection, human α-syn fibrils (PFFs, 5 µg/µL) were thawed at RT and sonicated at RT
as previously described in Graham et al., 2018 [10]. Human α-syn monomers (huMonomers) were
thawed and we collected the supernatant after ultracentrifugation at 100,000 g for 30 min. We injected
mice stereotactically with PFFs (n = 20) or huMonomers (n = 20) (0.8 µL, 5 µg/µL) in the OB (unilateral)
of 2 months-old wild type mice as previously described [7,40]. Two mice injected with huMonomers
were euthanized after developing severe dermatitis, unrelated to the surgical procedure.

We imaged the fibrils post-sonication by transmission electron microscopy to check the
morphology of the fibrils. Human fibrils (after sonication) were diluted to 0.1 µg/µL into sterile
PBS and negatively stained with 2% uranyl formate (Electron Microscopy Science, Hatfield, PA, USA,
ref #22400). Grids were imaged using a FEI Tecnai G2 Spirit TWIN transmission electron microscope
(FEI Company, Hillsboro, OR, USA) at 120 kV (Figure S1).

4.3. Serum Collection

Serum samples were acquired as previously described by our group [10]. Three months
post-injection, mice were deeply anesthetized with sodium pentobarbital and we collected blood
at final bleed by cardiac puncture in BD red top–vacutainer tubes. We kept the tubes at RT for
20–30 min to allow blood clot formation and then centrifuged them at 4500 g for 10 min at 15 ◦C.
The serum was collected and transferred to pre-cooled vials, vortexed, aliquoted and frozen on crushed
dry ice. Samples were then stored at −80 ◦C.
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4.4. Bile Acid Quantification

Bile acids were analyzed using the Biocrates® Bile Acids Kit (Biocrates Life Science AG, Innsbruck,
Austria) as described by our group previously [22]. In brief, data were acquired on a Waters TQ-S
spectrometer coupled with an Acquity I-Class ultra-pressure liquid chromatography (UPLC) system.
All serum specimens were acquired in accordance with the protocol as described in the Bile Acids
kit manual. All data analysis was completed using the Biocrates MetIDQ software and TargetLynx
(Waters, Milford, MA, USA).

4.5. Statistical Analysis

All data were analyzed using MetaboAnalyst (v4.0) [41]. A Wilcoxon–Mann–Whitney U-test was
performed on all data acquired to determine whether there were any significantly different metabolites
between prodromal PD model mice and age-matched controls injected with HuMonomers (p < 0.05;
q-value < 0.05). Bonferroni-corrected p-values were used to correct for multiple comparisons.

Prior to logistic regression analyses, all data were normalized to the sum and autoscaled.
To select the predictor variables used in the logistic regression analyses, Least Absolute Shrinkage and
Selection Operator (LASSO) and stepwise variable selection were utilized for optimizing all the model
components [42]. A k-fold cross-validation (CV) technique was used to show that the models were
not over fit and to assess potential predictive accuracy in an independent sample [43]. Area under the
curve (AUC (95% confidence interval)), sensitivity and specificity values were calculated to estimate
the performance of the logistic regression and ROC analyses.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/8/4/71/s1,
Figure S1: Sonicated PFFs stained by uranyl formate, imaged by transmission electron microscopy to confirm
their fibrillary nature.
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