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Abstract Pupil dynamics serve as a physiological indicator of cognitive processes and arousal 
states of the brain across a diverse range of behavioral experiments. Pupil diameter changes reflect 
brain state fluctuations driven by neuromodulatory systems. Resting- state fMRI (rs- fMRI) has been 
used to identify global patterns of neuronal correlation with pupil diameter changes; however, 
the linkage between distinct brain state- dependent activation patterns of neuromodulatory nuclei 
with pupil dynamics remains to be explored. Here, we identified four clusters of trials with unique 
activity patterns related to pupil diameter changes in anesthetized rat brains. Going beyond the 
typical rs- fMRI correlation analysis with pupil dynamics, we decomposed spatiotemporal patterns 
of rs- fMRI with principal component analysis (PCA) and characterized the cluster- specific pupil–fMRI 
relationships by optimizing the PCA component weighting via decoding methods. This work shows 
that pupil dynamics are tightly coupled with different neuromodulatory centers in different trials, 
presenting a novel PCA- based decoding method to study the brain state- dependent pupil–fMRI 
relationship.

Introduction
Pupil diameter change reflects the brain state and cognitive processing (Beatty and Lucero- Wagoner, 
2000; Eckstein et al., 2017; Laeng et al., 2012; Wilhelm and Wilhelm, 2003). It contains information 
about behavioral variables as diverse as a subject’s arousal fluctuation (McGinley et al., 2015; Yoss 
et al., 1970; McCormick et al., 2020), sensory task performance (McGinley et al., 2015; Hakerem 
and Sutton, 1966), movement (Stringer et  al., 2019; Salkoff et  al., 2020; Musall et  al., 2019; 
Reimer et al., 2014), exerted mental effort (Hess and Polt, 1964; Kahneman and Beatty, 1966; 
Alnæs et al., 2014), expected reward (O’Doherty et al., 2003), task- related uncertainty (Satterth-
waite et al., 2007; Nassar et al., 2012; Richer and Beatty, 1987), or upcoming decisions (de Gee 
et al., 2014; Sheng et al., 2020). This richness of behavioral correlates is partly explained by the fact 
that multiple neuronal sources drive pupil activity. Pupil diameter changes reflect spontaneous neural 
activity across the cortex (Stringer et al., 2019; Salkoff et al., 2020; Musall et al., 2019; Yellin et al., 
2015; Pais- Roldán et al., 2020) and in major subcortical areas (Stringer et al., 2019; Joshi et al., 
2016; Wang et al., 2012; Schneider et al., 2016; Ranson and Magoun, 1933). Both sympathetic and 
parasympathetic systems innervate muscles controlling pupil dilation and constriction (Bonvallet and 
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Zbrozyna, 1963; McDougal and Gamlin, 2015; Yüzgeç et al., 2018), and the activity of subcortical 
nuclei mediating neuromodulation has been tightly coupled with pupillary movements (Pais- Roldán 
et al., 2020; Joshi et al., 2016; Reimer et al., 2016; Rajkowski, 1993; de Gee et al., 2017; Murphy 
et al., 2014; Breton- Provencher and Sur, 2019). In particular, rapid and sustained pupil size changes 
are associated with cortical noradrenergic and cholinergic projections, respectively (Reimer et al., 
2016), and direct recordings of the noradrenergic locus coeruleus demonstrate neuronal activity 
highly correlated with pupil dynamics (Joshi et al., 2016; Rajkowski, 1993; Breton- Provencher and 
Sur, 2019; Aston- Jones and Cohen, 2005). Also, pupil diameter changes are regulated through 
dopaminergic neuromodulation under drug administration (Shannon et  al., 1976) and in reward- 
related tasks (O’Doherty et al., 2003; de Gee et al., 2017). Studies also show that pupil dilation and 
constriction can be controlled by serotonergic agonists and antagonists, respectively (Vitiello et al., 
1997; Schmid et al., 2015). These studies have revealed the highly complex relationship between 
pupil dynamics and brain state fluctuations (McCormick et al., 2020; Reimer et al., 2014; Yüzgeç 
et al., 2018; Lowenstein et al., 1963).

Resting- state fMRI (rs- fMRI) studies have uncovered global pupil–fMRI correlation patterns in 
human brains as well as revealed that the pupil dynamics–fMRI relationship changed under different 
lighting conditions or when subjects engaged in mental imagery (Yellin et al., 2015; Schneider et al., 
2016). The dynamic functional connectivity changes detected by fMRI, possibly modulated by the 
interplay of cholinergic and noradrenergic systems (Shine, 2019), are also reflected in pupil dynamics 
both at rest (Shine et al., 2016) and in task conditions (Mäki- Marttunen, 2020). Furthermore, rs- fMRI 
has been used to display a differential correlation pattern with brainstem noradrenergic nuclei, e.g., 
A5 cell group, depending on the cortical cross- frequency coupling state in the animal model (Pais- 
Roldán et  al., 2020). Although rs- fMRI enables brain- wide pupil–fMRI correlation analysis across 
different states, the linkage of brain state- dependent pupil dynamics with distinct activation patterns 
of neuromodulatory nuclei remains to be thoroughly investigated beyond the conventional analysis 
methods.

Here, we aimed to differentiate brain states with varied coupling patterns of pupil dynamics with 
the subcortical activity of major neuromodulatory nuclei in an anesthetized rat model. First, we demon-
strated that the pupil–fMRI relationship is not uniform across different scanning trials and employed 
a clustering procedure to identify distinct pupil–fMRI spatial correlation patterns from a cohort of 
datasets. Next, we modeled the relationship of the two modalities for each cluster using principal 
component analysis (PCA)- based decoding methods (gated recurrent unit [GRU] [Cho, 2014] neural 
networks and linear regression) and characterized unique subcortical activation patterns coupled with 
specific pupil dynamic features. This work demonstrates the effectiveness of PCA- based decoding 
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Figure 1. Variability of the pupil–fMRI linkage. (A) Pupil–fMRI correlation map created by correlating the two modalities’ concatenated signals from all 
trials. (B) Selected individual- trial correlations maps. (C) Histogram of spatial correlations between the all- trial correlation map and individual- trial maps. 
High variability of similarities between the maps shows that the pupil–fMRI relationship is not stationary and changes across trials.

The online version of this article includes the following source data for figure 1:

Source data 1. The mean correlation map (A), all individual correlation maps (B), and the spatial correlation values (C) are available in the source data 
file.

https://doi.org/10.7554/eLife.68980
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to dissect the time- varied pupil–fMRI relationship corresponding to different forms of brain state- 
dependent neuromodulation.

Results
Identification of brain states with distinct pupil dynamics correlation 
patterns
To investigate brain state- dependent pupil dynamics, we acquired whole- brain rs- fMRI with real- time 
pupillometry in anesthetized rats (n = 10) as previously reported (Pais- Roldán et al., 2020). Initially, 
the pupil dilation and fMRI time series from all 15 min trials (n = 74) were concatenated. A voxel- wise 
correlation map of the concatenated pupil signals with fMRI time courses showed a global negative 
correlation (Figure 1A). However, the generated map was not representative of all trials, which was 
revealed by creating correlation maps for individual trials (Figure  1B). These maps demonstrated 
high variability of pupil–fMRI correlations, which is presented by the histogram distribution of spatial 
correlation values between individual- trial spatial maps and the concatenated all- trial map (Figure 1C).

Next, we clustered all trials into different groups based on pupil–fMRI correlation maps (Figure 2A). 
To facilitate the clustering analysis, we reduced the dimensionality of the spatial correlation maps 
using the uniform manifold approximation and projection (UMAP) method (McInnes et al., 2020) and 
decreased the number of features used for clustering from the number of voxels (n = 20,804) to 72 
for each map. Three to seven clusters were identified with Gaussian mixture modeling and examined 
using silhouette analysis (McLachlan and Basford, 1988; Rousseeuw, 1987). Here, we focused on the 
four- cluster categorization since this division yielded the highest mean silhouette scores (Figure 2B) 
across 100 random UMAP and GMM initializations. For each trial, we selected its most common 
cluster membership across the 100 repetitions and used it in the following analysis. The clustering 
results exhibited a very high degree of reproducibility as seen in the plots displaying the reproduc-
ibility of cluster labels and mean cluster correlation maps (Figure  2—figure supplement 1). The 
clusters had the following trial counts: n1 = 8; n2 = 30; n3 = 24; n4 = 12. The mean power spectral 
density (PSD) estimates of pupil dynamics based on the cluster division were plotted in Figure 2C. 
PSD of cluster one showed a distinct peak at 0.018 Hz as well as the lowest baseline pupil diameter 
values. In contrast, cluster 4 had the highest mean baseline diameter and a peak at 0.011 Hz. Clusters 
2 and 3 showed peaks of oscillatory power at less than 0.01 Hz. The ultra- slow oscillation is typical 
for spontaneous pupil fluctuations (McLaren et al., 1992). All PSDs and example pupil signals from 
each cluster are shown in Figure 2—figure supplement 2. We recreated pupil–fMRI correlation maps 
based on the four clusters (Figure 2D). Three clusters (1, 2, and 4) showed negative correlations across 
large parts of the brain, with the correlation strength differing across clusters. In contrast, cluster 3 
displayed a very low mean correlation with positive coefficients spreading across the entire brain. It 
is also noteworthy that cluster 1 showed a high positive correlation in the periaqueductal gray and 
ventral midbrain regions. The distinct qualities of identified clusters supported the usage of data- 
driven clustering for identifying brain state- dependent pupil dynamics.

Lastly, we performed a series of analyses to investigate cluster reproducibility beyond the initial 
random initializations. First, to compensate for the possible lag between pupil and fMRI, we convolved 
pupil signals with hemodynamic response function (HRF) kernels with different peak times (Yellin et al., 
2015; Pais- Roldán et al., 2020; Figure 2—figure supplement 3A). We regenerated the correlation 
maps and repeated the clustering procedure 100 times for each kernel. The high cluster membership 
and correlation map reproducibility across a range of HRF peak times (Figure 2—figure supplement 
3B,C) justify the use of non- convolved signals and emphasize the impact of slow fluctuations on the 
correlation results. Similarly to Allen et al., 2014, we performed 100 half- split reproducibility analyses 
and showed that to a large degree the cluster memberships are preserved when using half of the trials 
(Figure 2—figure supplement 4). The match might be imperfect, e.g., due to smaller numbers of a 
particular cluster’s samples in a half- split interacting with UMAP dimensionality reduction parameters. 
Next, using spatial surrogate maps with spatial autocorrelation and value distribution matching that of 
real correlation maps (Burt et al., 2020) (see Materials and methods), we verified that the spatial loca-
tion of correlation values and not the mean values or spatial autocorrelation properties were driving 
the clustering (Figure 2—figure supplement 5). Finally, we showed that when splitting the trials into 
shorter runs, clustering the data into n = 4 clusters should be selected based on the silhouette score 

https://doi.org/10.7554/eLife.68980
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Figure 2. Clustering of trials with distinct pupil–fMRI correlation patterns. (A) Schematic of the clustering procedure. UMAP is used to reduce the 
dimensionality of all individual- trial correlation maps to 72 dimensions. A 2D UMAP- projection of the real data is shown. Each dot represents a single 
trial. The trials are clustered using Gaussian mixture model clustering. Different numbers of clusters are evaluated. (B) The final number of clusters is 
selected based on silhouette analysis. The highest average silhouette score is obtained with k = 4 clusters. Shaded area shows standard deviations. (C) 
Pupil power spectral density estimates (PSD) of each of the four clusters. Signals were downsampled to match the fMRI sampling rate. Shaded areas 
show standard deviations. (D) Cluster- specific correlation maps based on concatenated signals belonging to the respective groups.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Cluster trial labels, individual silhouette scores (B), mean cluster PSDs (C), and cluster- specific correlation maps (D) are available in the 
source data file.

Figure supplement 1. Cluster reproducibility across 100 repetitions with random UMAP and GMM initializations.

Figure supplement 1—source data 1. The label match ratios (A) and map similarity values (B) are available in the source data file.

Figure supplement 2. Cluster- specific pupil fluctuation features. 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.68980
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criterion up to a 300 s trial length (Figure 2—figure supplement 6). The conducted analyses further 
justified the selection of n = 4 clusters and verified the reproducibility of the UMAP and GMM clus-
tering procedure.

Decoding-based investigation of the relationship between whole-brain 
rs-fMRI and pupil dynamics
To characterize the pupil–fMRI relationship beyond the conventional correlation analysis, we imple-
mented data- driven decoding models to couple the dynamics of the two modalities. First, we vali-
dated the approach in a setting involving all trials. We then employed it to investigate the pupil–fMRI 
coupling in the previously identified clusters. First, we performed principal component analysis (PCA) 
to extract spatiotemporal features of whole- brain rs- fMRI signals (n = 300) and trained either linear 
regression (LR) or a gated recurrent unit (GRU) neural network to predict pupil dynamics based on 
rs- fMRI PCA time courses (Figure 3A). Furthermore, we compared the LR and GRU prediction models 
with a correlation- template- based pupil dynamics estimation used in previous studies (Pais- Roldán 
et al., 2020; Chang et al., 2016). All methods were trained on randomly chosen 64 trials using cross- 
validation and then were tested on additional 10 unseen trials from the same animals. The PCA model 
was fit with the 64 training trials only. As the correlation- template- based predictions were bounded to 
the <−1; 1> range, Pearson’s correlation coefficient was used to evaluate the decoding of all methods. 
We optimized the hyperparameters of GRUs and linear regression variants using Bayesian optimiza-
tion and fourfold cross- validation (hyperparameter values are listed in Materials and methods). Both 
linear regression and GRU outperformed the correlation- template approach on both training (CCbase = 
0.37 ± 0.27 s.d., CCLR = 0.45 ± 0.26 s.d., CCGRU = 0.46 ± 0.25 s.d., pLR = 4.3*10–6, pGRU = 2.4 × 10–6) and 
test sets (CCbase = 0.25 ± 0.17 s.d., CCLR = 0.44 ± 0.24 s.d., CCGRU = 0.45 ± 0.27 s.d., pLR = 0.003, pGRU = 
0.01) (Figure 3B). Notably, the test set prediction scores do not reflect generalization across different 
rats as the training and test data could belong to the same animals. We repeated the linear regression 
prediction procedure (including the PCA step) on 100 other random train- test trial splits and vali-
dated that the obtained scores are representative of the distribution (Figure 3—figure supplement 
1A). We also verified the number of rs- fMRI PCA components by testing varied component counts, 
showing that the highest prediction scores were achieved with 300 components (Figure 3—figure 
supplement 1B,C). In addition, when varying the temporal shift between pupil dynamics and rs- fMRI 
signals, we obtained the highest prediction scores with zero shift between the input and output signals 
(Figure 3—figure supplement 1B). Similarly, the highest prediction scores were obtained based on 
pupil signals convolved with an HRF kernel with a peak at 0 s (Figure 3—figure supplement 1C). 
Interestingly, the component which explained the most pupillary variance (explained var. = 7.03%) 
and had the highest linear regression weight, explained only 0.8 % of the fMRI variance (Figure 3—
figure supplement 2). Furthermore, the component that explained the most fMRI variance (explained 
var. = 22.01%) was weakly coupled with the pupil fluctuation (explained var. = 0.51%). Thus, this 
prediction- based PCA component weighting scheme enabled the dissection of unique brain activity 
features for the modeling of the pupil−fMRI relationship. It should also be noted that GRU and linear 

Figure supplement 2—source data 1. All PSDs (A) are available in the source data file.

Figure supplement 3. Clustering reproducibility across 100 clustering repetitions based on HRF- convolved pupil signals.

Figure supplement 3—source data 1. The HRF kernels (A), cluster membership label match ratios (B), and map similarity values (C) are available in the 
source data file.

Figure supplement 4. Cluster reproducibility across 100 repetitions of split- halves clustering.

Figure supplement 4—source data 1. The label match ratios (A) and map similarity values (B) are available in the source data file.

Figure supplement 5. Cluster reproducibility across 100 sets of artificially generated surrogates with values and spatial autocorrelations matching those 
of real maps.

Figure supplement 5—source data 1. Ten example surrogate sets (i.e. 740 maps total) (A), label match ratios (B), and map similarity values (C) are 
available in the source data file.

Figure supplement 6. Mean silhouette scores based on 100 clustering repetitions performed on shorter trials.

Figure supplement 6—source data 1. Individual silhouette scores are available in the source data file.

Figure 2 continued

https://doi.org/10.7554/eLife.68980
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regression methods obtained comparable scores and both methods showed similar prediction perfor-
mance (Figure 3C). Figure 3—figure supplement 3 shows prediction maps created by integrating 
PCA components using linear regression weights or averaged GRU gradients (details in Materials 
and methods). The resemblance of the two maps suggests that despite GRU’s potential for encoding 
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Figure 3. Decoding pupil dynamics based on fMRI signals. (A) Schematic of the decoding procedure. PCA was applied to fMRI data. The PCA time 
courses were fed into either linear regression or GRU decoders, which generated pupil signal predictions. The prediction quality was evaluated by 
comparing the generated signals with real pupil fluctuations using Pearson’s correlation coefficients. (B) Comparison of the three methods’ pupil 
dynamics predictions. Linear regression and GRU performed better than the correlation- based baseline method on both the cross- validation splits 
(CCbase = 0.37 ± 0.27 s.d., CCLR = 0.45 ± 0.26 s.d., CCGRU = 0.46 ± 0.25 s.d., pLR = 4.3*10–6, pGRU = 2.4 × 10–6) and on test data (CCbase = 0.25 ± 0.17 s.d., 
CCLR = 0.44 ± 0.24 s.d., CCGRU = 0.45 ± 0.27 s.d., pLR = 0.003, pGRU = 0.01). Scattered points show individual prediction scores. (C) Linear regression 
and GRU predictions of three selected trials (CCGRU- top = 0.79, CCLR- top = 0.77, CCGRU- middle = 0.75,CCLR- middle = 0.73, CCGRU- bottom = 0.02, CCLR- bottom = 0.06). 
Qualitatively, linear regression and GRU predictions were very similar.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Prediction scores (B) and all predicted time courses (C) are available in the source data file.

Figure supplement 1. Prediction score dependence on train- test split trial selection, number of PCA components, and temporal shifts between pupil 
and fMRI signals.

Figure supplement 1—source data 1. Individual prediction scores across all trial mixes (A) and the mean prediction scores (BC) are available in the 
source data file.

Figure supplement 2. PCA decoupling of pupil- related fMRI activity from other signal sources.

Figure supplement 2—source data 1. The variance explained values (AB) and linear regression weights (C) are available in the source data file.

Figure supplement 3. Similarity of GRU and linear regression prediction maps.

Figure supplement 3—source data 1. The maps are available in the source data file.

https://doi.org/10.7554/eLife.68980


 Research article      Neuroscience

Sobczak et al. eLife 2021;10:e68980. DOI: https:// doi. org/ 10. 7554/ eLife. 68980  7 of 21

complex and non- linear functions, a linear regression- based rs- fMRI mapping scheme was sufficient 
for predicting pupil dynamics.

The map generated by combining PCA components with the linear regression decoder enabled the 
identification of brain nuclei which were not highlighted in the correlation map shown in Figure 1A. 
Figure  4 shows an overview of the PCA- based fMRI prediction map overlaid on the brain atlas, 
revealing pupil- related activation patterns at key neuromodulatory nuclei of the ascending reticular 
activating system (ARAS) – the dopaminergic ventral tegmental area, substantia nigra and supramam-
millary nucleus, the serotonergic raphe and B9 cells, the histaminergic tuberomammillary nucleus, the 
cholinergic laterodorsal tegmental and pontine nuclei, the glutamatergic parabrachial nuclei, and the 
area containing the noradrenergic locus coeruleus. Positive weights were also located in subcortical 
regions involved in autonomous regulation – the lateral and preoptic hypothalamus and the periaq-
ueductal gray. In addition, the subcortical basal forebrain nuclei (the horizontal limb of the diagonal 
band, nucleus accumbens, and olfactory tubercle) and the septal area were positively coupled with 
pupil dynamics. Lastly, regions of the hippocampal formation – the hippocampus, entorhinal cortex, 
and subiculum, as well as cingulate, retrosplenial, and visual cortices displayed positive weighting. It 
should be noted that the thalamus and the hippocampus displayed both positive and negative weights. 
Negative coupling was also found in the cerebellum and most somatosensory cortical regions. The 
voxel- wise statistical significance (p<0.01) was validated using randomization tests and corrected for 
multiple comparisons with false discovery rate correction (details in Materials and methods). The iden-
tification of pupil- related information in brain regions closely tied to neuromodulatory activity and to 
autonomous and brain state regulation (Duyn et al., 2020; Benarroch, 2018; Dampney, 2016; Silvani 
et al., 2015; Kuwaki and Zhang, 2010; Grimaldi et al., 2014; van den Brink et al., 2019) highlights 
the advantage of using PCA decomposition combined with prediction- based decoding methods 
instead of conventional correlation analysis to identify pupil- related subcortical activation patterns.

Characterization of brain state-dependent PCA-based pupil–fMRI 
prediction maps
To differentiate brain state- dependent subcortical activation patterns related to different pupil 
dynamics, we retrained the linear regression model based on the four different clusters shown in 
Figure 2D and created PCA- based fMRI prediction maps for each cluster (Figure 5).

Each PCA- based prediction map portrayed a cluster- specific spatial pattern (Figure 5B). Cluster 
1 was characterized by strong positive weights in the dopaminergic substantia nigra and ventral 
tegmental area as well as in their efferent projections in the striatum (nucleus accumbens and caudate- 
putamen) (Beckstead et al., 1979). Positive coupling was also displayed in the periaqueductal gray 
and brainstem laterodorsal tegmental and parabrachial nuclei as well as in the superior colliculus. 
Cluster 2 had the strongest positive weights in hypothalamic regions, lateral in particular, but also in 
brainstem arousal- regulating areas containing the locus coeruleus, laterodorsal tegmental, and parab-
rachial nuclei. High positive values were also found in the septal area and the olfactory tubercle. In 
cluster 3, the highest values were visible in preoptic and other hypothalamic areas, as well as in stria 
terminalis carrying primarily afferent hypothalamic fibers (De Olmos and Ingram, 1972), caudate- 
putamen, and globus pallidus. As in cluster 2, the region containing the locus coeruleus, laterodorsal 
tegmental, and parabrachial nuclei showed positive linkage with pupil dynamics. Contrastingly, in 
cluster 4, caudal raphe was the neuromodulatory region showing the strongest positive weights and 
the anterior parts of the brainstem displayed negative weighting. Characteristic to cluster 4 were 
high weights in the hippocampus and the subiculum forming the hippocampal formation, as well 
as in thalamic and amygdaloid areas. In all clusters, negative weights were detected across somato-
sensory cortices, the cerebellum, and posterior parts of the thalamus, as well as positive weights in 
hypothalamic and anterior thalamic nuclei and in the area containing the tuberomammillary nucleus. 
The subiculum and parts of the hippocampus were also positive in all clusters; however, the entorhinal 
cortex, also belonging to the hippocampal formation, was positive only in clusters 1–3. The same 
three clusters showed major positive weights in the neuromodulatory brainstem regions, substantia 
nigra, and ventral tegmental area. Clusters 2–4 displayed strong weights in the supramammillary 
nucleus, retrosplenial cortex, and the cingulate cortex, which has been coupled with both noradren-
ergic modulation (Aston- Jones and Cohen, 2005) and pupil dynamics (Pais- Roldán et  al., 2020; 
Joshi et al., 2016). Enlarged cluster- specific maps are displayed in Figure 5—figure supplements 

https://doi.org/10.7554/eLife.68980
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Figure 4. Localization of pupil dynamics- related information content across the brain. The spatial map highlights regions from which pupil- related 
information was decoded. It was created by integrating PCA spatial maps with weights of the trained linear regression model. The map displays positive 
weights in all neuromodulatory regions of the ascending reticular activating system as well as in other regions involved in autonomous regulation – the 
lateral and preoptic hypothalamus and the periaqueductal gray. The subcortical basal forebrain nuclei (the horizontal limb of the diagonal band, nucleus 
accumbens, and olfactory tubercle) and the septal area were also positively coupled to pupil dynamics. Finally, regions of the hippocampal formation 
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the hippocampus had both positive and negative weights. Strong negative weighting was found in the cerebellum and most somatosensory cortical 
regions. Masked regions (white) did not pass the false discovery rate corrected significance threshold (p=0.01). Abbreviations: B9 – B9 serotonergic 
cells, Ce – cerebellum, CgCx – cingulate cortex, DB – horizontal limb of the diagonal band, ECx – entorhinal cortex, Hp – hippocampus, LC – locus 
coeruleus, LDT – laterodorsal tegmental nuclei, LH – lateral hypothalamus, NA – nucleus accumbens, OTu – olfactory tubercle, PAG – periaqueductal 
gray, PB – parabrachial nuclei, PO – preoptic nuclei, PPT – pedunculopontine tegmental nuclei, Ra – raphe, RF – reticular formation, RsCx – retrosplenial 
cortex, Sb – subiculum, SCx – somatosensory cortex, Se – septal nuclei, SN – substantia nigra, SuM – supramammillary nucleus, Th – thalamus, TuM – 
tuberomammillary nucleus, VTA – ventral tegmental area.

The online version of this article includes the following source data for figure 4:

Figure 4 continued on next page
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1–4. Here, we demonstrated the effectiveness of combining the PCA- based approach with clustering 
methods to reveal brain state- specific subcortical activity patterns related to pupil diameter changes.

Discussion
Previous studies analyzed the relationship of fMRI and pupil dynamics either by directly correlating 
pupil size changes with the fMRI signal fluctuation (Yellin et  al., 2015; Pais- Roldán et  al., 2020; 
Schneider et al., 2016) or by applying a general linear model to produce voxel- wise activation maps 
(Alnæs et al., 2014; Murphy et al., 2014; Clewett et al., 2018). Here, we performed PCA- based 
dimensionality reduction to decouple spatiotemporal features of fMRI signals (Mwangi et al., 2014) 
and implemented prediction methods to decode pupil dynamics based on the optimized PCA compo-
nent weighting (Figure 3).

Two advantages can be highlighted in the present pupil–fMRI dynamic mapping scheme. First, 
conventional correlation analysis relies on the temporal features of fMRI time courses from individual 
voxels or regions of interest. Hence, it could not decouple the superimposed effects of multiple signal 
sources (Carbonell et  al., 2011; Tong et  al., 2019) or characterize the state- dependent dynamic 
subcortical correlation patterns. On the other hand, the PCA decomposition scheme solved these 
issues by decoupling multiple components of rs- fMRI signals with unique spatiotemporal patterns 
carrying pupil- related information. Second, the data- driven training of prediction methods optimized 
the weighting of individual rs- fMRI PCA components. Using the optimized neural network (GRU) or 
linear regression (LR)- based decoding models, we created prediction maps linking pupil dynamics 
with fMRI signal fluctuation of specific subcortical nuclei (Figure 4, Figure 3—figure supplement 
3). Also, the decoding models showed much better pupil dynamics prediction than the correlation- 
template- based approach reported previously (Pais- Roldán et al., 2020; Chang et al., 2016). Mean-
while, it should be noted that both LR and GRU models generated qualitatively similar prediction 
maps, highlighting the pupil- related rs- fMRI signal fluctuation from the same subcortical brain regions 
(Figure 3C, Figure 3—figure supplement 3). Unlike our previous single- vessel fMRI prediction study 
(Sobczak et al., 2021a), the GRU- based neural network prediction scheme may require much bigger 
training datasets to outperform linear regression modeling (Schulz et al., 2020). Another plausible 
explanation is that the pupil dynamics were predominantly and linearly driven by only a few rs- fMRI 
PCA components (Figure 3—figure supplement 2), presenting brain activation patterns related to 
arousal fluctuation and autonomous regulation (Duyn et al., 2020; Özbay, 2019).

The PCA- based prediction modeling provides a novel scheme to decipher subcortical spatial 
patterns of fMRI signal fluctuation related to brain state- dependent pupil dynamics. Most notably, 
neuromodulatory nuclei of ARAS and other subcortical nuclei involved in brain state modulation, as 
well as autonomous regulation were identified in the PCA- prediction map created from all trials. The 
highlighted hypothalamus, basal forebrain, and neuromodulatory brainstem nuclei are responsible for 
both global brain state modulation and autonomous cardiovascular, respiratory, and baroreflex control 
(Duyn et al., 2020; Benarroch, 2018; Dampney, 2016; Silvani et al., 2015; Kuwaki and Zhang, 
2010; Grimaldi et al., 2014; van den Brink et al., 2019). Consequently, the source of pupil- related 
information found across the cortex was probably modulated through global subcortical projections 
rather than a more direct causal interaction with pupil size changes (Reimer et al., 2016; Lecrux and 
Hamel, 2016). Noradrenergic neurons of the locus coeruleus are the hypothesized drivers of pupil 
dilation (Joshi et al., 2016; Aston- Jones and Cohen, 2005), and both the area containing the locus 
coeruleus and many of its input regions (Breton- Provencher and Sur, 2019) were highlighted in the 
PCA map. However, the observed activation of the hypothalamus and other neuromodulatory nuclei 
suggests that, in the anesthetized state, pupil diameter fluctuation reflects a complex interaction of 
subcortical homeostatic and brain state- modulating centers.

Also, we have shown that these subcortical interactions and the neural correlates of pupil dynamics 
are not stationary but change across trials in a brain state- dependent manner. Based on the correlation 
patterns, we identified four clusters of trials with distinct pupil–fMRI coupling. The clusters displayed 
a high degree of reproducibility when repeating the clustering procedure with all trials; however, the 

Source data 1. The masked map is available in the source data file.

Figure 4 continued
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Figure 5. Characterization of brain state- specific pupil–fMRI relationships. (A) Pupil information content maps generated by integrating PCA spatial 
maps with weights of linear regression models trained on cluster- specific trials. In all clusters, negative weights were found in the somatosensory cortex, 
the cerebellum, and posterior parts of the thalamus. All clusters had positive weights in anterior thalamic, preoptic and hypothalamic nuclei, subiculum, 
parts of the hippocampus and in the region containing the tuberomammillary nucleus. Clusters 1–3 displayed positive weights in neuromodulatory 
brainstem regions, substantia nigra, and ventral tegmental area, as well as the entorhinal cortex. The cingulate cortex and retrosplenial cortex and 
supramammillary nucleus were positive in clusters 2–4. Marked with gray are frames plotted in (B). (B) Cluster- specific spatial patterns are portrayed 
on slices selected from A (marked with gray rectangles). Characteristic to cluster 1 were positive weights in the dopaminergic substantia nigra and 
ventral tegmental area as well as in their efferent projections in the nucleus accumbens and caudate- putamen. Positive weighting was also found in 
the periaqueductal gray and brainstem laterodorsal tegmental and parabrachial nuclei, as well as in the superior colliculus. Cluster 2 was characterized 
by the strongest positive weights in hypothalamic regions, lateral in particular. Brainstem areas containing the arousal- regulating locus coeruleus, 
laterodorsal tegmental, and parabrachial nuclei, as well as the septal area and the olfactory tubercle displayed high positive weights. In cluster 3, as in 

Figure 5 continued on next page
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lower label match ratios of clusters 1 and 2 in half- split analyses (Figure 2—figure supplement 4) 
should be considered. Our results demonstrate that pupil size changes can be modulated by different 
combinations of subcortical nuclei, indicating varied brain state fluctuations underlying different oscil-
latory patterns of pupil dynamics (Figure 2C). This is further exemplified by examining the cluster- 
specific PCA prediction maps. The map of cluster 2 demonstrates the strongest coupling of pupil 
dynamics with the hypothalamus, which is known to drive pupil dilation (Ranson and Magoun, 1933) 
and also highlights other brain state- regulating nuclei of the ARAS. It is possible that the hypothal-
amus was the key driver of brain state fluctuation in cluster 2 (Grimaldi et al., 2014; Lee and Dan, 
2012). On the other hand, hypothalamic weights were least prevalent in cluster 1, which displayed 
strong pupil coupling with the dopaminergic system known to modulate pupil dynamics (O’Doherty 
et al., 2003; de Gee et al., 2017; Shannon et al., 1976). Finally, in trials of cluster 4, the caudal 
raphe nucleus was the brainstem neuromodulatory nucleus whose activity had the strongest positive 
weighting to predict pupil fluctuations. Additionally, the subiculum weights were the strongest in 
cluster 4 out of all clusters. The positive coupling of the raphe and subiculum hints at the possibility of 
pupillometry reflecting the activity of circuits responsible for autonomous stress modulation (Lowry, 
2002). The PCA prediction maps identify key nuclei coupled with pupil dynamics at different states 
and also highlight the complexity of brain activation patterns responsible for autonomous and brain 
state regulation.

The presented results should be interpreted in light of employing anesthesia to acquire BOLD 
fMRI signals within the MRI scanner. Alpha- chloralose was employed due to the quality of BOLD 
fMRI responses under this anesthetic (Hyder et al., 2016; Alonso et al., 2011). The neural correlates 
of brain state- dependent pupil–fMRI correlation differences under alpha- chloralose anesthesia have 
previously been verified (Pais- Roldán et al., 2020). However, as alpha- chloralose has been reported 
to inhibit the sympathetic system’s responses (Gaumann and Yaksh, 1990), its influence on pupil 
size and brain state changes should be investigated similarly to what has been done with other 
anesthetics. Previous studies report that the use of propofol dampened higher frequency pupil size 
changes observed in the awake state (Behrends et al., 2019), and slow pupil diameter fluctuations 
were influenced by both isoflurane and urethane anesthesia (Kum et al., 2016; Blasiak et al., 2013). 
Furthermore, the brain state changes we observed across trials could be a typical feature of brain 
activity observed in unanesthetized human subjects e.g. due to arousal or sleep state changes (Allen 
et al., 2014; Kaufmann et al., 2006; Tagliazucchi and Laufs, 2014) but could also be driven by the 
anesthetic, as in the case of urethane inducing sleep- like state changes (Blasiak et al., 2013; Clement 
et al., 2008). Although the present study is based on the anesthetized rat model, it provides a frame-
work that could be applied to analyze human datasets. Working with awake subjects would mitigate 
the potential impact of anesthesia on the activity of the sympathetic system, which controls pupillary 
movements in an antagonistic relationship with the parasympathetic system (Bonvallet and Zbrozyna, 
1963; McDougal and Gamlin, 2015). Additionally, the cognitive component of brain activity reflected 

cluster 2, the area containing the locus coeruleus, laterodorsal tegmental, and parabrachial nuclei showed positive linkage with pupil dynamics. The 
highest cluster 3 values were located in preoptic and other hypothalamic areas, as well as in stria terminalis carrying primarily afferent hypothalamic 
fibers, caudate- putamen, and globus pallidus. In cluster 4, the neuromodulatory region showing the strongest positive weights was the caudal raphe. 
The anterior parts of the brainstem displayed negative weighting. Characteristic to cluster 4 were high weights in the thalamus and in the hippocampus 
and the subiculum forming the hippocampal formation. Masked regions (white) did not pass the false discovery rate corrected significance 
threshold (p=0.01). Abbreviations: Ce – cerebellum, CgCx – cingulate cortex, CP – caudate- putamen, GP – globus pallidus, Hp – hippocampus, Hy – 
hypothalamus, LC – locus coeruleus, LDT – laterodorsal tegmental nuclei, LH – lateral hypothalamus, NA – nucleus accumbens, OTu – olfactory tubercle, 
PAG – periaqueductal gray, PB – parabrachial nuclei, PO – preoptic nuclei, Ra – raphe, Sb – subiculum, SC – superior colliculus, Se – septal area, SN – 
substantia nigra, ST – stria terminalis, Th – thalamus, VTA – ventral tegmental area.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. The unmasked cluster maps (A) and the masked maps based on randomization tests with a different random seed (B) are available in the 
source data file.

Figure supplement 1. The spatial map based on cluster 1 trials highlights regions from which pupil- related information was decoded.

Figure supplement 2. The spatial map based on cluster 2 trials highlights regions from which pupil- related information was decoded.

Figure supplement 3. The spatial map based on cluster 3 trials highlights regions from which pupil- related information was decoded.

Figure supplement 4. The spatial map based on cluster 4 trials highlights regions from which pupil- related information was decoded.

Figure 5 continued
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in pupil diameter changes of awake human subjects could be investigated using the PCA- based fMRI 
decoding method.

Further research should also be directed toward investigating the state- dependent coupling of 
pupil dynamics and brain activity at finer temporal scales. Importantly, assuming stationarity of the 
relationship at any scale could lead to oversimplification of the results, as already evidenced by our 
ability to differentiate four distinct pupil–fMRI coupling patterns instead of one common correlation 
map. Combining the analysis of individual fMRI frames (Liu et al., 2013; Tseng and Poppenk, 2020) 
with the phase of pupil diameter fluctuation, which is known to reflect the activity of different cortical 
neural populations (Reimer et al., 2014), would demonstrate whole- brain activity patterns coupled 
with pupil dilation and constriction. Finally, regions like the subiculum, which previously have not been 
linked to pupil dynamics, but displayed strong coupling weights in our study, could guide future elec-
trophysiological studies to reveal novel neuronal regulatory mechanisms underlying pupil dynamics.

Conclusion
We provided a framework to investigate the brain state- dependent relationship between pupil 
dynamics and fMRI. The pupil- related brain activity was decoupled from other signal sources based 
on PCA decomposition and the cluster- specific pupil–fMRI relationship was identified by integrating 
optimized PCA weighting features using decoding methods. Eventually, distinct subcortical activation 
patterns were revealed to highlight varied neuromodulatory nuclei corresponding to pupil dynamics.

Materials and methods
Animal preparation
All experimental procedures were approved by the Animal Protection Committee of Tübingen 
(Regierungsprasidium Tübingen; protocol KY12- 14) and performed following the guidelines. Pupil-
lometry and fMRI data acquired from 10 male Sprague Dawley rats had been previously published 
(Pais- Roldán et  al., 2020). The rats were imaged under alpha- chloralose anesthesia. For details 
related to the experimental procedures, refer to Pais- Roldán et al., 2020.

fMRI acquisition and preprocessing
All MRI measurements were performed on a 14.1 T/26 cm magnet (Magnex, Oxford) with an Avance 
III console (Bruker, Ettlingen) using an elliptic trans- receiver surface coil (~2 × 2.7  cm). To acquire 
functional data, a whole- brain 3D EPI sequence was used. The sequence parameters were as follows: 
1 s TR, 12.5 ms TE, 48 × 48 × 32 matrix size, 400 × 400 × 600 µm resolution. Each run had a length of 
925 TRs (15 min 25 s). The RARE sequence was used to acquire an anatomical image for each rat. The 
RARE parameters were as follows: 4 s TR, 9 ms TE, 128 × 128 matrix size, 32 slices, 150 µm in- plane 
resolution, 600 µm slice thickness, 8 × RARE factor. The data from all rats were spatially co- registered. 
First, for each EPI run, all volumes were registered to the EPI mean. The EPI means were registered 
to corresponding anatomical images. To register all data to a common template, all RARE images 
were registered to a selected RARE image. The obtained registration matrices were then applied 
to the functional data. A temporal filter (0.002, 0.15 Hz) was applied to the co- registered data. The 
registration was performed using the AFNI software package (Cox, 1996). Principal component anal-
ysis (PCA) implemented in the Python scikit- learn library (Pedregosa, 2011) was used to reduce the 
dimensionality of fMRI data for prediction purposes. The PCA time courses were variance normalized 
before the optimization of linear regression and GRU weights. The functional and anatomical data are 
available online (Sobczak et al., 2021b).

Pupillometry acquisition and pupil diameter extraction
For each fMRI scan, a video with the following parameters was recorded: 24 bits per pixel, 240 × 352 
pixels, 29.97 frames/s, RGB24 format. A customized MRI- compatible camera was used. For details 
related to the setup, refer to Pais- Roldán et al., 2020. The DeepLabCut toolbox (Mathis et al., 2018; 
Nath, 2018) was used to extract the pupil position from each video frame. The toolbox’s artificial 
neural network was optimized using 1330 manually labeled images extracted from 74 eye monitoring 
videos. Training frames were selected using an automated clustering- based DeepLabCut procedure. 
Four pupil edge points were manually labeled in each training image. Using the trained network, the 
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four points were located in each recorded frame and their coordinates were used to calculate the 
pupil diameter as follows:

 d =

√(
x2−x1

)2+
(

y2−y1
)2+

√(
x4−x3

)2+
(

y4−y3
)2

2   

Simultaneously, in each video, the eye size was calculated based on manual landmark identifica-
tion. The eye size was then used to normalize the pupil size, such that pupil diameter values were 
limited to the <0, 1> range. The pupil diameter signals were averaged over 1 s windows to match the 
fMRI temporal resolution while reducing noise. Pupillometry time courses were variance normalized 
before the optimization of linear regression and GRU weights. The time courses are available online 
(Sobczak et al., 2021b).

Hemodynamic response function convolution
Pupil signals were convolved with HRF kernels with varied peak times to investigate the influence of 
correcting for the lag between pupil and fMRI signals. The following equation, involving a positive 
component for the positive response and a negative one for the undershoot, was used to generate 
the kernels:
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Γ
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where  a  is a parameter controlling the peak time, and Γ is the gamma function. HRFs with peaks 
in the <0; 5> s range were used.

UMAP dimensionality reduction
The uniform manifold approximation and projection (UMAP) (McInnes et al., 2020) algorithm was 
employed to reduce the dimensionality of pupil–fMRI correlation maps before clustering. We used the 
Python implementation of the algorithm provided by the authors of the method. First, UMAP finds a 
k- nearest neighbor graph. Based on silhouette scores we set k = 7. To facilitate clustering, we set the 
minimum allowed distance between points on the low dimensional manifold to 0. We projected the 
data from the voxel space (n = 20,804) to a 72- dimensional representation, as this was the highest 
number of dimensions the method permitted given 74 input trials.

Gaussian mixture model clustering
To cluster the trials in the low dimensional space resulting from the UMAP embedding, we used the 
expectation- maximization algorithm fitting mixture of Gaussians models to the data (McLachlan and 
Basford, 1988). We used the Python implementation from the scikit- learn library (Pedregosa, 2011) 
with default parameters.

Silhouette analysis – cluster number verification
To find the number of clusters for successive analyses, we evaluated clustering results using silhouette 
analysis (Rousseeuw, 1987) implemented in the Python scikit- learn library (Pedregosa, 2011). For 
each point, the method computes a silhouette score which evaluates how similar it is to points in its 
cluster versus points in other clusters. The clustering of the entire dataset was evaluated by computing 
the mean silhouette score across all points. The clustering result with the highest mean silhouette 
score was selected for successive analyses.

Cluster reproducibility
The cluster membership label of each trial was specified based on 100 repetitions of UMAP dimen-
sionality reduction and GMM clustering applied to all trials. We found the final cluster labels by identi-
fying which trials clustered together most often. These final labels were used to create cluster- specific 
correlation maps. Both the labels and maps were compared with those generated in following anal-
yses to evaluate cluster reproducibility. In particular, we compared label match ratios and cluster 
map similarities (spatial correlations). We generated alternative clustering results based on: half- split 
analysis (randomly dividing the 74 trials into groups of 37), using HRF- convolved pupil signals, tempo-
rally splitting the data into more trials with shorter durations, and employing spatial surrogates with 
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properties matching those of real maps. We repeated each analysis 100 times and compared results 
with the initial clustering.

Surrogate map generation
Surrogate maps were created using the Brainsmash toolbox (Burt et al., 2020). For each correlation 
map, we generated 100 artificial surrogates that had the same values and spatial autocorrelation as 
the real map but different spatial patterns. By showing that clustering results based on surrogates 
were different, we verified that our clustering was not dependent on, e.g., mean map values but on 
the spatial patterns and regions highlighted in the maps.

Power spectral density estimation
The spectral analysis was performed using the Python SciPy library (Virtanen et al., 2020). To compute 
the PSDs of utilized signals, we employed Welch’s method (Welch, 1967), with the following parame-
ters: 512 discrete Fourier transform points; Hann window; 50 % overlap.

Correlation map-based prediction
Following a strategy described in previous studies (Pais- Roldán et al., 2020; Chang et al., 2016) we 
used a pupil–fMRI correlation map to predict pupillometry time courses given fMRI input data. To 
create the correlation map, pupillometry and fMRI data were concatenated across all trials and the 
pupil diameter fluctuation signal was correlated with each voxel’s signal. This generated a 3D volume 
(the correlation map), which was then spatially correlated with each individual fMRI volume yielding a 
single predicted value for each time point. As the resulting time courses’ amplitudes were bounded 
to the <−1; 1> range and not informative of the target signals amplitudes, Pearson’s correlation coef-
ficient was used to evaluate the quality of the predictions on a trial- by- trial basis.

Linear regression variants
Linear regression was used to predict pupillometry data given fMRI- PCA inputs. Four linear regression 
variants were available to a Bayesian optimizer, which selected both the linear model type and its 
parameters. The available variants were ordinary least squares, Ridge, Lasso and elastic- net regression 
models. Python scikit- learn library (Pedregosa, 2011) implementations were used. L2 Ridge regres-
sion with a regularization parameter  α = 19861  obtained the best prediction scores and was found 
using the Hyperopt toolbox (Bergstra, 2011; Bergstra et al., 2013).

Table 1. Optimized GRU hyperparameters.

Parameter name Description Range Final value

Number of layers Multiple recurrent layers could be stacked on top of each 
other. [1; 3] 1

Hidden size Hidden state vector size. [10; 500] 300

Learning rate The rate at which network weights were updated during 
training. [10–6; 1] 0.0023

L2 Strength of the L2 weight regularization. [0; 10] 0.0052

Gradient clipping Gradient clipping (Pascanu et al., 2013) limits the gradient 
magnitude at a specified maximum value. [yes; no] Yes

Max. gradient Value at which the gradients are clipped. [0.1, 2] 1

Dropout During training, a percentage of units could be set to 0 for 
regularization purposes (Srivastava et al., 2014). [0; 0.2] 0

Residual connection Feeding the input directly to the linear decoder bypassing 
the RNN’s computation. [yes; no] No

Batch size
The number of training trials fed into the network before 
each weight update. [3; 20] 12

https://doi.org/10.7554/eLife.68980
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GRU
The second model employed for pupillometry decoding was the gated recurrent unit (GRU) (Cho, 
2014) artificial neural network. The GRU is a recurrent neural network, which encodes each element 
of the input fMRI- PCA sequence  x  into a hidden state vector  h

(
t
)
  through the following computations:
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where  r, z, n  are the reset, update, and new gates,  W   are matrices connecting the inputs, gates, and 
hidden states,  σ

()
  and  tanh

()
  are the sigmoid and hyperbolic tangent functions,  b  are bias vectors, 

and ⨀ is the elementwise product. A linear decoder generated predictions based on the hidden state 
vector:
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The correlation coefficient was used as the loss function. The networks were trained in PyTorch 
(Paszke, 2019) using the Adam optimizer (Kingma and Ba, 2017). Hyperparameters were found 
using Bayesian optimization using the tree of Parzen estimators algorithm (Hyperopt toolbox, n = 
200) (Bergstra, 2011; Bergstra et al., 2013). The optimized hyperparameters have been described 
in Table 1. Early stopping was used in the Bayesian optimization procedure. To set the final number of 
training epochs for the best network, cross- validation was repeated and the GRU was trained for 100 
epochs on each split. Training for seven epochs yielded the best performance.

Cross-validation
The available 74 trials were divided into training (n = 64) and test (n = 10) sets. Linear regression and 
GRU parameters were found based on the training set with fourfold cross- validation. The final perfor-
mance was evaluated on the test set. Scores of the correlation- template- based prediction were based 
on the same data splits.

Spatial map – linear regression
To create spatial maps highlighting areas that contributed to linear regression predictions, we 
weighted PCA component maps by their associated linear regression weights, summed them, and 
took their means. Region borders from the rat brain atlas (Paxinos and Watson, 2006) were matched 
to and overlaid on spatial map slices.

Spatial map – GRU
To create spatial maps highlighting areas that contributed to GRU predictions, we computed gradi-
ents of each of the predicted time points with respect to the 300 input features. We then averaged 
the gradients across all time points for each of the features and used these mean values just like the 
weights in the case of linear regression map generation.

Variance explained
We obtained the fMRI variance explained by each PCA component directly from the scikit- learn 
(Pedregosa, 2011) PCA model. To compute the pupil variance explained by each of the PCA time 
courses, we used an approach described in Musall et al., 2019 with fourfold cross- validation. The 
explained variance of each component was found by randomly shuffling the time points of all other 
components, training the Ridge linear regression model ( α = 19861 ) on shuffled data and assessing the 
explained variance based on generated predictions.

Statistical tests – prediction
We used a paired t- test to compare the prediction scores across methods.
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Statistical tests – linear regression spatial maps
To test which linear regression spatial map values significantly contributed to the predictions, we used 
randomization tests. For each cluster, we shuffled the input and output pairings 10,000 times, trained 
a linear model, and created a spatial map for each of those pairings. We then compared the values in 
the original maps with the shuffled ones. Values that were at least as extreme as the shuffled values 
at the 0.005 positive or negative percentile (p=0.01) were considered significant. The results were 
controlled for false discovery rate with adjustment (Benjamini and Hochberg, 1995; Yekutieli and 
Benjamini, 1997).
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