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Age-related hearing loss (ARHL) is a major public health burden worldwide

that profoundly affects the daily life of elderly people. Silent information

regulator 1 (SIRT1 or Sirtuin1), known as a regulator of the cell cycle, the

balance of oxidation/antioxidant and mitochondrial function, has been proven

to have anti-aging and life-extending effects, and its possible connection with

ARHL has received increasing attention in recent years. This paper provides

an overview of research on the connection between SIRT1 and ARHL. Topics

cover both the functions of SIRT1 and its important role in ARHL. This review

concludes with a look at possible research directions for ARHL in the future.
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Introduction

Age-related hearing loss

Hearing loss, in its variants conductive, sensorineural or mixed, may be classified
according to its etiology as hereditary, traumatic, environmental, and induced by drugs
(Cunningham and Tucci, 2017). According to the WHO 2021 World Report on Hearing,
hearing loss currently affects approximately 1.6 billion people worldwide, or 20.3% of
the global population, and more than 5.5% (430 million) of the world’s population have
moderate or higher hearing loss. Globally, hearing loss is the third leading cause of
disability (GBD 2019 Diseases and Injuries Collaborators, 2020; Tordrup et al., 2021).
The number of people with hearing loss is expected to reach nearly 250 million by 2050.
Unresolved hearing loss costs more than $980 billion annually globally (World Health
Organization [WHO], 2021). WHO is scaling up health interventions for the ear and
hearing, and expects to avert more than 130 million disability-adjusted life years over the

Abbreviations: SIRT1, silent information regulator 1; ARHL, age-related hearing loss; NAD+,
nicotinamide adenine dinucleotide; Sir2, silent information regulator 2; AMPK, AMP-activated
protein kinase; PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha;
FOXO, forkhead box O; NF-κB,: nuclear factor kappa B; ROS, reactive oxygen species; G6PD,
glucose-6-phosphate dehydrogenase.
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next decade. These gains translate into a monetary value of more
than $1.3 trillion. In addition, investments in hearing care will
result in more than $2 trillion in productivity gains worldwide
by 2030 (Tordrup et al., 2021). Therefore, it is significant to
intervene and research on hearing loss.

Age-related hearing loss (ARHL), also known as
presbycusis, is a progressive decline in hearing sensitivity
and language comprehension that is associated with aging.
Therefore, this can seriously affect the social function and
mental health of the elderly individuals (Bowl and Dawson,
2019; Noble et al., 2022). Current research suggests that
ARHL can promote the development of cognitive dysfunction
(Loughrey et al., 2018; Golub et al., 2020). As the population
ages, the prevalence of ARHL will continue to increase, which
will greatly increase the socioeconomic burden (Jafari et al.,
2019). Therefore, research on ARHL is urgently needed.

Hearing, as people’s internal sense, is important for daily
communication, and hearing impairment can greatly affect
social function and mental health. Hearing impairment can
seriously affect people’s social functioning and social health. It is
now generally accepted that hearing loss is an independent risk
factor for cognitive dysfunction (Golub et al., 2020; Lozupone
et al., 2020). There are several hypotheses to explain the potential
relationship between auditory and cognitive impairment; one
hypothesis is that is that the relationship is underpinned by
general neurodegeneration in aging, while the other hypothesis
suggests that auditory impairment and sensory deprivation are
causally linked to cognitive impairment (Slade et al., 2020). At
present, whether the two are causal or mutually reinforcing
needs to be further verified. With the progress of population
aging, the prevalence of ARHL will continue to increase in the
future, which will greatly increase the socioeconomic burden.

The inner ear pathology of ARHL is characterized by loss
of inner and outer hair cells, vascular stripe atrophy, loss of
spiral ganglion cells, and degeneration of spiral ligaments (Bowl
and Dawson, 2019). It is currently believed that ARHL can be
caused by deafness-related genes, noise pollution, and other
single or interactive effects, while the accumulation of chronic
oxidative stress damage with aging is likely to be a major cause
of ARHL (Fujimoto and Yamasoba, 2014). The C57BL/6J mouse
is an excellent animal model for studying ARHL. C57BL/6J mice
show hearing loss with age, with elevated hearing thresholds
starting at 6 months or even as early as approximately 3 months
of age (Hequembourg and Liberman, 2001) and a linear trend
of increasing hearing thresholds as time progresses (Ison et al.,
2007).

Comparing human glucose-6-phosphate dehydrogenase
(G6PD) gene-transferred C57BL/6 mice with wild-type mice,
G6PD overexpression was found to enhance antioxidant
capacity, attenuate oxidative damage and delay the onset of
hearing loss (Bermúdez-Muñoz et al., 2020). p43 knockout
mice exhibited more severe and earlier onset of hearing loss
with age progression than wild-type C57BL/6 mice, precisely

because of mitochondrial dysfunction and increased oxidative
damage due to p43 gene deletion (Affortit et al., 2021).
Mitochondrial dysfunction and oxidative stress are common
features in neurodegeneration and aging (Giordano et al.,
2013; Fang et al., 2014), now evidence indicates that the
dysregulation of glial cells (e.g., satellite cells) and degeneration
of the ganglion node structure are important mechanisms of
ARHL (Panganiban et al., 2022). These studies suggest that a
strong antioxidant function plays an important role in delaying
ARHL. Mitigating oxidative damage and restoring the balance
of the oxidative/antioxidant system are major hot spots in
current research on the prevention and treatment of ARHL.
Therefore, SIRT1, which has good antioxidant, anti-aging, and
neuroprotective effects (Giordano et al., 2013), is receiving
increasing attention in the study of ARHL.

Silent information regulator 1

SIRT1, a nicotinamide adenine dinucleotide (NAD+)-
dependent class III histone deacetylase, is associated with
lifespan extension. It is known for its ability to balance
oxidation/antioxidation and reduce mitochondrial damage,
DNA damage and apoptosis (Chen C. et al., 2020). It has been
found to play a non-negligible role in ARHL (Salam et al., 2021).

Silent information regulator 1 in the
inner ear

SIRT1 is widely distributed in various organs and tissues
throughout the body and is involved in anti-aging, anti-
inflammatory, antioxidant, and cell cycle regulation in the
brain, liver and other important organs (El Hayek et al.,
2019; de Gregorio et al., 2020; Zhang X. S. et al., 2021;
Kadono et al., 2022). It has been confirmed that SIRT1 is
also present in the cochlea (Xiong et al., 2014). In the mouse
cochlea, SIRT1 was expressed in the inner and outer hair cells,
marginal, and intermediate cells of the vascular striae, spiral
ligament, and spiral ganglion cells. Immunofluorescence and
histochemical results showed that SIRT1 was expressed in the
nuclei of the above cells, and the expression in aged mice
was significantly lower than that in young mice (Chang et al.,
2018; Pang et al., 2019). The results confirmed that SIRT1 is
strongly associated with ARHL and deserves in-depth study by
audiologists.

SIRT1 plays a crucial role in hearing loss, especially ARHL.
This review elucidates the structure and function of SIRT1 and
its localization in the cochlea. Moreover, it mainly explains
the relationship between SIRT1 and ARHL, as well as the
current research progress related to SIRT1 and the prevention
or treatment of ARHL, and provides our own views on future
treatment and research strategies for ARHL.
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Structure and function of silent
information regulator 1

Sirtuins are (NAD +)-dependent class III histone
deacetylases. The family consists of seven members in mammals
(SIRT1, SIRT2, SIRT3, SIRT4, SIRT5, SIRT6, and SIRT7).
These family members are characterized by the possession
of the sirtuin core structural domain (Frye, 1999). Sirtuins
are associated with many pathophysiological activities, such
as genome stabilization, cancer, oxidative stress response,
apoptosis, metabolism, aging, proliferation, and inflammation
(Bonkowski and Sinclair, 2016). SIRT1 is the first to be
identified and is more recognized in the sirtuins family (Haigis
and Sinclair, 2010). In mammals, SIRT1 is composed of 747
amino acids and includes three regions: the central core (273–
517 amino acids), which possesses the structural domain of the
deacetylase; the N-and C-terminal regions, which are located on
either side of the enzyme core; and the catalytic domain, which
consists of 250 amino acids and is highly conserved among
species (Sauve et al., 2006). SIRT1 controls DNA transcription
by transferring acetyl groups from ε-N-acetyllysine amino
acids to histones of DNA (Maiese, 2021). It has been suggested
that SIRT1 is a possible substrate for autophagy. SIRT1 is
mainly located in the nucleus, but also in the cytoplasm and
mitochondria, and is closely associated with senescence when it
is present in the cytoplasm (Xu et al., 2020). Silent information
regulator 2 (Sir2) is a mammalian homolog highly similar to
SIRT1 (Smith, 2002). In 1999, it was found that the lifespan
of Sir2 mutant yeast cells was significantly shorter, while the
lifespan of yeast overexpressing Sir2 was longer than that
of wild type yeast (Kaeberlein et al., 1999). SIRT1 was also
found to extend the lifespan of Cryptobacterium hidradenum
(Tissenbaum and Guarente, 2001), mice (Satoh et al., 2013), and
flies (Rogina and Helfand, 2004); this effect was associated with
caloric restriction, which means that caloric restriction activates
SIRT1 to exert lifespan-extending effects.

The deacetylation of SIRT1 reverses the acetylation of lysine
residues on its target proteins by hydrolyzing an NAD+ and
generating nicotinamide and a unique metabolite called 2′-O-
acetyl-ADP-ribose (Hwang et al., 2013). SIRT1 participates not
only in the regulation of the cell cycle by deacetylating histones,
but also in positively or negatively regulating downstream
targets that play key roles in various physiological activities,
such as oxidative/antioxidant homeostasis, inflammation, and
energy metabolism (Figure 1). For example, adenosine 5′-
monophosphate (AMP)-activated protein kinase (AMPK) is
an AMP-dependent, essential kinase that regulates energy
homeostasis. The AMPK and SIRT1 signaling pathways
are evolutionarily conserved energy sensors; AMPK senses
changes in the cellular AMP/ATP ratio, and SIRT1 senses
changes in the NAD+/NADH ratio (Salminen and Kaarniranta,
2012). AMPK enhances SIRT1 activity by increasing the
NAD + concentration; in turn, SIRT1 activation can promote

AMPK activity (Cantó et al., 2009). The important function of
the AMPK/SIRT1 signaling pathway in regulating autophagy,
anti-inflammatory, and antioxidant activities has been studied
extensively. The activation of the AMPK/SIRT1 signaling
pathway by drugs to treat metabolic and aging-related diseases is
also a current research topic (Maharajan and Cho, 2021; Wang
et al., 2021). Peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC-1α), the downstream factor of SIRT1,
is involved in the regulation of many cellular physiological
functions, including the control of mitochondrial homeostasis
and reactive oxygen species (ROS) levels (Johri et al., 2013),
and activation of PGC-1α requires deacetylation of SIRT1
and dephosphorylation of AMPK (Kaarniranta et al., 2018;
Xu et al., 2021). Currently, aging is accompanied by a decrease
in autophagic efficiency (Salminen and Kaarniranta, 2009;
Barnes et al., 2019). SIRT1 can regulate the level of autophagy by
deacetylating p53, which has been shown to inhibit autophagy
when located in the cytoplasm but promote autophagy when
located in the nucleus (Kroemer et al., 2010). This observation
is consistent with the idea that SIRT1 has different cellular
localizations at different stages of the cell cycle. SIRT1 is
transferred from the nucleus to the cytoplasm in senescent cells,
thus decreasing autophagy. SIRT1 also deacetylates forkhead
box Os (FoXOs), enhancing cellular resistance to oxidative stress
(Singh and Ubaid, 2020). Moreover, nuclear factor kappa B
(NF-κB), a key regulator of inflammation, can be inhibited by
SIRT1, reducing the expression of inflammatory factors and thus
acting as an anti-inflammatory agent (de Gregorio et al., 2020).
There is growing evidence that microRNAs, small non-coding
single-stranded RNAs, are involved in SIRT1 regulation, and
regulating the expression levels of specific miRNAs may be a new
therapeutic strategy (Munk et al., 2017; Barnes et al., 2019).

Current studies on silent
information regulator 1 and
age-related hearing loss

A search of PUBMED for the keywords “SIRT1,” “hearing
loss,” “cochlea,” “presbycusis” and “age-related hearing loss,”
showed that there were less than 50 studies related to SIRT1 and
hearing until now, of which 14 studies (Table 1) were related to
ARHL.

In 2013, this is the first study to demonstrate the presence
of SIRT1 in the cochlea and auditory cortex, which was
significantly expressed in the nuclei of inner and outer
hair cells, vascular striated marginal and basal cells, spiral
ligament fibroblasts, and spiral ganglion cells and decreased
with age (Xiong et al., 2014). Overexpression of miR-34a
inhibited SIRT1 with increased apoptosis. After resveratrol
administration, miR-34a could be inhibited and the apoptosis
of hair cells was reduced, as well as the threshold drift in mice
(Xiong et al., 2015). Later, SIRT1 overexpression in mice by the
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FIGURE 1

Aging and environmental factors lead to the decline of auditory center and inner ear functions, resulting in ARHL. Distribution of SIRT1 in
cochlea: SIRT1 is expressed in inner and outer hair cells, spiral ligament, margin cells and intermediate cells of stria vascularis, and spiral
ganglion cells of cochlea. The function of SIRT1: SIRT1 is regulated by NAD + , AMPK is regulated by AMP, and AMPK and SIRT1 can promote
each other, while some specific miRNAs can inhibit the activity of SIRT1. SIRT1 can activate PGC-1α and FoXOs, enhance the resistance to
oxidative stress damage, keep the normal function of mitochondria; SIRT1 can also deacetylate to reduce the activity of NF-κB, p53 and other
inflammatory and aging-related factors to reduce their activity and promote the increase of autophagy. As a consequence, SIRT1 can delay the
aging and age-related hearing loss.

transgenic technique confirmed that overexpression of SIRT1
could protect cochlear hair cells and improve ARHL (Xiong
et al., 2019). In contrast, one study in 2016 suggested that SIRT1
deficiency activated Foxo3a, enhanced the resistance of cochlear
hair cells to oxidative stress damage, and delayed the occurrence
of ARHL (Han et al., 2016). However, the results of several

relevant studies in recent years suggest the opposite of this
conclusion.

In 2019, researchers compared 2- and 12-month-old
C57BL/6 mice, showing that SIRT1 expression was significantly
decreased in 12-month-old mice. However, resveratrol, a natural
SIRT1 activator, was added to the diet, and the mice were

Frontiers in Molecular Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnmol.2022.984292
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/


fnmol-15-984292 September 13, 2022 Time: 18:4 # 5

Zhao and Tian 10.3389/fnmol.2022.984292

TABLE 1 SIRT1 and ARHL related articles.

Subject Treatment Result Author

SAMP1mice and HepG2
cells

Ubiquinol-10 Ubiquinol-10 may enhance mitochondrial activity by increasing levels of
SIRT1, PGC-1α, and SIRT3 that slow the rate of ARHL and protect against the
progression of aging and symptoms of age-related diseases.

Tian et al., 2014

C57BL/6 mice None It was confirmed that SIRT1 exists in cochlea and auditory cortex and
decreases with age.

Xiong et al., 2014

HEI-OC1 auditory cells
and C57BL/6 mice

miR-34a overexpression and
knockdown, resveratrol

miR-34a overexpression was inhibited SIRT1, while resveratrol can activate
SIRT1 and improve hair cell death and hearing loss.

Xiong et al., 2015

CBA/J mice None In the cochlea, the expression of SIRT1, 3, and 5 (both mRNA and protein)
was decreased in the old mice, whereas no noticeable difference was observed
regarding SIRT2, 4, 6, or 7.

Takumida et al., 2016

C57BL/6 mice and
human blood

None Circulating miR-34a levels in mice and humans correlated with age-related
hearing loss, but SIRT1 did not correlate with human ARHL.

Pang et al., 2016

C57BL/6 mice and
HEI-OC1 auditory cells

SIRT1 knockdown, hydrogen
peroxide

SIRT1 deficiency activated Foxo3a, increased cochlear hair cell peroxidase
activity, and SIRT1 knockdown mice delayed the onset of ARHL.

Han et al., 2016

C57BL/6 mice and
HEI-OC1 auditory cells

H2O2, overexpression of
miR-29b, transfection with the
miR-29b inhibitor

miR-29b/SIRT1/PGC-1α signaling was involved in the development and
progression of ARHL, miR-29b modulated mitochondrial dysfunction and
apoptosis through SIRT1/PGC-1α signaling in HEI-OC1 cells.

Xue et al., 2016

C57BL/6 mice, human
blood, SK-N-MC and
SH-SY5Y cells

H2O2, MIAT (myocardial
infarction associated
transcript),transfected with
anti-miR-29b

Relative expression of MIAT, SIRT1 and PGC-1α was downregulated in aged
mice, with microRNA-29b (miR-29b) being highly expressed. MIAT binds to
miR-29b, an inhibitor of SIRT1 expression.

Hao et al., 2019

C57BL/6 mice and
HEI-OC1 auditory cells

Resveratrol, SRT1720 Long-term resveratrol feeding increased SIRT1 expression in hair cells of aged
mouse cochlea, improved autophagy in outer hair cells, attenuated ARHL.

Pang et al., 2019

C57BL/6 mice and
HEI-OC1 auditory cells

Resveratrol, SIRT1
overexpression, miR-34a
knockdown

Long-term resveratrol feeding improved the balance of mitochondriogenesis
and mitochondrial autophagy in the mouse cochlea and the miR-34a/SIRT1
signaling pathway was involved in delaying ARHL.

Xiong et al., 2019

C57BL/6 mice P43 knockdown P43-/-mice decreased SIRT1 expression, altered mitochondrial morphology
and function, and increased oxidative stress and apoptosis, which aggravated
ARHL.

Affortit et al., 2021

Sprague-Dawley rats Environmental enrichment Exposure to EE for 12 weeks resulted in activation of the central auditory
pathway and limbic system SIRT1 in rats, reduced chronic inflammation, and
improved ARHL.

Song et al., 2021

C57BL/6 mice High-fat diet (HFD),
N1-methylnicotinamide
(MNAM)

High-fat diet reduced SIRT1 levels in the cochlea and aggravates ARHL, while
MVAM increased SIRT1 levels and attenuated ARHL.

Miwa, 2021

C57BL/6 mice Thymoquinone (TQ) TQ activated SIRT1, reduced cilia damage of hair cells, and improved ARHL Salam et al., 2021

fed for a total of 10 months, beginning at ∼2 months of age.
Compared with the conventionally fed mice of the same age, the
supplementation of resveratrol increased the SIRT1 level in the
outer hair cells of the cochlea of mice and induced autophagy
and significantly improved the ARHL (Pang et al., 2019).

The normal and orderly physiological activities cannot
be separated from the normal functioning of mitochondria
(Rossmann et al., 2021). P43, as the mitochondrial receptor of
T3 (Wrutniak et al., 1995), is closely related to mitochondrial
function (Grandemange et al., 2005). It was found that mice with
selective knockout of the P43 gene did not exhibit hearing loss at
a young age, but compared with wild-type C57BL/6J mice, p43
knockout mice (p43-/-) showed an earlier increase in hearing
threshold and more severe hearing loss with age and exhibited
greater sensitivity to noise damage. The authors suggested that
this may be related to the altered mitochondrial morphology and
function in p43-/- mice, the dramatic decrease in SIRT1 activity

and Bcl-2 expression, and the subsequent increase in oxidative
stress, inflammation and apoptosis (Affortit et al., 2021). There
may be a direct causal relationship between decreased SIRT1
activity and earlier onset and more severe ARHL, which needs
to be further verified using subsequent treatments such as SIRT1
activators, inhibitors or transgenics.

In 2021, another study exposed SD rats to environmental
enrichment (EE) for 12 weeks, where the animals were placed
in cages full of toys and encouraged to forage and explore by
moving the toys, feeding boxes and water tanks at least once
a week. After 12 weeks, they found that EE increased SIRT1
activity in the auditory cortex and improved ARHL (Song et al.,
2021). A high-fat diet reduced cochlear SIRT1 and aggravated
ARHL, while the addition of MNAM (N1-methylnicotinamide)
elevated SIRT1 levels and inhibited ARHL (Miwa, 2021). These
results show that adequate SIRT1 expression plays a key role
in ARHL. The study of SIRT1 as a target for ARHL and the
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use of drug activation of SIRT1 to prevent or medicate ARHL
are hot spots for future research.

Since the acquisition of ARHL in animal models is time-
consuming, it increases the difficulty of the experiment, while
the modeling time of noise-induced and drug-induced deafness
is fast, and the modeling effect is stable. At present, there
are many studies on cisplatin-induced hearing loss and noise-
induced deafness. The protective effect of SIRT1 in cisplatin-
induced hearing loss and noise-induced deafness confirms the
potential therapeutic role of SIRT1 in the cochlea (Pang et al.,
2018; Chen X. M. et al., 2020; Zhan et al., 2021; Liu et al., 2022).
To obtain the cytotoxic or cytoprotective effect of a certain
treatment on hearing in a short time, experiments in vitro are
preferred. The HEI-OC1 cell line, one of the auditory cell lines,
is now commonly used in hearing research (Kang et al., 2020;
Zheng et al., 2020; Zhang X. S. et al., 2021). Cochlear explants
or basilar membranes cultured in vitro have also been used to
study the effect of drugs on hearing (He et al., 2020). However,
experiments in vitro do not reflect the systemic effects of a
treatment as in vivo do, and administration in vivo may not
work well in the inner ear because of the blood-vagus barrier
of the inner ear (Nyberg et al., 2019), leading to different results
after in vivo and in vitro administration, which is a challenge
that needs to be addressed. Hearing loss is not only determined
by hair cells but is also closely related to spiral ganglia, spiral
ligaments, vascular striae, and endolymph (Cunningham and
Tucci, 2017; Korver et al., 2017). The in vitro cell assays provide
information about the cellular response to the treatment and can
be used to understand drug effects on hair cells, but they are not
representative of drug effects on hearing.

Prospects

Age-related hearing loss is a disease associated with aging,
the exact cause of which is unknown and for which there is
no clear and effective treatment. Caloric restriction, currently
recognized as an effective measure to delay aging, can alter
NAD+/NADH and then activate SIRT1 (Madeo et al., 2019).
Perhaps the prevention and treatment of ARHL needs to be
carried out on many fronts, including life, diet and medication.
Studies have confirmed that SIRT1 plays a highly important
role in ARHL as well as aging, tumors, and neurodegenerative
diseases by acting on downstream signaling molecules such
as p53 and NF-κB to mitigate DNA damage, maintain the
oxidative/antioxidant balance, and reduce apoptosis. Moreover,

a number of drugs have been shown to activate SIRT1, which has
positive anti-aging, anti-inflammatory and antioxidant effects.
However, these studies are currently limited to animal or cellular
experiments. A large number of clinical studies are needed to
clarify whether SIRT1 plays the same positive role in the human
cochlea, whether these drugs can be safely used in humans and
the timing of interventions to prevent ARHL.
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