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Based on Immune Signatures Identifies
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Lung cancer is the most common cause of cancer deaths world-
wide, and lung adenocarcinoma (LUAD) is the most common
histological subtype. However, the prognostic and predictive
outcomes differ because of this cancer type heterogeneity.
LUAD subtypes were identified on the basis of the immunoge-
nomic profiling of 29 immune signatures. We named three
LUAD subtypes: Immunity High, Immunity Medium, and Im-
munity Low. The Immunity High subtype was characterized by
immune activation, e.g., increased immune scores, elevated
stromal scores and the highest infiltration of CD8+ T cells,
and decreased tumor purities. Activated expressions of human
leukocyte antigen (HLA) genes, immune checkpoint molecules,
and T helper 1 (Th1)/interferon-gamma (IFNg) gene signature
were also observed in the Immunity High subtype. N6-methyl-
adenosine (m6A) RNA methylation, associated with cancer
initiation and progression, was reduced in the Immunity
High subtype. Functional and signaling pathway enrichment
analysis further showed that differentially expressed genes be-
tween the Immunity High subtype and the other subtypes
mainly participated in immune response and some cancer-
associated pathways. In addition, the Immunity High subtype
exhibited more sensitivity to immunotherapy and chemo-
therapy. Finally, candidate compounds that aimed at LUAD
subtype differentiation were identified. Comprehensively char-
acterizing the LUAD subtypes based on immune signatures
may help to provide potential strategies for LUAD treatment.
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INTRODUCTION
Lung cancer is the leading cause of cancer-associated mortality world-
wide.1,2 Although great progress has been made toward the preven-
tion, diagnosis, and treatment of cancer via specific cellular targets,
the clinical outcome is still unsatisfactory. An increasing body of ev-
idence reports that malignant phenotypes are influenced by a tumor-
related microenvironment.3,4 Lung cancer, an immune-sensitive ma-
lignancy, is infiltrated by different immune cell types.5 Recently, can-
cer immunotherapy has become involved in treating all forms of can-
cer and has changed the landscape of cancer care. For example,
inhibition of the programmed cell death 1 (PCDC1/PD-1)/CD274
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molecule (CD274/PD-L1) immune checkpoint using antibodies
against PD-1 rescues effector T cell function, which permits T cells
to maintain their tumor cell-killing function.6 Moreover, in patients
with high expression of PD-L1, antibodies against PD-1 are effective
in treating a variety of cancers and improving overall survival.7,8

However, currently, cancer immunotherapy displays beneficial effects
in less than 20% of patients.9 This may suggest that not all cancer pa-
tients could respond to immunotherapy. Lung adenocarcinoma
(LUAD) is one of the major types of lung cancer, and a recent study
identified an immunogenic tumor microenvironment state in non-
small cell lung cancer (NSCLC) that was mainly enriched for the
LUAD subtype.10 Also, many studies identified distinct subtypes of
LUAD featured by different immune-infiltrating signatures and mo-
lecular mechanisms.11,12 The 5-year overall survival rate of LUAD re-
mains at a low level of 15.9%.13 Therefore, it is essential to identify the
LUAD subtypes based on immune signature.

In the present study, we classified LUAD into three distinct subtypes
based on immunogenomic profiling: Immunity Low, Immunity Me-
dium, and Immunity High. Furthermore, our analyses apply a new
approach of identifying the optimal selection of LUAD patients
responsive to immunotherapy and chemotherapy, and may provide
a predictive factor for clinical application in LUAD patient treatment.
Finally, recent pharmacology research has revealed the necessity to
design compounds that act on multiple genes or molecular path-
ways.14–17 In our study, we identified compounds targeting the differ-
entiation of LUAD phenotypes, which may provide therapeutic tar-
gets for further analysis.
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Figure 1. Hierarchical Clustering Yields Three Subtypes in TCGA Dataset

Immunity_H, Immunity High; Immunity_L, Immunity Low; Immunity_M, Immunity Medium; LUAD, lung adenocarcinoma.
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RESULTS
Identification of LUAD Subtypes Based on Immunogenomic

Profiling

To characterize the immune subtypes and immune response to cancer
in LUAD patients, we analyzed the single-sample gene set enrichment
analysis (ssGSEA) score using 29 immune-associated gene sets across
the landscape of LUAD samples. Subsequent hierarchical cluster
analysis identified characteristic immunoncological signatures, which
were then used to cluster LUAD tumor types into immune subtypes.
The three distinct clusters, Immunity High, Immunity Medium, and
Immunity Low, showed different immune responses (Figure 1). The
patient’s sample size of each subtype was 383 LUAD samples from
Immunity High, 118 LUAD samples from Immunity Medium, and
34 samples from Immunity Low. The hierarchical clustering map
was shown in Figure S1. Based on the estimation of stromal and im-
mune cells in malignant tumor tissues using expression data (ESTI-
MATE) algorithm, the immune scores and stromal scores of Immu-
nity High ranked the highest of the three groups, followed by that of
Immunity Medium and Immunity Low (Figures 2A and 2B). More-
over, we compared the tumor purities of the three LUAD subtypes
and obtained opposite trends: Immunity Low ranked the highest,
and Immunity High ranked the lowest (Figure 2C). Using the CIBER-
SORT algorithm and combining it with the LM22 gene signature, the
differences of immune infiltration among the different groups of
LUAD patients of the 22 immune cell types were investigated. As
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shown in Figure 2D, the 22 tumor-immune cell proportions were
significantly different. According to the boxplot, the Immunity
High LUAD patients had notably higher proportions of CD8+

T cells (Figure 2E). These results showed that the heterogeneity of im-
mune infiltration in LUADmay comprise targets for immunotherapy
and may have significant clinical implications.

Interaction between Immunogenomic Profiling-Based LUAD

Subsets and the Expression of HLA (Human Leukocyte Antigen)

and Immune Checkpoint Molecules

HLA and immune checkpoint molecules are essential for immune
function and have diverse clinical implications in immunotherapy.
Therefore, we investigated any potential correlation between the
LUAD subtypes and the expression of HLA genes and immune
checkpoint molecules. Interestingly, all HLA gene expression was en-
riched in Immunity High and exhibited the lowest expression levels in
Immunity Low (Figure 3A). Then, we determined the expression of
several key immunomodulators, including IDO1, PD-L1 (CD274),
PD-L2 (PDCD1LG2), TIM-3 (HAVCR2), TIGIT, cytotoxic T-
lymphocyte associated protein-4 (CTLA-4), PD-1 (PDCD1), LAG3,
ICOS, and CD27. As shown in Figure 3B, Immunity High had greater
expression of immune checkpoint molecules than the other two
groups. These results revealed that the LUAD subtype Immunity
High might be a more promising treatment to respond for
immunotherapies.



Figure 2. The Landscape of Immune Infiltration in LUAD Subtypes

(A) Immune scores in LUAD subtypes. (B) Stromal scores in LUAD subtypes. (C) Tumor purities in LUAD subtypes. (D) Relative proportion of immune infiltration in LUAD

subtypes. (E) The difference of immune cell infiltration abundance in LUAD subtypes.
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Association between the LUAD Subtypes and the Interferon-

Gamma (IFNg) Pathway

In our study, we found Immunity High had elevated expression of
CD8+ T cells, IDO1, and PD-1/PD-L1. An increasing amount of ev-
idence reported that CD8+ T cells in the tumor microenvironment
could produce IFNg, leading to the upregulation of the PD-1/PD-
L1 axis and IDO1. Therefore, we examined the markers of the T help-
er 1 (Th1)/IFNg gene signature among the three immunity subtypes.
Consistent with our hypothesis, a positive relationship between the
immune response and IFNg pathway-related genes could be seen,
and Immunity High exhibited the highest IFNg gene signature (Fig-
ures 4A and 4B).

Association between the LUAD Subtypes and the Expression of

N6-methyladenosine (m6A)Messenger RNA (mRNA)Methylation

Regulators

Emerging evidence revealed an important role of m6A mRNAmethyl-
ation in decreasing the CD8+ T cell antitumor response and promoting
anti-PD-1 resistance. Immunity High was significantly associated with
decreased gene expression, such as METTL3, RBM15, YTHDC1,
YTHDF1, and YTHDF2, which are involved in m6A mRNA methyl-
ation (Figures 5A and 5B). Our findings further demonstrate that pa-
tients in the Immunity High groupmight be better suited for immuno-
therapy in combination with emerging checkpoint inhibitors.
Functional Annotation and Kyoto Encyclopedia of Genes and

Genomes Analyses

Here, we found that the Immunity High subtype, compared with Im-
munity Medium or Immunity Low, was characterized by immune
pathway, IFNg pathway, HLA, and immune checkpoint molecule
activation, and inactivation of m6A mRNA demethylation. Then,
we compared the Immunity High group with the Immunity Medium
and Immunity Low groups, and explored the differentially expressed
genes using the limma package. A total of 1,710 differentially ex-
pressed genes were screened in The Cancer Genome Atlas (TCGA)
dataset (Figure 6A).

In order to obtain further insight into the underlying biological charac-
teristics of the differentially expressed genes, we conductedGO enrich-
ment analyses basedon theR package clusterProfiler. As a result, differ-
entially expressed genes were clustered, and most were enriched in
functions such as antigen binding, immune response-regulating cell
surface receptor signaling pathway, immune response-activating cell
surface receptor signaling pathway, lymphocyte-mediated immunity,
adaptive immune response based on somatic recombination of im-
mune receptors built from immunoglobulin superfamily domains, hu-
moral immune response mediated by circulating immunoglobulin,
regulation of immune effector process, regulation of humoral immune
response, and B cell-mediated immunity (Figure 6B).
Molecular Therapy: Oncolytics Vol. 17 June 2020 243
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Figure 3. Interaction between Immunogenomic Profiling-Based LUAD Subsets and the Expression of HLA and Immune Checkpoint Molecules

(A) The expression of HLA genes in LUAD subtypes. (B) The expression of immune checkpoint molecules in LUAD subtypes. HLA, human leukocyte antigen.
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These biological functions indicated that the differentially expressed
genes played an important role in immune-related biological pro-
cesses in LUAD. Moreover, we identified various cancer-associated
pathways that were enriched in cytokine-cytokine receptor interac-
tion, cell adhesion molecules (CAMs), chemokine signaling pathway,
nuclear factor kB (NF-kB) signaling pathway, transcriptional misre-
gulation in cancer, and T cell receptor signaling pathway (Figure 6C).
For the differentially expressed genes, we identified the four transcrip-
tion factor (TF) genes, i.e., interferon regulatory factor 1 (IRF1), IRF4,
PAX5, and FOXP3, all of which are involved in immune reactions
(Figure 6D).

Evaluating the Therapeutic Response of the LUAD Subtypes

Immune checkpoint blockade targeting CTLA-4 and PD-1 has
emerged as a promising approach in treating a variety of malig-
nancies. Thus, we used the Tumor Immune Dysfunction and Exclu-
sion (TIDE) algorithm and subclass mapping to estimate the clinical
response of the subtypes to immune checkpoint blockade (CTLA-4
and PD-1). Interestingly, we found that the Immunity High group
was a more promising treatment to respond for anti-PD-1 therapy
(Bonferroni corrected p = 0.004) (Figure 7A). To obtain a compre-
hensive analysis of the response to chemotherapy, we used the pRRo-
phetic algorithm to estimate the chemotherapeutic response based on
the half-maximal inhibitory concentration (IC50) available in the ge-
nomics of drug sensitivity in cancer (GDSC) database for each TCGA
sample. We were delighted to find that 95 chemo drugs were screened
out for significant differences in the estimated IC50 between the Im-
munity High group and the other two groups, and that the Immunity
High group was more sensitive to all of these chemotherapies (Fig-
ure 7B; Table S1). Figure 7B displayed the top 20 chemo drugs.
Next, we used a one-class logistic regression (OCLR) algorithm to
calculate stemness indices across the LUAD subtypes. We found
that the Immunity High subtype had a lower stemness index value
than the other two subtypes (Figure S2).
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Furthermore, a nomogram was built by including the TNM stage
and the immune signature model (Figure S3A). As a result, the
area under the curve (AUC) was the largest for immune signature
score, indicating that the immune signature model was better
than the clinical features in LUAD patients (Figure S3B). To explore
the potential compounds/inhibitors that might target the immune
signature, we used the Broad Institute’s Connectivity Map (CMap)
based on differentially expressed genes. According to our analysis,
we found some candidate compounds for LUAD patient treatment
(Figure 7C).

DISCUSSION
Lung cancer, a deadly malignancy, ranks as the highest reason of
global cancer mortality.18 Previous studies have identified LUAD
subtypes according to genomic profiling;19–22 however, very few
studies have examined the classification of LUAD specifically on
the basis of immune signatures. In order to better understand
the immune biology components of LUAD, we classified LUAD
into three subtypes: Immunity High, Immunity Medium, and Im-
munity Low. We demonstrated that the Immunity High subtype
is associated with increased immune scores, stromal scores,
HLA genes, immune checkpoint molecules, Th1/IFNg gene signa-
ture, and the highest infiltration of CD8+ T cells, and decreased
tumor purity and m6A RNA methylation. Functional and
signaling pathway enrichment analysis further showed that differ-
entially expressed genes between the Immunity High subtype and
the other two subtypes mainly participated in the immune
response and in some cancer-associated pathways. The Immunity
High subtype exhibited more sensitivity to immunotherapy and
chemotherapy. Our study, for the first time, stratified the
LUAD patients based on immune signatures and provided novel
insights into predicting the efficacy of immunotherapy and
chemotherapy, as well as potential therapeutic targets for possible
differentiation therapy.



Figure 4. Association between LUAD Subtypes and the Th1/IFNg Pathway

(A) Heatmap demonstrating the relationship of LUAD subtypes with the markers of the Th1/IFNg gene signature. (B) The expression of markers of the Th1/ IFNg gene

signature in LUAD subtypes. IFNg, interferon-gamma.
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Recently, immune checkpoint inhibitor therapy by targeting the PD-
L1/PD-1 axis has provided promising approaches in the field of
NSCLC therapy.23,24 CD8+ T cell-dependent killing of cancer cells re-
quires the efficient cancer antigen presentation by HLA class I (HLA-
I) molecules.25 CD8+ T cells could produce interferon Gamma
(IFNG), then activate the expression of PD-1/PD-L1 as a consequence
of antitumor immunity.26 m6A, the most prominent chemical mRNA
modification, is responsible for mRNA post-transcriptional regula-
tion in gene expression regulation.27 The role of m6A methylation
in cancer has started to arouse wide concern in recent years.
Increasing evidence indicates that genetic changes and dysregulated
expression of m6A RNA are closely associated with tumor initiation,
progression, and radio/chemo-resistance.28 m6A mRNA methylation
was reported to decrease CD8+ T cell antitumor response and pro-
mote anti-PD-1 resistance.29 We hypothesized that the patients in
different groups might have different immune responses. As expected
in our study, we found that the Immunity High subtype generally had
higher fractions of CD8+ T cells than the other two subtypes. More-
over, we found that the Immunity High subtype had elevated expres-
sion of HLA and immune checkpoint molecules, displayed a more
Figure 5. Association between LUAD Subtypes and the Expression of m6A mR

(A) Heatmap demonstrating the relationship of LUAD subtypes with the expression of

methylation regulators in LUAD subtypes. m6A, N6-methyladenosine.
prominent Th1/IFNg gene signature, and had lower levels of m6A
mRNA demethylation.

Although immune checkpoint inhibitors appear promising for lung
cancer treatment, not all lung cancer patients respond to immune
checkpoint inhibitors against PD-1 and CTLA-4, possibly because
of their complexity and limitations in their tumor immunity.30,31

Thus, an improved classification of LUAD specifically based on im-
mune signatures may reveal subsets of patients who may derive the
most benefit from current therapies. Our results of functional and
signaling pathway enrichment analysis mainly participated in the
immune response and in some cancer-associated pathways. The
TF genes interacting with each other and forming a subnetwork
with immune and cancer-related genes that they regulate were
involved in immune response. IRFs are a group of TFs that are
related to the regulation of gene expression and the immune
response.32 IRF1 has been found to have a central role in the immu-
nologically active cancer phenotype.33 Its synthesis is induced in
response to IFN-g.32,33 Various genetic and functional studies
have also pointed to IRF4 as a master regulator for autoimmunity.
NA Methylation Regulators

m6A mRNA methylation regulators. (B) The expression of markers of m6A mRNA
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Figure 6. Functional Annotation and Kyoto Encyclopedia of Genes and Genomes Analyses

(A) Volcano maps of differentially expressed genes. (B) GO enrichment analyses. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyses. (D) TF genes

and their regulated genes. TF, transcription factor.
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IRF4 can definitely affect CD8+ T cell differentiation because various
factors related to the differentiation and function of CD8+ T cells,
including basic leucine zipper ATF-like transcription factor (BATF),
Blimp-1, T-bet, and retinoic acid-related orphan receptor gamma t
(RORgt), are regulated by IRF4.34 In addition, IRF4 can affect T reg-
ulatory (Treg) cell development. Foxp3 modulated the expression of
immune-associatedmolecules, and Foxp3 expression positively corre-
lated with the Treg-like suppressive activity on T cells.35 Anti-PAX5-
directed T cell therapy has potential clinical application in a range of
adult and pediatricmalignancies.36 Especially attractive is the prospect
of generation of vectors for gene therapy encoding high-affinity T cell
receptors directed against PAX5.36

We also used TIDE prediction and found that the Immunity High sub-
type was a more promising treatment to respond for anti-PD-1 ther-
apy. Considering that chemotherapy is the common way to treat
lung cancer, we used the pRRophetic algorithm to estimate the chemo-
therapeutic response based on IC50 available in the GDSC database for
each TCGA sample. The results indicated that the Immunity High sub-
type was more sensitive to the chemotherapies than the other two sub-
types. Then, we used CMap based on differentially expressed genes,
and found candidate compounds for possible differentiation therapy
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of LUAD patients. Moreover, we found that the Immunity High sub-
type had lower stemness index values than the other two subtypes;
higher values for stemness indices signal higher biological activity in
cancer stem cells and greater tumor dedifferentiation.37 The above re-
sults implicate that the better prognosis with the Immunity High sub-
type may be because of a higher immunoreactive environment and
because it inhibits tumor growth, progression, invasion, andmetastasis.
In addition, the ImmunityHigh subtypemay benefit more from immu-
notherapy and chemotherapy determined by these differences.

Our research provides new insights into the LUAD immunemicroen-
vironment. However, our research was limited because it was retro-
spective, and our results should thus be further confirmed by prospec-
tive studies. Additionally, the TCGA data enrolled for analysis were
mostly collected from patients in developed countries but lacked
data from developing countries.

Overall, for the first time, our study may provide a better assessment
of the immune signature-based classification of LUAD. Our findings
also infer potential treatments for the development of immunothera-
peutic and chemotherapeutic strategies, and may guide the develop-
ment of novel drug strategies.



Figure 7. Evaluating the Therapeutic Response of the LUAD Subtypes

(A) Differential immunotherapeutic response targeting CTLA-4 and PD-1 in LUAD subtypes. (B) Differential chemotherapeutic response based on IC50 available in the GDSC

database in LUAD subtypes. (C) Heatmap showing enrichment score of each compound from the CMap. IC50, half-maximal inhibitory concentration.
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MATERIALS AND METHODS
Data Source

Gene expression data and the corresponding clinical features for
LUAD patients were accessed from TCGA website. This study meets
TCGA’s publication guidelines. All of the LUAD gene expression and
clinical data were downloaded as determined by the Data Coordi-
nating Center (DCC).

Hierarchical Clustering of LUAD Patients

To quantify the proportions of immune signatures in the LUAD sam-
ples based on the ssGSEA score, we used the 29 immune signatures,
including cell types, functions, and pathways.9

Evaluation of Immune Microenvironment

Immune score and stromal score were evaluated by applying the ES-
TIMATE algorithm to the gene expression data from TCGA.38,39 Tu-
mor purity was obtained based on the ESTIMATE score using a fitted
formula as previously described.39
Screening of Differentially Expressed Genes

The raw counts of TCGA gene expression were normalized and deter-
mined by a weighted trimmed mean of log ratios-based method.40 In
order to obtain differentially expressed genes, R package “limma” us-
ing the standard comparison mode was performed.41 The threshold
was determined as |log2 fold change (log2FC)| R 1 and false discov-
ery rate (FDR) < 0.05.
Functional and Pathway Enrichment Analysis

Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway analysis using the clusterProfiler R package
were performed on differentially expressed genes.42 The thresholds
for analyses were determined by a p value <0.05, indicating signifi-
cantly enriched functional annotations.
Estimation of Tumor-Infiltrating Immune Cells

We uploaded the normalized gene expression data with standard
annotation files to the CIBERSORT web portal, and the algorithm
Molecular Therapy: Oncolytics Vol. 17 June 2020 247
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was determined by 1,000 permutations and by the LM22 gene signa-
ture as described in previous literature.43,44 The R “Genefilter” pack-
age was applied to screen each sample, and the threshold was deter-
mined as p value <0.05.
Immunotherapeutic and Chemotherapeutic Response

Prediction

The PD-1/PD-L1 and CTLA-4 pathways in cancer are implicated in
tumors escaping immune destruction; thus, immune checkpoint in-
hibitors targeting PD-1 and CTLA-4 enhance antitumor immu-
nity.45 Here, in order to predict the clinical response to immune
checkpoint inhibitors, we ran the TIDE algorithm and subclass
mapping as described previously.46 Considering that chemotherapy
is a common clinical practice to treat NSCLC, we applied the R
package pRRophetic to estimate the chemotherapeutic response
determined by the IC50 for each LUAD patient on the GDSC
website.47,48
Calculation of Stemness Index

Stemness indices were calculated using an innovative OCLR ma-
chine-learning algorithm as previously described.14,38 Then, we calcu-
lated Spearman correlations between the stemness index model and
the lung cancer sample’s expression profile from TCGA. The stem-
ness indices were subsequently mapped to the [0,1] range via utilizing
a linear transformation that subtracted the minimum and divided by
the maximum.
Compounds Therapeutic Response Prediction

To identify which target compounds might be useful, we used the
CMap in predicting which compounds based on the top 1,000 differ-
entially expressed genes.14
Statistical Analysis

All statistical analyses were performed using R version 3.6.1, and the
data from different groups were compared by Mann-Whitney-Wil-
coxon test. Pearson’s chi-square test was performed to measure the
level of significance for association among variables. All reported p
values were two-tailed, and p < 0.05 was considered statistically
significant.
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