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Background
RNA-Sequencing (RNA-Seq) is the de-facto gold standard for the analysis of gene 
expression on an organism and sample-wide scale—either for the analysis of differential 
gene expression, transcript structure analysis or identification of novel splice-variants. 
Common sequencing design of RNA-Seq libraries are either paired-end, where frag-
ments are sequenced from both the 3 ′ and 5 ′ end, resulting in two reads per fragment or 
single-end, where fragments are sequenced from one end only resulting in only one read 
per fragment [1]. Paired-end sequencing libraries result in larger gene transcript cover-
age, owing to the ability to estimate the distance between the two paired reads and join 
overlapping reads. This results in improved mapping and subsequently higher accuracy 
of differential expression analyses, resolution of splice isoforms, and de-novo transcrip-
tome assemblies. [2–5].
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Further, library preparation protocols for RNA-Seq can be stranded or unstranded. 
In unstranded libraries, no information is preserved about the original transcript 
orientation. In contrast, stranded protocols retain strand information by attach-
ing adapters, or through chemical modification of RNA or the paired cDNA during 
library preparation [6]. Stranded data shows advantages over non-stranded RNA-
Seq data such as higher assembly and differential expression accuracy [7, 8]. In the 
case of paired-end data, RNA-Seq eventually results in two fastq files—one for each 
end of the fragment sequenced. If the data is stranded, we expect all reads from one 
file to represent the original RNA sequence, and all reads from the other file to rep-
resent the complementary cDNA. The two strand-specific layouts can therefore be 
either fr-stranded, where file 1 contains reads representing the original RNA, or rf-
stranded, where file 2 contains reads representing the original RNA. These layouts 
have varying codes depending on the software used (For reference see [9]) . If the 
data is unstranded, there should be a roughly even and random mix of reads repre-
senting the original RNA and reads representing the cDNA in both files.

Downstream RNA-Seq processing pipelines often incorporate information about 
library design in the workflow, e.g., via a strand-specificity (or strandedness) param-
eter in RNA assembly and read counting tools. Incorrect use of this parameter 
can significantly impact the output of RNA-Seq analyses. For example, defining a 
stranded library as unstranded can result in over 10% false positives and over 6% 
false negatives in downstream differential expression results [10]. Similarly, setting 
the incorrect strand direction of the RNA-Seq data can result in the loss of >95% of 
the reads when mapping them back to a reference [11].

RNA-Seq sample strandedness and direction of strandedness is not available as 
metadata for RNA-sequencing samples in repositories such as The European Nucle-
otide Archive (ENA) or Sequence Read Archive (SRA), and in the cases where there 
is a corresponding paper, is often not reported in the methods. From a randomised 
investigation of 50 ENA “PAIRED END” studies with an associated publication, 
we found only 56% have strandedness either explicitly stated or mentioned in the 
methods section for library preparation (Additional file  2: Table  S1). In addition, 
we found that the vast majority of papers (94%) do not explicitly state strandedness 
parameters for downstream software in their methods (Additional file 2: Table S1).

Given this lack of reporting, and the impact it can have on downstream analyses we 
developed how_are_we_stranded_here - a Python library that helps to quickly infer 
strandedness of paired-end RNA-Seq data. To our knowledge, this is the first stand-
alone tool that checks for strandedness. We note that some RNA-Seq tools do issue 
a warning if the data and stranded parameters do not match (e.g., eXpress [12]) and 
IRFinder [13]), however these first require full alignment of entire samples to a ref-
erence transcriptome or genome, which is time and resource consuming. Similarly, 
RSeQC’s infer_experiment.py [14] (which we use within how_are_we_stranded_
here) requires a genome-aligned BAM file, which again is time and resource con-
suming to align, making it difficult for users to implement as a standard pre-analysis 
quality control check.
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Implementation
how_are_we_stranded_here is written in Python3 and runs a series of commands to 
determine read orientation. First, a kallisto [15] index of the organisms’ transcrip-
tome is created using transcript fasta sequences, and a GTF which contains the loca-
tions and strands for the corresponding transcript sequences. This step is the most 
time consuming step in the whole process (approx. 6–7 min for a human index [15]). 
As the index remains the same when testing fastq files from the same species, it is 
saved and can be reused on subsequent tests. Next, input fastq files are sampled to a 
default of 200,000 reads. These reads are then mapped to the transcriptome, and using 
kallisto’s—genomebam argument are pseudoaligned into a genome sorted BAM file. 
Finally, RSeQC’s infer_experiment.py [14] is used to determine the direction of reads 
from the first and second pairs relative to the mapped transcript, and estimate the 
number of reads explained by each of the two layouts (FR or RF), and those unable to 
be explained by either. The output of RSeqQC is then used to calculate the ‘stranded 
proportion’—proportion of reads explained by the most common read strand orienta-
tion. We expect stranded data to have a stranded proportion of around 1 (i.e. all reads 
explained by one read direction), and unstranded data to have a stranded proportion 
of around 0.5 (i.e. half of all reads explained by one read direction, half by the other). 
If over 90% of read orientation is explained by an FR or RF layout check_stranded-
ness.py outputs the layout as the most likely sequencing layout. Similarly, if neither of 
the two layouts can be explained by more than 60% of the reads the data is reported 
as unstranded. how_are_we_stranded_here is available to install using pip (pip install 
how_are_we_stranded_here) and conda (conda install—channel bioconda how_are_
we_stranded_here). Installation with conda will install all dependencies.

Results
Testing on simulated reads

We first tested how_are_we_stranded_here on simulated samples across three spe-
cies—human (Homo sapiens), yeast (Saccharomyces cerevisiae), and thale cress 
(Arabidopsis thaliana). Using lower numbers of reads resulted in greater variation in 
percent stranded reads for samples with non-strand-specific reads (one-sided F-test; 
p < 0.05 for all comparisons in read counts different by one order of magnitude; Addi-
tional file 2: Table S2) in all species (Fig. 1, Additional file 1: S1A). We found that at 
least 200,000 reads were required to call percent stranded within 0.5% (3σ ), and there-
fore recommend use of 200,000 reads—which is also the default setting for RSeQC. 
Further, we found very little difference between reported strandedness percentages 
and known percentages when using 200,000 reads (mean average error < 0.1%), con-
firming that this method indeed accurately reports stranded percentages in simulated 
data (Additional file 1: Fig. S1B).

We then tested the speed of running how_are_we_stranded_here on simulated 
data using 200,000 reads. Each run took less than 45 s for human, 10 s for yeast, and 
20 s for thale cress on a 2020 M1 Macbook pro with 16 GB RAM (Additional file 2: 
Table S3).
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Testing on ENA studies

We next tested how_are_we_stranded_here on samples from 60 studies across the 
same three species as above. The majority of samples showed either a stranded pro-
portion of greater than 0.9 (stranded) or less than 0.6 (unstranded), when remov-
ing data points where less than 10% of sampled reads aligned to the transcriptome 
(Fig.  2). Reported proportions were similar with increasing reads sampled, with a 
median difference of 0.5 percentage points when using 1000 reads compared to 2M 
reads (Additional file  2: Table  S4). As noted before we recommend using 200,000 
reads for alignment, due to its higher similarity in reported proportion and decreased 
alignment time.

While the majority of samples matched their reported strand-specificity, there were 
seven which did not (Fig. 2, Additional file 2: Table S5). We appreciate that this may have 
been due to inaccuracy in reporting library preparation kit names, as methods such as 
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Fig. 1  Strandedness proportions in simulated RNA-Seq data. Four biological samples for each species were 
used to generate three simulated replicates each using polyester [17] at varying read numbers with either 
strand-specific or non-specific reads. All samples show the correct strandedness, with the strandedness 
proportion was below 0.6 (unstranded) or above 0.9 (stranded; dashed lines). how_are_we_stranded_here 
was run using the full Ensembl cDNA annotation for each species
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Fig. 2  Strandedness proportions in RNA-Seq data. Strandedness proportions were evaluated for 20 studies 
for each h. sapiens, s. cerevisiae, and a. thaliana using how_are_we_stranded_here and varying the number 
of input reads sampled. Results are not included where zero reads were psuedoaligned, and triangles denote 
results where the proportion of reads psuedoaligned is less than 0.1. Studies for which the strandedness 
proportion was between 0.6 and 0.9 (dashed lines), and those which do not match the reported 
strandedness are highlighted. how_are_we_stranded_here was run using the full Ensembl cDNA annotation 
for each species
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Illumina’s TruSeq library preparation kits have multiple variants with similar names. For 
example, the TruSeq Stranded mRNA kit (20020594), and the TruSeq RNA Library Prep 
Kit v2 (RS-122-2001) could both be referred to as a Illumina TruSeq library preparation 
kit, but produce stranded and unstranded reads respectively. This may have also been 
due to unclear communication of methods in general and mix-ups in methods report-
ing, again highlighting the importance of the use of how_are_we_stranded_here as a 
quality check on raw RNA-Seq data.

Two yeast studies showed a stranded proportion between 0.6 and 0.9 (Fig.  2; 
PRNJA263283 and PRNJA435723). Both of these studies were reported as stranded 
(Additional file  2: Table  S5). To investigate why the proportion of stranded reads was 
lower than expected, we investigated the proportion of reads that aligned to specific 
features. Furthermore, by aligning the data to other species we tried to exclude sample 
contamination or sample mix ups. None of the samples showed a significant amount of 
reads that mapped to other species (Additional file 2: Table S6), suggesting that sample 
contamination from another species did not cause the ambiguous results. We then used 
STAR to align reads to the s. cerevisiae genome, and HTSeq-count to count reads align-
ing to genes and intergenic regions (see Methods). We found that SRR6767450 contained 
a greater number of reads aligning to small RNAs (Additional file 1: Fig. S2A), suggest-
ing incomplete removal of small RNAs. Similarly, SRR1605749 displayed the greatest 
number of reads aligning to intergenic regions, which could be explained by RNA con-
tamination with genomic DNA (Additional file  1: Fig. S2A). We further explored this 
by running how_are_we_stranded_here on intergenic regions only (see Methods), which 
showed a stranded proportion of 50%, consistent with the expectation that genomic 
DNA shows no strand bias (Additional file 1: Fig. S2B).

We further investigated if quality and adapter trimming may have any effect on strand-
edness proportion, and found that although several samples had lower quality reads and 
adapters, trimming had very little effect on strandedness (Additional file 1: Fig. S3A). In 
addition, screening for contaminating reads and removing multimappers had also had 
little effect on strandedness proportions (Additional file 1: Fig. S3B).

Discussion and Conclusions
Here we presented how_are_we_stranded_here, a tool for quick determination of 
strandedness in RNA-Seq data. Strandedness checks should be performed prior to any 
downstream processing of RNA-Seq data—for which many tools require a strandedness 
parameter which if incorrectly assigned can produce inaccurate data. We recommend 
strandedness to be checked on at least three samples in the first instance, and on fur-
ther samples when strandedness is contradictory in these samples, or the strandedness 
proportion is between 0.6 and 0.9. This quality control check allows users to confirm 
strandedness of data when the library preparation method was known, and estimate 
strandedness when the method is unclear. We show that it may also be indicative of 
sample contamination, and can warrant further quality control checks. how_are_we_
stranded_here has a minimal installation burden, is able to be installed using pip or 
conda, and once an index is saved for a species, can run in under 45 s. The output clearly 
states if samples reach the threshold for strandedness, and if so, which direction the data 
is stranded. While library preparation (and the strandedness parameters in downstream 
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processing) should be detailed in the methods of published RNA-Seq data, as this is vital 
to being able to reproduce results, we found that over a third of publications do not pro-
vide this detail.

Conclusions
how_are_we_stranded_here allows users to easily find the correct strandedness param-
eter for RNA-Seq datasets which is crucial for reproducibility of published results.

Methods
Screening for RNA strandedness in ENA RNA‑Seq studies

All read runs matching the rules library_strategy=“RNA-Seq”, library_
source=“TRANSCRIPTOMIC”, and library_layout=“PAIRED” were retrieved from 
ENA [16]. The runs were then randomly ordered, and the first 50 with an associated 
publication were selected for manual screening of methods. Methods were searched for 
the library preparation details or kit name, and any mention of “strand” or “direction”. In 
cases where only the library preparation kit was named, we searched through the com-
pany’s product descriptions to discern if the kit was capable of producing strand specific 
data. Further, if none of these details were found in the methods, we searched the main 
text for any mention of “strand” or “direction”. Further, we searched the computational 
methods—either within the publication, supplementary data, or in a code repository—
for any strand-specific parameters.

Data set selection for testing

All read runs matching the following rules were retrieved from ENA for each human (h. 
sapiens; taxid 9606), yeast (s. cerevisiae; taxid 4932) and thale cress (a. thaliana; taxid 
3702): instrument_platform = “ILLUMINA”, library_strategy=“RNA-Seq”, library_
layout=“PAIRED”, library_source=“TRANSCRIPTOMIC”, library_selection=“cDNA”. 
These runs were then filtered for those sequenced on an Illumina HiSeq 2000, 2500, 
3000, or 4000, between 10 and 30 samples per study, and randomly reordered. Studies 
were searched for any publications that were associated with the data, and only retained 
if strandedness was stated or able to be inferred by the library preparation methods (see 
above). The first 20 studies matching these requirements were used for analyses for each 
species.

Generation of simulated RNA‑Seq reads

Reads were simulated using polyester [17]. Kallisto 0.46.1 [15] with the correspond-
ing Ensembl 100 transcript annotation [18] was used to count reads for each transcript 
from an original sample (see above) for four samples per species, two with strand-spe-
cific reads and two with non-specific reads. These read counts were then used as the 
basis to generate three simulated samples each with relative transcript abundances as 
would be expected in real samples. Reads were then simulated for each of these samples 
(12 per species), as both strand-specific, and non-specific in multiple numbers of reads 
(1000-2M).
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Testing of how_are_we_stranded_here

For each study the first three samples were taken to profile for strandedness. A kallisto [15] 
index was generated for each species, using the Ensembl 100 transcript annotation [18]. Each 
sample for the ‘real’ dataset was then run through how_are_we_stranded_here, with varying 
numbers of reads—from 1000 to 2 million. For the simulated datasets, samples were gener-
ated for varying numbers of reads in both strand-specific and non-specific formats. Simulated 
mixed samples were generated by combining a random subset of reads from the same strand-
specific and non-specific samples at varying ratios to give a total of 200,000 reads. Simulated 
datasets were similarly run through how_are_we_stranded_here, using the same number of 
reads as was simulated (i.e., not sub-setting the same sample). The actual number of reads that 
were pseudoaligned by kallisto was checked from the kallisto output log. The “stranded pro-
portion” was calculated by taking the maximum proportion of reads explained by RF or FR.

Quality checks

All steps were performed on samples of 200,000 reads from each fastq file, to match the 
number of reads used for how_are_we_stranded_here. FastQC 0.11.5 (Babraham Bioinfor-
matics) was used to assess the quality of reads, and Trimgalore! 0.6.0 (Babraham Bioinfor-
matics) in paired end mode to quality trim reads and remove adapter sequences. We used 
FastQ Screen 0.14.0 (Babraham Bioinformatics) to screen for contaminants in trimmed 
fastq files, with the default databases downloaded by “fastq_screen–get_genomes”. Reads 
pairs which both mapped only to the correct genome were extracted for each sample using 
the—tag flag in FastQ Screen, and a custom R script (see Code availability). We then ran 
how_are_we_stranded_here on the trimmed, and the exclusively correctly-mapping fastq 
files. For genome alignment with STAR 2.7.0e [19], the first sample for each study was 
aligned to the Ensembl 100 s. cerevisiae genome using default settings. The index was pre-
pared using default settings, the s. cerevisiae genome fasta, and the s. cerevisiae Ensembl 
100 GTF. An “intergenic” GTF annotation was generated by creating features covering 
fully intergenic regions (i.e. not overlapping annotated genes on either strand) and then 
subdividing these into smaller features using exomeCopy::subdivideGRanges [20] and a 
subsize of 1000. All intergenic regions were assigned the “+” strand, to allow for calcula-
tion of stranded proportions. For read counting, HTSeq-count 0.12.4 [21] was used with a 
GTF annotation containing both the reference Ensembl gene annotation and the intergenic 
annotation. Read counts were then summed for each gene biotype—-including “intergenic”. 
To find the stranded proportion of intergenic reads, how_are_we_stranded_here was run 
200,000 reads and using the intergenic annotation instead of the reference annotation.
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