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Design of highly perceptible 
dual‑resonance all‑dielectric 
metasurface colorimetric sensor 
via deep neural networks
Hyunwoo Son1, Sun‑Je Kim2, Jongwoo Hong1, Jangwoon Sung1 & Byoungho Lee1*

Colorimetric sensing, which provides effective detection of bio-molecular signals with one’s naked 
eye, is an exceptionally promising sensing technique in that it enables convenient detection 
and simplification of entire sensing system. Though colorimetric sensors based on all-dielectric 
nanostructures have potential to exhibit distinct color variations enabling manageable detection due 
to their trivial intrinsic loss, there is crucial limitation that the sensitivity to environmental changes 
lags behind their plasmonic counterparts because of relatively small region of near field-analyte 
interaction of the dielectric Mie-type resonator. To overcome this challenge, we proposed all-dielectric 
metasurface colorimetric sensor which exhibits dual-resonance in the visible region. Thereafter, we 
confirmed with simulation that, in the elaborately designed dual-Lorentzian-type spectra, highly 
perceptible variations of structural color were manifested even in minute change of peripheral 
refractive index. In addition to verifying physical effectiveness of the superior colorimetric sensing 
performance appearing in the dual-resonance type sensor, by combining advanced optimization 
technique utilizing deep neural networks, we attempted to maximize sensing performance while 
obtaining dramatic improvement of design efficiency. Through well-trained deep neural network that 
accurately simulates the input target spectrum, we numerically verified that designed colorimetric 
sensor shows a remarkable sensing resolution distinguishable up to change of refractive index of 
0.0086.

Optics-based label-free biomolecular sensing platforms for identifying microscopic particles have attracted much 
attention due to various advantages in terms of real-time monitoring, lifetime, and operation bandwidth1. Over 
the last several decades, biomolecular sensing based upon nanophotonic transducer has made explosive advances 
in the progress of assays for various fields such as gases, solutions, nucleic acids, and proteins2. Its nano-scale 
footprints have contributed not only to miniaturization and reduction of production cost, but also to convenient 
integration into a lab-on-a-chip platform3. One of the most representative nanophotonic biosensors is based upon 
localized surface plasmon resonance utilizing light-metal interactions at the interface of metal particles and host 
dielectrics4. However, several crucial problems are inherent to these plasmonic sensors made of noble metals 
due to their intrinsic Ohmic losses and the nature of plasmon oscillations5. First of all, broadening of resonance 
linewidth caused by fast dephasing of surface plasmons acts as a bottleneck in improving read-out resolution 
and efficiency6. Furthermore, photo-thermal degradation of the analyte due to localized heating driven by high 
thermal conductivity of metals has been an obstacle for in-vivo sensing. To alleviate these limitations, high-index 
and low-loss all-dielectric nanostructures have been researched as an alternative.

In nanophotonics, all-dielectric nanostructures have become attractive solutions thanks to their capabil-
ity of manipulating light in extraordinary and powerful manner. Among various organizations, all-dielectric 
metasurfaces, which are composed of periodic array of nanostructures, have been utilized for applications such 
as flat meta-optics7–11, highly saturated color generation12–14, and refractometric and colorimetric sensing with 
high quality factor15,16. In the context of sensing, in the recent years, all-dielectric metasurface sensors are 
becoming substitute for their plasmonic counterparts. Relatively lower intrinsic loss makes it durable to photo-
thermal heating and negligible absorption-driven energy dissipation enables to strongly confine incident light 
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to the near-field exciting sharp resonance. In addition, its fabrication can be processed using complementary 
metal-oxide-semiconductor (CMOS) compatible fabrication facilities. However, relatively low sensitivity to the 
environmental change has delayed its commercialization6,15. The reason can be inferred from the multipolar 
response of dielectric nano-resonator predicted by Mie theory which describes the resonant behavior of high-
index subwavelength particles. Examining the electromagnetic (EM) field distribution of the excited modes 
within the dielectric, it is clear that the EM field is mostly concentrated inside the nanostructure. Therefore, 
unlike the plasmonic nanostructure that supports strong outer near-field by bounded free electron oscillation, 
dielectric nanostructure cannot react sensitively to the changes in surrounding environment. To address this 
issue, previous research has attempted to utilize spectrally interfered resonance features, such as bound states 
in the continuum or Fano resonance in order to enhance near-field and quality factor17,18. However, because of 
their excessive sensitivity to minute errors of geometric parameters, they involve problems about tolerance for 
the fabrication and measurement process causing reduction of production yields.

On the other hand, in the case of colorimetric sensing approach, a solution to the problems existent in the 
all-dielectric nanophotonic sensors can be presented from a different perspective than near-field optics. Color-
imetry is one of the methodologies that can be applied to the nanophotonic sensing, which enables read-out with 
one’s naked eye by variations of color associated with interaction between an analyte and transducer. Nanoscale 
structural coloration arising from array of nanostructures has been utilized as the signal for the colorimetric 
detection19–22. Due to its straightforward detection process without the necessity of additional measurement 
devices, colorimetric sensing has been in the spotlight as attractive sensing platform that can glimpse feasibility 
of point-of-care diagnosis beyond the laboratory level. Since its sensing performance is determined by large 
color variation responding to minute environmental changes by nano-particle binding, its sensitivity can be 
enhanced by forming specific spectral lineshapes in the visible region that manifests structural color with easily 
perceptible color changes. Therefore, through exquisitely designing structures of metasurface which provides 
extraordinary degrees of freedom for optical manipulation, if reflected optical response that accurately simulates 
spectral lineshapes optimized for color difference maximization can be implemented, it can be a fresh approach 
to solve the above-mentioned issues existent in the all-dielectric nanophotonic sensors. Furthermore, as a means 
to achieve this, advanced parameter optimization techniques via data-driven machine learning can be a highly 
efficient design method where trained deep neural network (DNN) supports design process.

In recent years, inverse design techniques incorporating deep learning have emerged in the field of nano-
optics for various applications such as accurate structural color design, broadband absorber, optical filter, and 
optical data storage device23–26. The traditional design method, finding geometric parameters that satisfies the 
desired optical response through iterative full-field EM simulations, should be processed by traversing vast design 
space demanding enormous computational cost as the degree of freedom for multi-dimensional representation 
increases. It is highly time-consuming as well as difficult to assure whether the obtained results are near-optimal 
or not. Whereas, the deep learning approach suggests optimal solutions within design space in an instant after 
going through a one-time investment of EM simulation to update the weights of DNN.

In this paper, we proposed novel design methods of highly perceptible colorimetric sensor by finding the 
optimal lineshape that causes a huge color variation even with little change of spectrum shape. As a result of the 
optimal spectrum finding process, it was a specific type of dual-resonance spectrum that could achieve our goal. 
Therefore, we utilized all-dielectric metasurface that can modulate distinct dual-resonance in the visible region, 
beyond the conventional spectroscopic sensing method using a single resonance. In order to search geometric 
parameters that accurately emulate elaborate specification of the target reflected spectrum expressing highly 
sensitive structural color, it was desirable to adopt bidirectional DNN incorporated inverse design approach. 
From the full wave simulations substituting geometric values acquired from bidirectional DNN, we achieved 
remarkable colorimetric sensing performance, resolving even little change in concentration of glucose solution.

Results
Design processes of dual‑resonance metasurface colorimetric sensor.  A schematic diagram for 
entire design processes is shown in Fig. 1. First, we found unit-cell geometry of metasurface that can excite 
distinct dual-resonance within visible region and analyzed its origin from EM field distributions and multipolar 
decomposition (Fig. 1a). The next step is to establish several target spectra that concretize specific form of dual-
resonance achieving highly sensitive color change to minute spectral shift. Through an iterative random sam-
pling method, we found highly perceptible spectra when calculated corresponding international commission on 
illustration LAB (CIELAB) coordinate values. Then, we finally summarized target spectra after considering the 
loss and dispersion of used material (Fig. 1b). Finally, by inserting these target spectra as an input of constructed 
bidirectional DNN which is trained through sufficient EM simulations, the detailed design of metasurface was 
searched (Fig. 1c). A detailed description of each design part will be dealt with in the following sub-sections.

Design of dual‑resonant metasurface.  As the first step, we designed metasurface that introduces dual-
resonance. Analysis about the origin of superb colorimetric performance in dual-resonance spectrum with par-
ticular specifications will be dictated in the next section. We adopted double bar structure as a unit-cell of meta-
surface as described in Fig. 2a. Since the corresponding structure has been shown to introduce multiple resonant 
modes within a narrow wavelength range in the previous research, it can be noted to be prospective candidate for 
exciting dual-resonance27. We put 40 nm-thick silicon nitride layer on top of the double bar structured silicon 
layer. The dielectric constants of silicon and silicon nitride are taken from Palik and Philipp, respectively28,29. 
Stacked silicon nitride layer exhibiting refractive index value similar to the geometric mean of silicon and sur-
rounding environment acts as an index matching layer suppressing high-order mode due to Fabry-Perot like 
resonance in short wavelengths14. The specific modulation effect of the stacking of SiN on reflectance and thick-
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ness optimization process is specified in the supplementary information S1. Accordingly, as shown in Fig. 2b, 
it is possible to attenuate background noise at short wavelengths, increasing similarity with the target spectrum 
and achieving more pronounced double peak spectrum overview. In the unit-cell structure, period (P), height 
(H), length (L), and width (W) were selected as variable parameters to be modulated. The center of the both 
bars are located at a distance of P/4 from the center of lattice. Figure 2c represents simulated representative 
dual-resonance spectrum in the visible region for x-polarized normal illumination when P=290 nm, H=160 nm, 
L=210 nm, and W=50 nm, respectively. Numerical simulations are conducted by finite-difference time-domain 
(FDTD) approach implemented in the Lumerical software package. To gain insight into the nature of each reso-
nance, EM field distributions are numerically analyzed. Inset figure in Fig. 2c shows electric and magnetic field 
distribution at each resonance. At the resonance around the wavelength of 600 nm (bottom part of the inset), 

Figure 1.   Overall design schematic diagram. (a) Design of double-bar structured metasurface introducing 
dual-resonance in visible wavelength and its application to colorimetric sensing. (b) Setting process of target 
spectrum through iterative random sampling of the sum of Lorentzian functions to specify the lineshape of 
dual-resonance. (c) Inverse design through deep neural network finding unit-cell parameters from the target 
spectra.
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displacement current loop is formed with strong magnetic fields in the core of the resonator that corresponds 
to magnetic dipole (MD) mode. In addition, since this magnetic field formed by MD mode penetrates two par-
allel bars, interaction with their surroundings can occur more actively. These field distributions can assist the 
enhancement of spectroscopic sensitivity for bio-molecular detection. In the case of wavelength of 470 nm, elec-
tric near-field is strongly concentrated not only inside the resonator, but also on top of the substrate and between 
adjacent unit-cells (top part of the inset). It can be inferred that these field distributions arise from Mie lattice 
resonance30,31. Lattice resonance is collective resonance which occurs in periodic nano-array stemming from the 
radiative coupling of resonances of individual nano-resonator. It is enhanced near specific wavelength where 
diffraction order occurs, called Rayleigh anomaly (RA)32,33. At wavelength slightly higher than the RA, lattice 
resonance can occur and be reinforced as the coupling effect arises. In the proposed structure, corresponding RA 
wavelength is calculated by multiplying refractive index of substrate and period; λ = nP = 423.4 nm. Therefore, 
at the wavelength about 470 nm, by the radiative coupling around the RA wavelength, distinct reflection peak 
appears as the resonant mode introduced by hybridization of electric quadrupole and electric dipole moment 
is strengthened. Mode profile penetrating the top of the substrate serves to further strengthen coupling effect 
between adjacent unit-cells. Multipole decomposition results and detailed EM field distributions in each reso-
nance are included in supplementary information S2. Meanwhile, in order to train DNN for an inverse design 
process, we constructed training sets from enough full-wave simulation results obtained by changing four struc-
tural variables (P, H, L, and W). Entire simulated reflectance spectra are shown as two-dimensional color map in 
Fig. 2d. Ranging from 245 to 400 nm for P, from 70 to 190 nm for H, from 170 to 290 nm for L, and from 40 to 
150 nm for W, a total of 2,637 spectra were obtained. From the reflectance color map, we confirmed that dual-
resonance can occur and be modulated within the design space of the proposed structure.

Finding double‑peak Lorentzian spectrum for maximized color difference.  The next step is to 
find an optimized reflectance spectrum in the visible to maximize the color difference per refractive index unit 
(RIU) of the proposed dual-resonance metasurface colorimetric sensor. Prior to the spectrum finding process, 
we firstly needed to define a figure of merit (FoM) for colorimetric sensing. Previous studies about colorimetric 
sensing adopted the change in chromaticity per RIU as FoM caused by resonance shift19,22. However, as this 
metric does not reflect changes in saturation and brightness of color, it does not accurately correspond to color 
changes people perceive with naked eyes in reality. Therefore, we utilized CIEDE2000 (ΔE00) for quantitative and 
practical analysis of color difference, which has been developed in the field of color science. In order to resolve 
extant perceptual non-uniformity issue in CIELAB color space, ΔE00 is the latest color distance metric defined 
by refining CIE76 (ΔE) value which is a Euclidean distance between two colors in CIELAB space34. A detailed 
description for the CIELAB color space and the definition of ΔE00 are included in supplementary information 
S3.

To derive reflectance spectrum optimized for color difference detection, we used sum of multiple Lorentzian 
functions, one of the ideal symmetric spectral lineshape functions, which are most frequently observed ones 
in phenomena related to light radiation. In the case of asymmetric spectra such as Fano lineshape, which is 
frequently utilized in previous research to enhance sensitivity of nanophotonic sensor by reinforcing local field 
near the nanostructure, due to influence of the continuum state existent in entire region of spectrum, inevitable 
background noise exists from the perspective of colorimetry18,35,36. On the other hand, Lorentzian lineshape is 
more advantageous to enhance color purity and colorimetric sensing performance (Fig. S2a) because of lower 
background reflection. The Lorentzian function can similarly fit the dual-resonant reflectance spectrum appear-
ing on the proposed metasurface. Therefore, the nth arbitrary spectrum for the target spectra to enter input of 
DNN is expressed by the following Lorentzian function.

(1)yn =

∑

i

y0 +
2Ai,n

π

wi,n

4
(

x − xci,n
)2

+ w2
n

, 360 ≤ x ≤ 830

Figure 2.   (a) A schematic illustration of the dual-resonance metasurface composed of parallel silicon rods 
covered by silicon nitride index matching capping layer onto them. (b) Background reflectance suppression 
effect obtained when 40 nm-thick index matching layer is applied. (c) Reflectance spectrum and electromagnetic 
field distributions of the corresponding resonance peaks (P = 290 nm, H = 160 nm, L = 210 nm, W = 50 nm). 
Electromagnetic field distributions are seen from the center of bar in zx-plane. At the peak of shorter wavelength 
(green square), arrows and color maps indicate the direction and amplitude of the electric field, respectively. 
In the case of longer wavelength (red square), color maps indicate the amplitude of magnetic field, but arrows 
correspond to the direction of electric field. (d) Reflectance map in the visible region calculated in design space 
when adjustable geometric parameters are set to P, H, L, and W.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8512  | https://doi.org/10.1038/s41598-022-12592-9

www.nature.com/scientificreports/

In the above equation, Ai,n,wi,n, and xci,n represent amplitude, linewidth, and wavelength of each resonance 
of the nth arbitrary spectrum, respectively. Using (1), random values of A,w, andxc are iteratively generated. 
Then, for each candidate spectrum, we calculated the CIELAB coordinate value (L∗, a∗, b∗) under the standard 
illuminant condition. From the calculated (L∗, a∗, b∗) , ΔE00/nm is calculated for slight spectral shift and only the 
candidates above a certain figure of ΔE00/nm were picked out. These random sampling processes are sufficiently 
repeated until a specific tendency was found in the selected lineshapes. Detailed procedures can be found in 
supplementary information S4.

Figure 3a and b exhibit the finally selected seven target spectra and the corresponding ΔE00/nm values 
obtained from abovementioned processes after considering the optical loss in the visible area of silicon material. 
From Fig. S2c in supplementary information S4, it is apparent that these dual-resonance type target spectra show 
color difference that exceeds that of single resonance with extremely sharp line-width. In Fig. 2c, we selected the 
three of the target spectra with the highest ΔE00/nm, and each calculated reflected color shifting these spectra 
by 5 nm in each step (i.e. �xcn=5 nm) is shown on two-dimensional section of the CIELAB coordinates to ana-
lyze principles of the massive color difference in these dual-resonance spectra. In all instances, it is discernible 
that the calculated colors are commonly located in neutral region where both  a∗ and b∗ are close to zero, and 
L∗ indicating lightness has a value of about 50. The reason why massive colorimetric performance is presented 
in these specific areas on CIELAB could be found out by introducing the concept of discrimination threshold 
ellipse37. Discrimination threshold ellipse is defined as an area in which the human eye cannot differentiate 
colors inside the same ellipse even if they are different. In other words, the smaller the ellipse size is, the easier 
it is to recognize even trivial color variations. According to the previous color perception experiments38,39, the 
region with the smallest ellipse locates is in the vicinity of the origin at the ( a∗, b∗) coordinate and L∗ between 40 
and 60. These values correspond exactly to the area in which the calculated color of the target spectra is located 
as shown in Fig. 3c, thus verifying the cause of the exceptional color difference generated by dual-resonance 
spectrum. Additionally, further analysis can be made from the spectral lineshape itself of the target spectra. 
Examining the target spectra, firstly in the resonance occurring at longer wavelengths, since the peak point is 
commonly located between 650 and 700 nm, when the analyte is adsorbed on sensor causing spectral red-shifts, 
parts of the resonance deviate outside the visible region. Therefore, the ratio of red constituting the structural 
color decreases rapidly, inducing dramatic color variations. In the case of resonance at shorter wavelengths, the 
resonance wavelength is located in the blue-green area (i.e. � = 460 ~ 510 nm) in order to place the constituted 
color on coordinates of CIELAB where the abovementioned ellipse has the smallest size when combined with the 
first resonance. As a result, in the target spectra with high FoM, the resonance wavelengths of both resonances 
are commonly located at particular spots.

Bidirectional deep neural network: characterization and evaluation.  We conducted multi-
parameter optimization of the unit-cell of the proposed metasurface by training the DNN with thousands of full 
wave simulation data enabling more exquisite and time-efficient design process. We set up bidirectional network 
which cascaded inverse network at the input terminal of the pre-trained forward network. It is because the spec-
trum-geometry pairs have difficulty in constructing one-to-one-mapping (i.e. non-uniqueness problem) when 

Figure 3.   (a) Seven target spectra finally established in consideration of maximization of color difference per 
refractive index unit and visible loss of silicon. (b) ΔE00/RIU values calculated for each target spectrum. (c) For 
three target spectra with the highest ΔE00/RIU values, when the spectrum is laterally shifted by 5 nm, variations 
of colors are represented on two-dimensional section of CIELAB coordinate. The color inside the circle shows 
the reflected structural color calculated for each spectrum.
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establishing DNN architecture with general inverse network (direct prediction of geometric parameters from 
spectra)23,40,41. Architecture of the bidirectional network is shown in Fig. 4a. We put in the simulated reflectance 
for 117 wavelength points in the visible range between 360 and 830 nm (abbreviated by RTN) as an input to the 
inverse network. Inverse network predicts geometric parameters from RT, and the predicted reflectance RP from 
these value by ensuing forward network becomes the output of the entire bidirectional network. Mean squared 
error (MSE) between RP and RT was set as loss function of the network, and normalized geometric parameters 
of the unit-cell can be found by extracting weight of the intermediate layer. As described in the first sub-section, 
a total of 2,637 spectrum-geometry pairs were obtained through EM simulations by setting (P, H, L, W) shown 
in Fig. 2a as geometric variables. These pairs were divided into 1,680 training sets and 945 validation and test 
sets. On the other hand, instead of dense layer, we utilized one-dimensional-convolutional layer (Conv-1D) 
to make DNN robust against overfitting, and improve regression accuracy42. As a result of trial-and-error for 
various hyperparameter conditions and the number of layers, optimized forward DNN architecture consists of 
4-neuron input layer, 4 Conv-1D layers, followed by 256-neuron fully connected layer and 117-neuron output 
layer. Inverse network maintained equal architecture with the forward network but only changed order of input 
and output shape. The number of filters of each Conv-1D layer is 128 and kernel size is 3. A rectified linear unit 
(ReLU) activation function was applied to every end of layers. As a result of updating all of weights through 
Adam optimizer with learning rate of 0.001 and batch size of 16, highly accurate spectrum prediction capability 
could be obtained in the test set (MSE = 5.69× 10−4 ). For the bidirectional network which is constructed by 
connecting inverse network with pre-trained forward network, the same hyperparameter condition was substi-
tuted and trained over 5,000 epochs. Consequently, in the validation and test set, the losses were 1.2× 10−3 , and 
2.1× 10−3 , respectively, implying that the network is well-converged. Figure 4b shows that the bidirectional net-
work can almost accurately predict various reflected spectral shapes (RP) arising from the proposed metasurface 
obtained by FDTD simulations (RT). These results suggest that the designed bidirectional DNN can also serve as 
immensely time-efficient simulator in designing desired metasurface.

Colorimetric sensing performance for optimized metasurface.  Deploying abovementioned bidi-
rectional DNN, we performed the inverse design of metasurface for 7 target spectra. Table 1 shows the geometric 
parameters the DNN predicted and the corresponding loss value. Among them, for the two spectra showing the 
lowest MSE (T3 and T7), we compared reflectance between target spectral lineshapes, FDTD simulation results 
obtained by substituting predicted geometric parameters, and DNN predictions as indicated in Fig. 5a. Although 
there is a slight discrepancy compared to the target due to the constraints of the design space of the proposed 
metasurface structure, thanks to the sufficient fidelity of the DNN, we could obtain predicted reflectance that 
is almost consistent with the FDTD simulation results. Afterward, in order to evaluate colorimetric sensing 
performance for these two most adequate cases, we displayed the change in structural color reflected from the 
designed metasurface according to environmental change. We selected glucose solution as target detection ana-
lyte which has been actively utilized in previous research about refractive index sensor because it well expresses 

Figure 4.   (a) Bidirectional deep neural network (DNN) architecture for inverse design of dual-resonant 
metasurface with input (output) layer of the target (predicted) spectrum divided into 117 wavelength points RTn 
(RPn). Hidden layers are composed of four 1D-convolutional-layers (Conv1D-128), followed by fully connected 
layer (F.C layer). Inverse and forward DNN of same architecture are cascaded, and predicted normalized 
geometric parameters can be extracted from weight of the intermediate hidden layer where the two networks 
are replanted. (b) Comparison between target (RT) and predicted spectrum (RP) for different types of spectra 
obtained from test datasets showing that designed bidirectional DNN has sufficient forecasting accuracy.
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the conditions for minute change in peripheral refractive index20,43,44. The refractive index per concentration of 
the glucose solution was calculated using the following equation45.

where nw is the refractive index of water which is set to 1.33, and C is a concentration of glucose in g/100 ml. Fig-
ure 5b indicates the reflected structural color according to the variation of glucose level by 5g/100 ml. Each step 
corresponds to change in refractive index (Δn) of about 0.0072. Anyone can easily observe with naked eye that 
designed colorimetric sensor indicates notable sensitivity in color variation even with very little environmental 
changes. In Fig. 5c, the aforementioned results are expressed as a quantitative graph through ΔE00 with respect 
to the glucose level. From almost linearly proportional correlations between ΔE00 and concentrations, calculated 
ΔE00/RIU, FoM of the proposed colorimetric sensor, reaches about 190.23 for T3 and 165.58 for T7. According 
to the color recognition experiments conducted in Ref. 46, the minimum ΔE00 for noticeable color difference is 
specified as 1.5, and appreciable difference can be felt in 3.0 and above. That is, in agreement with calculated 
ΔE00 in each glucose level, the concentration over 15g/100ml (Δn = 0.0215) can be detected clearly through the 
proposed colorimetric sensor for both cases (ΔE00 is 4.09 for T3, and 3.56 for T7). Furthermore, we can estimate 
that resolution limit of the sensor from the inset of Fig. 5c. From the inset showing ΔE00 per 1g/100ml of glucose 
level change, minimum concentration in which ΔE00 exceeds 1.5 is about 6g/100 ml of glucose level (Δn = 0.0086) 
in the case of T3 and 7g/100 ml (Δn = 0.0100) in T7.

(2)n = nw + 0.00143C,

Table 1.   Geometric parameters predicted by designed DNN and corresponding mean squared error.

Target P H L W MSE

T1 363.61 129.52 190.19 107.64 0.0316

T2 354.49 152.17 234.30 60.94 0.0103

T3 339.25 141.42 210.83 85.14 0.0042

T4 328.06 140.54 219.44 100.98 0.0150

T5 371.50 107.55 214.06 64.38 0.0244

T6 359.08 148.38 214.59 84.30 0.0290

T7 337.99 137.76 208.34 97.67 0.0064

Figure 5.   (a) Comparison between target spectral lineshape, predicted spectrum through DNN, and FDTD 
simulation results from the predicted geometric parameters according to the two target spectra showing the 
lowest loss from Table 1 (T3 and T7). (b) For T3 and T7, variations in reflected structural color appearing when 
glucose level is changed by 5 g/100 ml from 0 to 40. (c) Graph showing the calculated ΔE00 corresponding to the 
color difference shown in (b). Inset represents calculated ΔE00 when the glucose level is changed from 5 to 8 by 
1 g/100 ml in order to determine resolution limit of the proposed colorimetric sensor.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8512  | https://doi.org/10.1038/s41598-022-12592-9

www.nature.com/scientificreports/

Discussion
In this article, we proposed highly perceptible colorimetric sensor by introducing unprecedented approach 
utilizing dual-Lorentzian resonant metasurface made of high index dielectrics. It maximizes the color differ-
ence by proposing a specific spectral lineshape unlike ways of previous research that focused only on increasing 
sensitivity of single resonance in terms of spectroscopy or near-field optics. Afterwards, we analyzed the origin 
about remarkable sensitivity of dual-resonance spectra from the viewpoint of colorimetry as well as spectroscopy. 
Furthermore, as a means to form precise spectral lineshape of the target reflectance without error, by grafting 
deep learning inverse design approach, we successfully achieved our goal with an error within 0.005 for MSE. 
Consequently, the designed all-dielectric colorimetric sensor could detect diminutive change in refractive index 
of less than 0.01 with the naked eye by alluding to the change in the concentration of glucose solution. These 
results can be a stepping stone for the growth of all-dielectric nanophotonic colorimetric sensors, whose develop-
ment have been delayed by constraint on sensitivity due to its own resonant EM field distributions, allowing us to 
leverage miscellaneous benefits of all-dielectric photonic devices. Though we used high-index silicon to induce 
distinct dual-resonance within narrow spectral regions and to design within a manufacturable boundaries, if 
one uses materials whose visible loss converges to near-zero such as titanium dioxide and silicon nitride so as to 
successfully induces narrower dual-resonance in visible range, it may be possible to achieve higher colorimetric 
sensitivity. Alternatively, we expect that more precise resonance engineering can be permitted by increasing 
degree of freedom of design through unusual method such as configuring the unit-cell as supercell structure. 
We envision that our results would push the resolution limit of bio-molecular sensing based upon nanophotonic 
transducers and further serve as a momentum to open up new horizon in the sensing methodology.

Methods
Design of dual‑resonant metasurface.  Design of the dual-resonant metasurface are conducted by 
finite-difference time-domain (FDTD) approach implemented in the Lumerical software package. The dielectric 
constants of silicon and silicon nitride are taken from Palik and Philipp, respectively. The reflectance spectra 
were numerically calculated with vertically incident light polarized in the direction of long axis of the unit-cell 
of metasurface. Changing four variable parameters mentioned in the main text, a total of 2637 visible reflectance 
spectra were obtained through full-wave simulations.

Finding double‑peak Lorentzian spectrum for maximized color difference.  The process of find-
ing the visible reflectance spectrum optimized for color difference enhancement was performed through custom 
MATLAB code, iterative random sampling algorithm. Firstly, an arbitrary spectrum was represented by the sum 
of 0 to 3 Lorentzian functions, which has 3 variables each (a total of 9 variables). Thereafter, the CIELAB coordi-
nate value when such spectrum corresponds to the visible spectral region, and ΔE00 for the minute spectral shift 
were calculated successively. Constantly repeating the above procedure with randomly sampled 9 variables of 
the sum of Lorentzian functions, only spectra with ΔE00 above a certain reference values were picked out until a 
certain tendency is found among the selected spectra.

Construction of bidirectional deep neural network.  DNN models are constructed under the open-
source machine learning framework of TensorFlow. After configuring forward DNN which predicts reflectance 
spectrum (117 points) from the geometric parameters (4 variables) of the metasurface, inverse DNN which has 
the same model structure with the forward DNN is cascaded at the input terminal of the forward DNN. Forward 
DNN consists of 5 hidden layers, 4 Conv-1D layers and following 1 fully connected layer. Each Conv-1D layer 
has 128 filters with the kernel size of 3. Fully connected layer has 256 neurons. Loss function was set to mean 
squared error between input target and output estimated reflectance. A ReLU activation function was applied to 
every end of layers. Training of DNN are implemented through Adam optimizer with learning rate of 0.001 and 
batch size of 16 during 5000 epochs.
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