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Abstract

We describe a network-based method to obtain a subset of representative variables from

clinical data of subjects of the second Singapore Longitudinal Aging Study (SLAS-2), while

preserving to a good extent the predictive performance of the full set with regards to a multi-

faceted index of successful aging, SAGE. To examine differences in predictive performance

of high-degree nodes (“hubs”) and high-centrality ones (“cores”), we implement four subset-

ting strategies (two degree-based, two centrality-based) and obtain four surrogate sets of

variables, which we use as input features for machine learning models to predict the SAGE

index of subjects. All four models have variables belonging to the physical, cardiovascular,

cognitive and immunological domains among their fifteen most important predictors. A fifth

domain (leisure-time activities, LTA) is also present in some form. From a comparison of the

surrogate sets’ size and predictive performance, a centrality-based approach (selection of

the most central variable-nodes within each cluster) yielded the smallest-sized surrogate

set, while having high prediction accuracy (measured by its model’s area-under-curve,

AUC) in comparison to its analogous degree-based strategy (selection of the highest-

degree nodes per cluster). Inclusion of the next most-central variables yielded negligible

changes in predictive performance while more than doubling the surrogate set size. The

centrality-based approach thus yields a surrogate set which offers a good balance between

number of variables and prediction performance, and can act as a representative subset of

the SLAS-2 clinical dataset.
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Introduction

Population aging has implications for society, the economy and policy-making. A report

released by the United Nation’s Population Division [1] showed that the global share of older

people (defined as those above the age of 60) stood at 11.7% in 2013, and is projected to reach

21.1% by 2050, with one-third of the 2013 global share residing in developed countries. The

increasing number of aging people is putting pressure on countries which already have low

old-age support ratios (the number of working-age adults per elderly person in a given popula-

tion), and presents a host of demographic, economic and socio-cultural challenges.

Thus, research into human aging has attracted significant interest from a broad spectrum

of institutions and disciplines. A significant portion of this endeavour, from the clinical per-

spective, consists of identifying a minimal set of clinical variables predictive of clinical trajecto-

ries in aging. Such a minimal dataset would represent substantial savings, in terms of costs,

effort and time required to gather the necessary information. In addition, this ultimately will

enable the stratification of populations at risk for various age-related diseases.

One instance where a minimal dataset can help is in the operationalization of successful

aging, something which has not met with consensus, with several competing definitions pres-

ent in the literature [2]. Rowe and Kahn’s [3, 4] three-factor model distinguishing between

“usual” and “successful” aging proved highly influential, but also led to a vigorous debate and a

number of critiques, among which are those who proposed additional factors spanning a

broader range of domains (such as [5, 6]) or rejected Rowe and Kahn’s conception entirely [7].

Conceptual differences between researcher-driven operational definitions and lay-based, qual-

itative perspectives have also been found [8].

In another instance, frailty assessment is currently performed by several competing opera-

tional definitions of frailty [9–11]. Fried’s [12] phenotype-based definition, which approaches

frailty from the standpoint of a decline in physical function, uses a fixed set of five criteria

(shrinkage, exhaustion, weakness, low activity and slowness). The second one, Rockwood and

Mitnitski’s Frailty Index (FI) [13] treats frailty as the accumulation of deficits across domains

(including physical and cognitive function as well as physiological measures). This index uses

a large set consisting of various clinical conditions and diseases. A third index, the Tillburg

Frailty Indicator [14], also envisions a multi-domain approach to frailty, but relies on a set of

domain-related questions. Of the three, Fried’s criteria is the most commonly-used due to the

small size of its required dataset; the other two, while covering other domains aside from the

physical, require more data to be collected. While frailty is one among many age-associated

syndromes, there is a need to better master data generated from large cohort studies in order

to cover all diseases and syndromes.

Both instances can be considered as belonging to the more general problem of feature selec-

tion in bio-informatics [15–17]. Two tripartite conceptual frameworks have been proposed to

categorize feature selection methods: Saeys et al.’s filter / wrapper / embedded taxonomy [15]

and the more recent supervised / semi-supervised / unsupervised classification [17]. Regardless

of schema, most feature selection methods used in bioinformatics are of the supervised / wrap-

per / embedded type, where information from the outcome variable directly or indirectly con-

tributes to which feature variables are ultimately selected. Such methods run the risk of over-

fitting and poor generalization, and thus sub-optimal results when used on new or indepen-

dent data.

In this paper we examine several different network-based strategies for the reduction of var-

iables, in terms of their predictive performance for SAGE a multi-domain index of successful

aging. Network analysis has previously been used to identify hubs associated with human

brain function and disorders [18–23]. However, the usefulness of these hubs as a proxy subset
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for the larger dataset (and thus, a means of dimensionality reduction) is something which has

not received sufficient attention from the existing literature. The current study is based on the

clinical phenotype data from the Singapore Longitudinal Aging Study (SLAS-2). We propose

to construct a pairwise effect-size network from the input data, and obtain from it clusters con-

sisting of tightly-associated variables. We subsequently apply four subsetting strategies (two

based on the node degree and two on the betweenness centrality) to obtain subsets of variables

(“surrogate sets”), which we use to train classifier models to predict SAGE. Finally we compare

the performance of these models (and one trained on all dataset variables) using AUC, the area

under each model’s receiver-operating-characteristic (ROC) curves. Motivated by the need to

identify a smaller subset of practically-measurable key variables, we forgo using combinations

or transformations of variables in data reduction.

Materials and methods

The SLAS-2 dataset

We examined data from the second cohort of the Singapore Longitudinal Aging Study (hereaf-

ter referred to as SLAS-2). The study participants consisted of 3270 elderly residents of Singa-

pore’s south-central and southwest regions. The SLAS study, and its methods, have been

described previously [5, 24, 25]. Briefly, from 2010 to 2013, all residents of the aforementioned

regions aged 55 and above were identified from a door-to-door census, and were invited to

participate in the research. The participants were aged 55 and above when baseline surveys for

SLAS-2 were conducted. All participants who were able, provided informed consent in writing

prior to obtaining their data. In instances where cognitively-impaired participants were unable

to provide informed consent (such as cases where severe physical or cognitive impairment due

to debilitating or terminal illness or dementia were involved), their closest adult next-of-kin

provided the informed consent. Approval of this study, including the inclusion of physically or

cognitively impaired individuals following the consent of adult next-of-kin, was granted by the

Institutional Review Board of the National University of Singapore (NUS-IRB 04-140).

For each participant, physical, metabolic, respiratory and serological measurements were

taken, along with several surveys covering the subjects’ status across several fields, such as

physical (e.g. the Activites of Daily Living (ADL) survey), cognitive (e.g. the Mini Mental State

Examination (MMSE)), and emotional (e.g. the Geriatric Depression Scale (GDS) survey).

Medical histories as well as dietary habits of the subjects were also obtained. All told, we identi-

fied 1579 usable variables (683 numerical and 896 categorical), which is further reduced to

1373 (664 numerical and 709 categorical). The process of reduction is described in the next

section.

Statistical analyses

We form all possible unique pairs of the 1579 variables, and calculate effect-sizes for each pair.

Depending on the type of variables in a pair (both numerical or categorical, or mixed), we

used the measures listed in Table 1. We use Bergsma’s finite-sample correction for the Cra-

mer’s ϕ, as it exhibits a large bias otherwise [26].

Table 1. Effect-size measures and significance tests for pairwise analysis, according to the type of variables in each

pair.

Pair Composition Statistical Test Effect Size Measure

Both numerical Student’s t test on Spearman’s r Spearman’s r2

Both categorical χ2 test on contingency table Cramer’s ϕ2

One numerical, one categorical Kruskal-Wallis ANOVA + Dunn’s post hoc test Z2
max=n

https://doi.org/10.1371/journal.pone.0219186.t001
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Table 1 also gives the corresponding tests for statistical significance we use for each pairwise

effect-size. We use a significance level of 0.05, and apply the Bonferroni correction for multiple

comparisons. All statistical tests we used are nonparametric, so as to have minimum assump-

tions regarding the distribution of the data. Regarding Dunn’s post hoc test used when the

Kruskal-Wallis analysis of variance [27] gives a significant result, we use Z2
max=n as the effect-

size, where Zmax is the maximum Z-score returned by Dunn’s test, and n is the number of sam-

ples used in the analysis of variance. All calculations were performed in Python using the SciPy

library [28], except for the Kruskal-Wallis and Dunn’s tests, which used the Python implemen-

tation by Muldal [29].

From the statistically-significant pairs of variables, we construct a pairwise effect-size net-

work, in which the nodes represent the variables we used, and edges between nodes represent

statistically-significant associations. The pairwise effect sizes serve as the edge weights. The

network we thus obtain is a disconnected network, consisting of one large subnetwork of

N = 1373 variables (the giant component), a pair of correlated variables (w0_total1 and

w0_total2, the total energy expenditure of a subject during weekdays and weekends respec-

tively, with R2 = 0.17) unconnected to anything else, and the rest of the 1579 variables wholly

disconnected (singleton nodes). We focus on the giant component in this work, as it com-

prises the bulk of the network. Fig 1 shows this giant component network (N = 1373,

E = 101030).

Network and clustering

From the giant network, we construct minimum spanning trees (MSTs). Given a connected

and weighted network G with N nodes and E weighted edges, the MST of G is an acyclic sub-

network having the same nodes as it, such that the sum of all edges is at a minimum. It has

been shown to be useful in clustering bioinformatics information such as microarray data [31,

32], and has emerged as a widely-used tool in phylogenetic and molecular epidemiological

analyses [33–37]. For the weight, we use a distance transformation of the effect size (which we

call the effect-size distance) as follows. Given an effect-size measure R2, the transformation into

the effect-size distance d is given by Eq 1:

d ¼
1 � R2

R2
ð1Þ

The MST thus gives a “backbone” of the network consisting of the strongest variable associ-

ations, as d and R2 are inversely-proportional. Fig 2 shows an MST of the network obtained by

Kruskal’s algorithm [27], as implemented in Python’s NetworkX library [38].

The uniqueness of an MST for a network is only mathematically guaranteed if the network’s

edge weights are distinct. Furthermore, Kruskal’s algorithm, which works by ordering network

edges according to increasing distance, is susceptible to the order by which edges having the

same distance are enumerated. Thus we generate multiple MSTs by slightly-modifying Krus-

kal’s algorithm: within the sequence containing the edges arranged with increasing distance,

we shuffle the ordering of any edges with equal distances, and obtain an MST for each shuf-

fling. We obtained 250 MSTs using this method.

There are multiple ways to combine the results of the obtained MSTs into a single network.

Among them are consensus rules, in which an edge present in a fraction of the trees exceeding

a set threshold is retained by the consensus network. Fig 3 shows the number of connected

components a consensus network has varying with the threshold used. We note that the con-

sensus network is connected up to the threshold value of 0.27, above which it splits into three
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connected components, with minor increases up to 0.50 (seven connected components).

Above 0.50, the number of network pieces jumps to 21 and begins to increase sharply, reaching

102 components at 0.88 and stabilizing.

We chose to combine the results represented by these MSTs into a majority-rule consensus

network, corresponding to a threshold of 0.5. The majority rule criterion is in common use to

summarize multiple MSTs of a single network [40], and has been shown to have a justification

from a Bayesian standpoint [41]. We retain all edges satisfying the criterion to obtain the con-

sensus network.

Fig 1. Giant component of a pairwise effect-size network constructed from SLAS-2 data (N = 1373, E = 101030). Graph visualization is done in Gephi [30].

https://doi.org/10.1371/journal.pone.0219186.g001
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After obtaining the consensus network from the MSTs, we cluster the nodes using Blondel’s

algorithm [39]. This algorithm partitions a network such that the modularity [42], a measure

of the strength of the connections among nodes within the same cluster, and simultaneously

the weakness of connections of nodes belonging to different clusters, is maximized. The

Fig 2. A minimum spanning tree (MST) of the giant component network shown in Fig 1. The MST is obtained using Kruskal’s algorithm.

https://doi.org/10.1371/journal.pone.0219186.g002
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modularity ranges from -1 to 1, with positive values corresponding to stronger intra-cluster

links. It is given by Eq 2:

Q ¼
1

2m

X

i

X

j

Aij �
kikj

2m

� �

dci ;cj ð2Þ

where Q is the modularity, Aij is the weight of the edge connecting nodes i and j (zero if the

two are unconnected), m ¼ 1

2

P
i

P
jAij is the sum of all the edge weights in the network, ki and

kj are the sum of the weights of edges connected to i and j, respectively, ci and cj are labels for

the clusters i and j belong to, and δ is the Krönecker delta. Here we use the original calculated

effect-size measure R2 as the edge weight, instead of the effect-size distance d. Fig 3 also shows

how the number of clusters determined this way vary with the threshold used to construct the

consensus network. We have previously seen that 0.5 marks the threshold above which the

consensus network drastically fragments into many small components, and we find the same

behavior for the number of clusters detected, generally remaining stable around 38 clusters,

before sharply rising above the 0.5 threshold, saturating at 126 clusters at 0.88, the same as

with the number of connected components. At the majority-rule criterion threshold, we obtain

42 clusters via Blondel’s algorithm.

Fig 4a shows the clustering pattern of the consensus network, where nodes belonging to a

given cluster colored identically. Fig 4b shows the corresponding induced graph of the consen-

sus network. The induced graph of a network is a schematic representation of the latter, where

the nodes are the clusters of the original network, and edges represent adjacency of the clus-

ters: connected induced-graph nodes correspond to connected clusters in the original under

the majority-rule criterion.

Fig 3. Threshold fraction, number of connected components and clusters for a consensus network of 250

minimum spanning trees obtained from pairwise effect-size analysis of SLAS-2 data. Clustering was performed on

the consensus network using Blondel’s algorithm [39].

https://doi.org/10.1371/journal.pone.0219186.g003
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Variable selection and surrogate sets

To achieve reduction of the number of variables required, from each cluster we select variables

to represent each. We call a set of variables selected this way a surrogate set. We examine sev-

eral strategies for constructing surrogate set; these fall into two categories: degree-based strate-

gies, relying on node degree and centrality-based strategies, relying on node centrality.

From each network cluster, degree-based strategies select nodes according to degree, or the

number of nearest-neighbuor nodes. A typical strategy is to select the node(s) with the highest

degree, or hub(s). Hubs are known to play important roles in networks, such as robustness and

resilience in the face of breakdowns [43]. In networks of human brain function [18, 20, 44, 45],

there is evidence that hubs play important roles [19, 21–23, 46]. Furthermore, in molecular

genetics, hub genes selected from a co-expression network have been shown to be biologically-

significant [47]. Let us denote this strategy, and the surrogate set it produces, as H. In addition,

we consider another degree-based strategy and surrogate set, HS, which in addition to the clus-

ter hubs select those nodes with the next-highest degree, which we call subhubs. Using these

two strategies H and HS, we select 66 and 159 variables, respectively, out of the 1373 variables

forming our consensus network. For purposes of consistency, let us call this “strategy” of

selecting all variables (except for a single outcome variable to be used in succeeding sections),

as well as resulting set of variables, as A, containing 1372 variables.

In contrast, centrality-based strategies select nodes according to their centrality within their

respective clusters. A multitude of network centrality measures exist (with the node degree

counted as one of them in some sources [48]); we use the intra-cluster betweenness centrality
[49, 50] in this work. The betweenness centrality (BC) of a network node is based on the num-

ber of shortest paths in the network passing through the node, and in a sense is a generalization

Fig 4. (a) Majority-rule consensus network and (b) its induced graph obtained from 250 MSTs of the giant component network in Fig 1, showing

the clustering obtained by Blondel’s algorithm [39]. Different colors correspond to different clusters in (a), and different betweenness centrality of the

clusters in (b). The clusters in (a) are labeled as a visual aid. In both, node sizes represent node degree (number of nearest neighbor nodes): variables in

(a) and clusters in (b).

https://doi.org/10.1371/journal.pone.0219186.g004
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of the neighborhood criterion presupposed by the node degree measure. In its scaled form, it

is given by Eq 3:

BC ¼
2

ðN � 1ÞðN � 2Þ

X

j6¼i6¼k

sjik

sjk
ð3Þ

where N is the number of nodes in the network, i is the node being considered, σjk is the num-

ber of shortest-paths from j to k, and σjik is the number of shortest paths between j and k which

pass through i. In calculating a node’s intra-cluster BC, only those nodes and edges belonging

to the subnetwork given by that cluster are used, and N is replaced by the number of nodes in

the cluster. Analogous to H, let us call the selection strategy of choosing from each cluster the

highest intra-cluster BC nodes (which we call cores), as well as its associated surrogate set, as C.

Similarly, in parallel to HS, the strategy of choosing from each cluster the highest and next-

highest intra-cluster BC nodes (cores and subcores) and its surrogate set we call CS. As surro-

gate sets, C and CS contain 48 and 91 variables, respectively.

We then evaluate the performance of the four surrogate sets compared to that of A in suc-

cessfully predicting the value of an index of successful aging, SAGE, described in a previous

paper [5]. The variable SAGE rates a patient 1 based on fulfilling the following criteria, and 0

otherwise:

1. Absence of self–reported major diseases such as heart disease, diabetes, stroke, dementia,

mental illness, chronic neurologic disease, end–stage renal disease and cancer (however,

the presence of a cardiovascular risk factor such as hypertension or hypercholesterolaemia

is tolerated)

2. Good to excellent self–rated health

3. Absence of disabilities on the Activities of Daily Living (ADL) and Instrumental Activities

of Daily Living (IADL) scales

4. Mini–Mental State Examination (MMSE) score equal to or greater than 26 (out of 30)

5. Fewness or absence of depressive symptoms, corresponding to a Geriatric Depression Scale

(GDS) score of less than 5

6. Good self–rated life satisfaction

7. High level of participation (at least once a week) in at least one social or productive activity,

including social, recreational or civic activities

SAGE is thus a variable which takes into account the multi-faceted nature of aging, integrat-

ing physical, cognitive, and psychosocial aspects. In the consensus network shown by Fig 4,

SAGE belongs to Cluster 22. However, it occupies a peripheral position within the cluster, hav-

ing two nearest neighbors, and an intra-cluster BC of 0.0. Thus it is not selected by any strategy

we considered above, and thus does not belong to any surrogate set or A.

We use the surrogate sets and A as features to train machine learning models for each set.

We split the SLAS-2 data set 75%-25% into a training set and a test set, and use the training set

to perform 10-fold cross-validation for each model. As SAGE is a binary outcome variable, we

plot receiver operating characteristic (ROC) curves for each model and use the area under the

ROC curve (AUC) as the measure of performance of each selection strategy. A preliminary

performance comparison between the gradient boosting machine (GBM), deep learning (DL)

and distributed random forest (DRF) machine learning algorithms showed that for all five sets
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of variables, the GBM algorithm offered the best performance in predicting SAGE. Thus, we

use it in the present study.

All models (both for the present study and the preliminary performance comparison) were

trained on the H2O.ai platform [51, 52]. For each, a grid search across hyper-parameters was

performed. Hyper-parameter values used in the grid search for each model type are listed in

Table A in S1 File. For each combination of hyper-parameters and surrogate set, ten cross-vali-

dation models (one for each fold) were trained. The cross-validation model (with its hyper-

parameter combination) with the best log-loss performance was selected as the model for that

surrogate set, and used to predict SAGE for the test set.

Results

Consensus network properties

Measures of association (effect-size measures) and statistical significance tests were performed

pairwise on the SLAS-2 dataset, and a network was constructed out of the set of pairwise

effect-sizes that were significant at α = 0.05 after applying the Bonferroni correction. After

obtaining the giant component of this network (Fig 1), a consensus network was formed by

combining 250 minimum spanning trees (MSTs) of the giant component and applying the

majority rule to the network edges. Fig 4a shows this consensus network. The network is

not connected, being instead split into 7 components. The two smallest components each con-

sist of a pair of connected nodes pertaining to a general health status score (w0_eq5d4 and

EQ5D_score) and activities of daily living (W0_adl1c and ADLc) unconnected to anything else.

The biggest component (N = 1035, E = 1062), accounts for 75.38% of all the nodes and 76.18%

of all the edges in the consensus network.

The nodes of the consensus network were clustered using the Louvain community detec-

tion method. Out of the 42 clusters obtained this way, the largest component accounts for 28

clusters; the second largest for 9, and the remaining five contain a single cluster each. Fig 4b

shows a schematic diagram of the seven components and their clusters.

Performance and benchmarking

Four subsetting strategies were applied to the clusters obtained from the consensus network.

Two were node degree-based (H and HS), and two were node centrality-based (C and CS).

The full set of node-variables (except for the outcome variable SAGE, which additionally is

absent from the four obtained subsets) was designated as A, and used as a reference for the

four subsets previously obtained (the surrogate sets). Gradient boosting machine (GBM) classi-

fiers were trained on each of the five sets, with SAGE as the outcome variable. Fig 5 shows the

receiver operating characteristic (ROC) curves for the classifiers trained on the four surrogate

sets and A, for both the validation set and 10-fold cross-validation. We use the area under the

ROC curves (AUCs) as the comparison metric for the performance of the five. In the context

of our work, this is because for a binary classifier, the AUC gives the probability that the model

ranks a randomly-chosen subject with SAGE = 1 higher than another subject, also randomly

chosen, with SAGE = 0. An AUC of 0.5 then indicates that the model’s prediction performance

is no better than chance, while 1.0 indicates perfect predictive performance. Models trained on

A have AUC values equal to 1.0, or very close to it, since they use all information available in

their construction. Those trained on the surrogate sets have lower AUCs due to working with

less feature variables; we wish to examine these differences in performance in the context of

the sizes of their surrogate sets. A good surrogate set is one that has minimal decrease in AUC

relative to A, while at the same time much smaller than the latter.
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Among the surrogate sets, the degree-based H and HS have the worst and best predictive

performance respectively, with the latter (AUC = 0.998 for validation, 0.990 for cross-valida-

tion) performing nearly as good as A (AUC = 1.000 for validation, 0.999 for cross-validation).

C and CS perform similarly, with that of CS very slightly lower with the validation set (0.929

vs. 0.932), and slightly higher with the cross-validation (0.927 vs. 0.911). This indicates that, if

one is to go for a centrality-based selection strategy, simply choosing the most central variables

in each cluster (the core nodes) may be sufficient. Adding the next most central variables (the

subcores) yields marginal or no improvement in predictive performance, at the cost of nearly

doubling the number of variables used, 91 to 48. In contrast, while HS offered a significant

improvement over H, the size of the surrogate set is more than doubled, 159 to 66.

As a second means of benchmarking the surrogate sets, we create other subsets of A by ran-

domly-choosing a fixed number k of variables from each cluster. Furthermore, for each subset

created this way, we randomly sample an equal amount of variables from the entire set of 1373

variables. Sets obtained with and without cluster information (that is, sets created by randomly

sampling each cluster and the whole variable set at large) are designated StRS (stratified ran-

dom samples) and SRS (simple random samples) respectively. We then use the resulting sub-

sets to train GBM models on SAGE (taking all the contained variables for clusters with sizes

smaller than k).

Fig 6 shows the average and standard deviation of the AUC (for both the validation set and

cross-validation) from 100 replicates for each k versus the total number of variables of the sets

corresponding to a given k. The validation set AUCs of H, HS, C, CS and A are also shown

along with their respective set sizes; the cross-validation AUCs, as given by Fig 5, are very close

to their validation set counterparts and thus are not shown here.

We see that the predictive performance of H, aside from being the lowest out of the four

surrogate sets, seems to fall within the range expected of randomly-chosen subsets of A,

between the data points equivalent to k = 1 (one randomly-selected feature variable per cluster,

42 variables) and k = 2 (two feature variables per cluster, 84 variables). Those of the other three

surrogate sets do not: C and CS both lie barely out the envelope created by the error bars,

while HS lies further out.

Relative importance of predictor variables

We examine the predictor variables in each surrogate set and A which contributed the most

towards their corresponding models’ performance in predicting the outcome variable, using

Fig 5. ROC curves for (a) validation and (b) 10-fold cross-validation of GBM classifiers trained on surrogate sets

H, HS, C and CS. The ROC curves for A are also presented for comparison.

https://doi.org/10.1371/journal.pone.0219186.g005
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the relative importance (RI) scores for each variable in each GBM model. The RI of a predictor

variable in a GBM model is a measure of how strongly the variable contributed to the quality

of the model’s prediction. The GBM algorithm utilizes an ensemble of decision trees to make

predictions, and for a single tree, a predictor’s RI is given by the number of times it was used

in the tree splits, weighted by the reduction in the squared error resulting from each split.

Friedman [53] gives the equation for the RI of a variable j in a single decision tree T with L
splits as follows:

Î 2
j ðTÞ ¼

XL� 1

k¼1

î2

k1ðvk ¼ jÞ ð4Þ

where k is a non-terminal split in T, vk is its associated variable, î2
k is the latter’s associated

empirical reduction in the squared error, and 1 is the indicator function. The predictor’s RI

was then averaged across the Ntrees decision trees used by each GBM model, as given by the fol-

lowing equation:

Î 2
j ¼

1

Ntrees

XNtrees

t¼1

Î 2

j ðTtÞ ð5Þ

Fig 7 shows the fifteen most important predictor variables for each GBM model trained on

the surrogate sets and A. Here, the individual variable RIs have been given both unscaled, and

scaled to that of the most important predictor for each model. The variables’ descriptions and

corresponding RIs (scaled and unscaled) are contained in Tables B-F in S1 File. Each model’s

top fifteen variables accounted for the bulk of its predictive performance: 91.6% for H, 97.2%

Fig 6. Performance comparison of GBM classifiers trained on A and surrogate sets H, HS, C and CS with

classifiers trained on feature subsets formed by choosing k variables from the clusters defined by the majority-

rule consensus network in Fig 4. All classifiers used the variable SAGE as the response. The horizontal axis is the size

of the feature subsets and the surrogate sets, and the vertical axis is the area under the ROC curves (AUC). Values and

error bars are averages and standard deviations of 100 replicates for each k for the randomly-selected features. Data

points for the surrogate sets and A are AUC values for the validation set. The lines between data points are guides for

the eye.

https://doi.org/10.1371/journal.pone.0219186.g006
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Fig 7. The 15 most important feature variables of GBM classifiers trained on the surrogate sets H, HS, C, CS and the full set A. The relative

importances were scaled with respect to the most important feature variable for each. Full descriptions for each feature variable and surrogate set can

be found from Table B to Table F in S1 File.

https://doi.org/10.1371/journal.pone.0219186.g007
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for HS, 96.9% for C, 94.3% for CS and 99.8% for A. In the sets which have it, LTA, the subjects’

leisure-time activity score, accounted for more than half of the empirical squared-error reduc-

tion (from 55.4% for A to 67.1% for C). Lower-ranked variables, from the 2nd down, each

accounted for much smaller fractions of the squared-error reduction and thus individually are

much less important than LTA.

In the exception (H), the highest-importance variable, AGG_PCS, is a subject’s physical

health composite score according to the NEMC Short Form 12 Health Survey (SF-12) [54–56].

This variable only accounted for 23.5% of the squared-error reduction for the GBM model

trained on H. The lower-ranked variables get higher proportions, and thus have larger RI

scores compared to their counterparts in the other sets. Without LTA, however, the average

total squared-error reduction, obtained by summing all the unscaled RIs, for H (4962.99) is

lower compared to the other three surrogate sets (HS: 5981.61; C: 5213.86; CS: 5290.17) and A
(6137.77). Interestingly however, LTA’s social component SA (the most important contributor

to LTA as determined from a coefficient analysis of its components) is the seventh-most

important predictor of SAGE within H.

Discussion

In this paper, network clustering of clinical data from an elderly cohort was performed, with a

view to obtaining subsets of variables (surrogate sets) which are representative of the whole.

Surrogate sets obtained using network node degree-based and centrality-based strategies were

evaluated for their performance in predicting an index of successful aging using machine

learning classifiers. The choice of centrality-based surrogate sets (C and CS) to train GBM

models offers increased predictive performance over similarly-sized sets of randomly-selected

variables, whether clustering information was used (StRS) or not (SRS). The performance of

models trained on degree-based surrogate sets was mixed: using hubs alone (H) did not yield

performance different from those trained on randomly-chosen variables. Using subhub vari-

ables together with hubs (HS) yielded a marked improvement, with predictive performance

very close to perfect prediction. This, however, comes at the cost of substantially increasing the

size of the surrogate set. Random selection of variables does not consistently reach comparable

performance until a very large proportion of the variables have been selected as training inputs;

we see this regardless of whether clustering information was used or not.

The most important domains identifiable in each surrogate set are similar, with top-fifteen

variables belonging to the physical, cardiovascular, cognitive and immunological domains cap-

tured by all four (and A as well). LTA, representing a fifth domain (leisure-time activities) is

captured by all surrogate sets save H; yet even here, the social score SA (the most important

contributor to LTA within the cohort) is ranked seventh among the important variables. Medi-

cal-history domain variables are also absent among H’s most important variables, and those

from the metabolic domain are present only in CS, something also exhibited by A.

While HS, C, and CS all perform above the envelope of randomly-selected variable sets, the

centrality-based surrogate set C may offer a good balance between the set size and predictive

accuracy compared to HS and CS (159 and 91 variables respectively, to C’s 48). It is superior to

H, its degree-selection analog, in both set size and predictive performance. In common with

the other surrogate sets, it covers several domains and thus can serve as a broad-based subset

of the SLAS-2 data. In this context, we note that network centrality-derived measures have pre-

viously been used successfully to identify, e.g., key genes in gene expression data and proteins

in protein-protein interaction networks [57–64], and in at least one instance have been used to

identify breast cancer-related genes by contrasting between normal and tumor networks built

from gene expression, mutation and protein-protein interaction data [65].
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We offer some remarks regarding our network-and-clustering approach, and the compara-

tive performance of centrality-based and degree-based subsetting strategies in particular. The

consensus minimum-spanning network we obtained from its parent (a pairwise effect-size

network) is effectively a network containing the strongest association strengths between pairs

of variables (in a dataset with purely numerical variables, this strength is Spearman’s r2). The

modularity maximization used by the clustering algorithm results in a partitioning in which

intra(inter)-cluster associations are strongest(weakest). With this in mind, a degree-based

approach picks those variables with the most number of strong and direct associations (neigh-

bors) within their clusters, while a centrality-based approach picks those with strong associa-

tions, whether direct or indirect. The quasi-tree structure of the consensus network (obtained

as it is from multiple minimum-spanning trees), combined with the large number of clusters

we obtained, tends to make the intra-cluster betweenness centrality to drop off sharply past the

most central variable within the cluster, which translates to negligible changes in prediction

performance, something reflected by the comparative performance of C and CS.

In general, the most central nodes and the highest-degree ones in the clusters do not coin-

cide, and we see that in the case of LTA. By picking up variables which, by their position within

their respective network clusters, “move together” the strongest with others (and thus are in

positions which render the rest as redundant), a centrality-based strategy thus ensures a selec-

tion of a subset of variables representative of the fuller dataset.

While the variable stratifying the cohort used in this study (the outcome variable, in

machine learning terms) is SAGE, the methods used to obtain our results are themselves data-

agnostic; the input data, instead of being clinical variables, might be information derived from

some other source (such as immunological assays, metabolomic or gene expression data), and

the outcome variable of interest might be an indicator for the presence or absence of a specific

medical condition (such as sarcopenia, diabetes mellitus or cardiovascular disease). In addi-

tion, the method is not restricted to categorical outcome variables; the GBM algorithm handles

both categorical and numerical-valued outcome variables similarly. In the latter case, however,

the AUC metric becomes inapplicable and an alternate performance metric, such as mean-

squared error, may be substituted.

Conclusion

In conclusion, the network-and-clustering based approach we described in this work yielded

substantial reductions in the number of variables we obtained compared to the initial data

set. Furthermore, the use of a centrality-based selection strategy yielded a good balance

between the variable subset’s size and predictive performance with respect to a desired out-

come variable. While we reported results specific to the SLAS-2 clinical dataset, the complete

pipeline itself is input-agnostic and can be straightforwardly adapted to other data sources

and desired exploratory and outcome variables. Further work will focus on clarifying the

relationship between individual variables’ predictive performance (as given by their relative

importances to a trained GBM model) and their position in the pairwise effect-size network,

as well as a more general verification of whether the predictive performances of each surro-

gate set hold true across other networks, such as in gene regulatory and protein-protein inter-

action networks.
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