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Over the past decade, the development of new targeted therapeutics directed against 
specific molecular pathways involved in tumor cell proliferation and survival has allowed 
an essential improvement in carcinoma treatment. Unfortunately, the scenario is different 
for sarcomas, a group of malignant neoplasms originating from mesenchymal cells, for 
which the main therapeutic approach still consists in the combination of surgery, chemo-
therapy, and radiation therapy. The lack of innovative approaches in sarcoma treatment 
stems from the high degree of heterogeneity of this tumor type, with more that 70 different 
histopathological subtypes, and the limited knowledge of the molecular drivers of tumor 
development and progression. Currently, molecular therapies are available mainly for the 
treatment of gastrointestinal stromal tumor, a soft-tissue malignancy characterized by an 
activating mutation of the tyrosine kinase KIT. Since the first application of this approach, 
a strong effort has been made to understand sarcoma molecular alterations that can 
be potential targets for therapy. The low incidence combined with the high level of his-
topathological heterogeneity makes the development of clinical trials for sarcomas very 
challenging. For this reason, preclinical studies are needed to better understand tumor 
biology with the aim to develop new targeted therapeutics. Currently, these studies are 
mainly based on in vitro testing, since cell lines, and in particular patient-derived models, 
represent a reliable and easy to handle tool for investigation. In the present review, we 
summarize the most important models currently available in the field, focusing in particular 
on the three-dimensional spheroid/organoid model. This innovative approach for studying 
tumor biology better represents tissue architecture and cell–cell as well as cell–microen-
vironment crosstalk, which are fundamental steps for tumor cell proliferation and survival.

Keywords: sarcoma, preclinical model, in vitro organoid culture, patient-derived in vitro model, drug screening, 
sarcoma treatment, personalized medicine

iNTRODUCTiON

Cancer is a group of diseases with a multitude of genomic aberrations typically classified by the cell 
of origin. Solid malignant neoplasms are predominantly carcinomas, which derive from epithelial 
cells, while a far less frequent group of solid neoplasms originates from mesenchymal cells. Normal 
mesenchymal cells form the soft and connective tissues as well as the bones. Tumors stemming from 
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Table 1 | Common risk elevating factors for sarcoma development.

Risk factor Resulting sarcoma subtype Reference

Environmental pollutant/
chemical

Ionizing radiation, previous or environmental Especially osteosarcoma, angiosarcoma (3, 5)
Herbicides (e.g., phenoxyacetic acids, chlorophenol) Non-specific (5, 15)
Vinyl chloride Hepatic angiosarcoma (15)
Dioxins Non-specific (3)

Infection HIV, human herpes virus 8 Kaposi’s sarcoma (14)

Genetic disorder Li–Fraumeni syndrome Any cancer, 30% sarcomas, osteosarcoma and various soft-tissue 
sarcomas heaped among sarcomas

(3, 5, 12, 15)

Neurofibromatosis type 1 Especially MPNST (3, 4)
Rb-mutation (13q14) Especially osteosarcoma, if retinoblastoma has been survived (3, 4)
Paget disease Osteosarcoma in adults (5)
Werner syndrome Osteosarcoma (4)
Bloom syndrome Osteosarcoma (4)
Gardner syndrome Fibrosarcoma (19)

Shown are the most likely resulting sarcomas depending on risk factor but omitting carcinomas and other types of cancer even if they are more prevalent.
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these cells are called sarcomas. They are malignant in most cases, 
and while their incidence in adults ranges from 1 to 2% (1–4), they 
account for up to 15% of all childhood and adolescence cancers 
(2, 3). Two main groups can be subdivided: soft-tissue sarcomas 
(STS) are more common in adults and represent 87% of all sarco-
mas, while sarcomas of the bone [osteosarcomas, Ewing sarcomas 
(EWS), and chondrosarcomas] occur more often below the age of 
20 years (4, 5). Currently, the American cancer registry reports 
4.2 cases per 100,000 for STS and 1.0 per 100,000 for sarcomas 
of the bone (6). Similar incidence rates have been reported for 
Europe (5, 7–9). Based on these numbers and according common 
definitions (10), sarcomas meet the criteria of rare diseases.

As for any rare disease, diagnostics and treatment should take 
place in specialized centers (7–9). Despite increased survival 
resulting from numerous multidisciplinary curative and pallia-
tive treatment options including surgery, monodrug or multidrug 
chemotherapy and/or targeted therapy, radiation therapy, hyper-
thermia, and isolated limb perfusion in a neoadjuvant or adjuvant 
setting (7–9), the disease outcome is often fatal. Currently, the 
5-year relative survival rate for a patient with sarcoma considering 
the type, stage, localization, and age is about 60% (5) but dramati-
cally dropping to 10% when only patients with advanced stages 
are considered (11). Due to the limited availability of tumor tissue 
for research and the complexity of the disease, progress in clinical 
management of sarcomas is lagging behind that of carcinomas. 
Since the lack of effective treatment options contributes to the 
low survival rate, the need for improving the treatment is evident.

Risk Factors for Sarcoma Development
Sarcomas could stem from virtually any mesenchymal cell in 
the body, and new pathological and molecular methods used for 
tumor classification currently allow for the distinction of more 
than 70 histopathological subtypes (1, 2, 12, 13). This high degree 
of heterogeneity combined with low incidence makes systematic 
research of sarcomas scientifically challenging.

A large group of sarcomas develop spontaneously, but envi-
ronmental and predisposing genomic factors have been found to 
increasing the risk of contracting this kind of tumor. For example, 
Kaposi sarcomas are known to be HIV or human herpes virus 8 

induced (14). Common risk factors known to be causative for 
many malignancies such as exposure to certain environmental 
pollutants and chemicals, ionizing radiation (often in form of a 
previous radiotherapy), and inherited genetic aberrations are also 
confirmed to play a role in sarcomas (Table 1). Sarcomas can be 
classified based on their genomics into genetically simple and 
genetically complex sarcomas (15, 16). Sarcomas of the geneti-
cally simple category (hypomutated) are characterized by only 
one disease-specific “driver” aberration such as a translocation or 
mutation (Table 2) and are more common in younger patients. 
Most of the known translocations result in fusion genes which 
code for transcription or growth factors (15). Identifying these 
translocations is of great value to the pathologist, as they allow 
for a confirmed diagnosis where simple histopathology alone is 
not definite. For example, detecting the amplification of MDM2 
helps to confirm the diagnosis of a well-differentiated or dedif-
ferentiated liposarcoma (17, 18). The genetically complex group 
(hypermutated) is made up by more or less chaotic karyotypes 
with high mutation frequencies in key oncogenes and tumor sup-
pressor genes like TP53 or RB1 (15, 16). These complex genomic 
aberrations are commonly found in adult patients and/or as 
secondary lesions after radiation exposure (15) (Table 2).

Moreover, there are ongoing discussions about other potential 
risk factors for sarcoma development. Congenital or acquired 
immunodeficiency and, interestingly, also hernias seem to have 
suggestive evidence (3, 4). While often a trauma is reported in the 
patients’ medical history, publication showed that there is no such 
causative link between injury and sarcoma development, except 
for fibrosarcoma, dermatofibrosarcoma, and for patients with 
Gardner’s syndrome who underwent surgery (19).

Gastrointestinal Stromal Tumors (GiSTs): 
Model for Developing New Targeted 
Therapies in Sarcoma
Gastrointestinal stromal tumors represent approximately 18% of 
all sarcomas and are the most common mesenchymal neoplasms 
of the gastrointestinal tract. Historically, GISTs have a poor 
prognosis with tumor recurrence within 5 years after complete 
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Table 2 | Common known aberrations of certain sarcoma subtypes.

Sarcoma subtype Type of 
aberration

locus Reference

Gastrointestinal 
stromal tumors

Mutation cKIT (exon 9 or 11) or 
PDGFR-alpha

(13)

Liposarcoma, well 
differentiated, and 
dedifferentiated

Amplification MDM2 (suppressor of p53) (17, 18)

Myxoid liposarcoma Translocation FUS–DDIT3 [t(12:16)
(q13;p11)]

(15)

EWSR1–DDIT3 [t(12;22)
(q13;q12)]

(15)

Alveolar 
rhabdomyosarcoma

Translocation PAX3–FOXO1A [t(2:13)
(q35:q14)]

(15)

PAX7–FOXO1A [t(1:13)
(p36:q14)]

(15)

Synovial sarcoma Translocation SS18-SSX [t(X;18)(p11:q11)] (3, 15)

Ewing sarcoma Translocation EWSR1-FLI1 [t(11:22)
(q24;q12)]

(15)

EWSR1–ERG [t(21;22)
(q22;q12)] 

(15)

EWSR1–ETV1 [t(7;22)
(p22;q12)] 

(15)

EWSR1–ETV4 [t(17;22)
(q21;q12)] 

(15)

EWSR1–FEV [t(2;22)
(q33;q12)]

(15)

Myxoid 
chondrosarcoma

Translocation EWSR1–NR4A3 [t(9;22)
(q22-31;q11-12)]

(15)
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resection in up to 50% of patients. An important improvement 
in the management of this neoplasm was achieved in 1998 due 
to the discovery of oncogenic mutations in the tyrosine kinase 
KIT (20). The subsequent development and exploitation of kinase 
inhibitors that specifically downregulate this aberrant signal 
transduction pathway improved GIST patient outcome (21, 22) 
and made this approach a model for treating sarcoma by targeting 
altered intracellular signaling molecules. In some cases, a specific 
treatment can now be selected to target a mutation in a molecu-
lar pathway if a drug targeting this pathway is available, even 
if this drug was originally approved for a different tumor type. 
An important example is imatinib, a kinase inhibitor originally 
approved for the treatment of patients with BCR-ABL-positive 
chronic myeloid leukemia, which is also a very effective inhibitor 
of KIT and thus showed increased efficacy in KIT-mutated GIST. 
However, further investigation of mutation status in GIST has 
revealed a specific mutation (PDGFRA D842V) that according 
to current guidelines mostly prohibits the use of imatinib (9) as 
patients with this mutation harbor a primary resistance to this 
drug (21).

Cells of Origin of Sarcoma
Irrespective of the clinical characteristics and in contrast to car-
cinomas, which arise from epithelial cells and are well defined by 
their tissue of origin, sarcomas are a group of highly heterogene-
ous tumors and evidence suggest that they develop directly from 
mesenchymal stem cells (MSCs) (23). MSCs are multipotent 
precursor cells of mesenchymal tissues such as bone, cartilage, 

fat, and muscle; several studies indicate their involvement in 
sarcomagenesis. Based on the wide variety of sarcoma subtypes, 
the origin of these tumors can be explained by two different 
hypotheses: the development of malignant alterations in a com-
mitted cell, distinct for every sarcoma subtype, or the presence of 
a common multipotent cell of origin that after transformation can 
differentiate into specific lineages (Figure 1).

According to the first hypothesis, tumors with a distinct phe-
notype and grade develop based on the basis of the lineage and 
of the differentiation stage when the initiating mutation occurs. 
This hypothesis is supported by studies in which the comparison 
between gene expression profiles of sarcomas and tissue-specific 
differentiation stages of MSCs showed a signature overlap in 
tumor and normal tissue according to their lineage of differentia-
tion (25–29). One of the limitations of these analyses is the fact 
that they are based on in  vitro cell culturing, which is known 
to induce alterations in the gene expression profile, thereby 
introducing a bias in the results. Moreover, it has been demon-
strated that cells of a specific sarcoma subtype can differentiate 
into multiple lineages in vitro when specific inducing factors are 
added, thus indicating that not only the cell of origin but also 
the tumor microenvironment is fundamental for determining the 
final tumor phenotype.

Increasing evidence indicates that sarcomagenesis might be 
initiated by an aberration in a multipotent cell, and this hypoth-
esis is currently favored by most researchers in the field. Several 
studies have demonstrated that mouse and human transformed 
MSCs can give rise to sarcomas after transplantation into mice. 
Miura and coworkers (30) showed that murine bone marrow-
derived mesenchymal stem cells (BMMSCs) undergo spontane-
ous malignant transformation after prolonged culture (passage 
29–54). Moreover, when injected in mice, these cells can form 
fibrosarcomas.

To test if MSCs are able not only to develop tumors when 
injected in mice after transformation but also to directly trans-
form in  vivo, Li et  al. (31) transplanted bone marrow or MSC 
from male C57BL/6J mice into transgenic mice expressing a non-
mammalian beta-gal enzyme (ROSA), chicken h-actin-enhanced 
GFP, and into WT littermates with bone marrow or MSC from 
male C57BL/6J mice as a control. After 18–24  months from 
transplantation, fibrosarcomas were the most common tumor 
detected, and immunohistochemistry analysis demonstrated that 
these tumors were derived from the transplanted bone marrow.

Compared to murine cells, human BMMSCs showed 
senescence without immortalization indicating that human 
MSCs cannot spontaneously transform (30); therefore, to 
translate the results obtained in mouse models, transforma-
tion of human MSC prior to inoculation is required. Genetic 
approaches aimed to knock out tumor suppressor genes and 
overexpress specific oncogenes have been used to induce MSCs 
transformation. The most common way to transform normal 
cells into malignant counterparts is the endogenous expression 
of human telomerase reverse transcriptase, simian virus 40 large 
T antigen (SV40-LT), and oncogenic H-RAS (32–34). Li et al. 
(35) applied this approach to study the origin of osteosarcoma. 
By using hMSC, they established cell lines by serially introduc-
ing these genetic alterations, and the effect of this manipulation 
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FiGURe 1 | Differentiation of normal mesenchymal stem cells (a) and altered differentiation (b). (b) The difference between the two hypotheses, whereby the 
initiating aberration occurs either at a later stage of differentiation (hypothesis 1) or hits the stem cell (hypothesis 2). Modified from the study by Teicher (24).
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on cellular phenotype, gene expression profiles, karyotype, and 
multilineage differentiation capacity was compared to osteosar-
coma. They showed that two distinct genotypic and phenotypic 
sarcoma cell lines developed from these genetic events and that 
the transformed cells were characterized by increased motility. 
Moreover, transformed cells could be induced, so that osteo-
genic, adipogenic, and chondrogenic differentiation occurred, 
demonstrating that their multilineage differentiation potential 
was maintained.

Other groups studied MSC as cell of origin of osteosarcoma. 
Mohseny et  al. (36) deeply characterized murine MSCs, trans-
formed MSCs, and derived osteosarcoma cells lines genetically, 
phenotypically, and functionally, as well as for mRNA and protein 
expression. They identified aneuploidization, translocation, and 
homozygous loss of the cdkn2 region as the key mediators of 
MSC transformation. In a cohort of 88 osteosarcoma patients, 

they showed a correlation between CDKN2A/p16 protein expres-
sion and prognosis, thus linking murine MSC model to human 
osteosarcoma. The genetic alterations that were found in both 
the in vitro cultured tumorigenic MSCs and the derived mouse 
tumors demonstrated that osteosarcoma could originate from 
MSCs. Interestingly, the fact that these cells could differentiate 
in vitro to chondrocytes and adipocytes but were prone to form 
osteosarcomas in vivo reveals the importance of the tumor micro-
environment in determining the final tumor phenotype.

Finally, it has been shown that a subgroup of these multipotent 
cells express not only mesenchymal markers but also stem cell 
markers such as OCT3/4, NANOG, and SOX (37, 38) and that 
they are associated with drug resistance and metastasis develop-
ment (39, 40). Taken together, these data suggest that MSCs 
might be not only the sarcoma initiating cells but also, due to their 
stemness, the cells responsible for maintaining tumor growth.
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Requirement of New Preclinical In Vitro 
Models for improving Sarcoma Outcome
Besides earlier detection by novel imaging techniques, the overall 
survival of sarcoma patients has not improved in the last 30 years. 
This is mainly due to the lack of understanding of the biological con-
sequences of the genomic alterations involved in sarcomagenesis. 
Therefore, it is clear that a better understanding of human sarcoma 
tumorigenesis and metastasis is pivotal to improve the manage-
ment of sarcoma patients in terms of new therapeutic targets and 
approaches. Since each sarcoma subtype is characterized by a low 
incidence, the development of clinical trials is challenging, and the 
results are often biased by the limited number of patients involved 
(16). These limitations related to the nature of sarcomas make 
interdisciplinary approaches indispensable and the development 
of reliable preclinical models for molecular analysis and research 
of potential targetable nodes a  priority. Even with technologies 
such as next-generation sequencing finding their way into the field 
of pathology, only the detailed understanding of the biology of 
sarcomas will foster new insights and as consequence translate to 
more effective therapeutic regimens in the clinic.

Recently, the efficacy of molecular methods in improving sar-
coma diagnosis was tested in a multicenter, prospective study. For 
this study, the diagnosis of 384 patients from 32 French sarcoma 
centers using histopathology exclusively versus a combination 
of histopathology plus molecular characterization was reevalu-
ated. The authors reported that for 53 of the patients considered 
an improvement was obtained when the diagnosis made by an 
expert pathologist was revised according to molecular genetic 
testing (41). This underlines the importance of sarcoma molecu-
lar characterization and demonstrates that molecular testing 
could significantly increase diagnostic accuracy.

In recent years, it has been extensively demonstrated that 
malignant tumors are characterized by varying degrees of 
heterogeneity where not only the primary tumor but also the 
corresponding distant metastasis have distinct genetic profiles 
(42, 43). Considering this heterogeneity, searching for actionable 
mutations using only next-generation sequencing techniques 
may be very challenging, and the treatment of tumor cells with 
specific mutations by targeted therapy could select for specific 
subpopulations resistant to the initial therapy (44–46), making 
the combination of multiple drugs with different targets the most 
promising approach, aiming at the inhibition of tumor growth 
at multiple levels. For example, Patwardhan et al. reported that a 
selective c-Fms/KIT inhibitor in combination with an mTORC1 
inhibitor could be more effective than the c-Fms/KIT inhibitor 
alone in reducing tumor growth in malignant peripheral nerve 
sheath tumors in cell lines and xenograft in  vivo models (47). 
These recent findings in sarcoma biology have encouraged the 
sarcoma research community into developing new predictive 
models for improving sarcoma treatment.

TwO-DiMeNSiONal (2D) IN VITRO 
MODelS

Preclinical and translational studies of tumor mutations and 
aberrations as well as validation of therapeutic targets are based 

mainly on in  vitro testing. Currently, the number of sarcoma 
models available for functional testing is still very limited, with 
only 2% of commercially available cell lines derived from STS 
(48). Moreover, the cell lines available do not represent the diver-
sity of sarcomas, but are limited to the most common groups like 
osteosarcoma, leiomyosarcoma, and rhabdomyosarcoma with a 
total lack of more rare subtypes such as alveolar soft part sarcoma.

Due to these limitations, several groups focused on the estab-
lishment of new sarcoma cell lines. More than three decades ago, 
Bruland and coworkers isolated primary cells from 11 primary 
and metastatic human sarcoma specimens by enzymatic dissocia-
tion (49). Since the general success rate of sarcoma cell isolation 
was limited, they developed an alternative procedure using a 
non-adherent cell cultivation method (cellular spheroids) to the 
classical monolayer culture. With this approach, they produced 
stable monolayer cultures in 5 of the 11 samples used. These cells 
formed colonies in clonogenic soft-agar assays and developed 
tumors upon subcutaneous injection into nude mice. In 2002, 
additional cell lines were established, the majority from lung 
metastatic specimens derived from different sarcoma subtypes 
(50). In this study, all 11 cell lines analyzed expressed VEGF and 
basic-FGF, and they grew in anchorage-independent conditions. 
Moreover, when injected intramuscularly, six of the cell lines 
tested formed tumors and five of these spontaneously developed 
lung metastases, thus demonstrating the retention of tumorigenic 
and metastatic potential of the original tumor.

Recently, Salawa and coworkers established (48) primary cell 
cultures from fresh soft-tissue sarcoma samples with a success 
rate of 70%. For the seven long-term cell cultures that remained 
proliferative for at least 3 years and for more that 60 passages, 
they confirmed that the genomic and phenotypic characteristics 
were comparable to the original tumors. Since it is well known 
that long-term culture affects cell molecular characteristics, 
they analyzed the loss of heterozygosity (LOH) highlighting an 
increase of LOH after ~40 passages, thus demonstrating the pres-
ence of a genomic evolution commonly observed in in vitro cell 
cultures. Interestingly, three of the seven cell lines isolated were 
derived from undifferentiated pleomorphic sarcomas (UPSs) and 
the other four were derived from high-grade subtypes, suggesting 
a correlation between aggressive clinical course and the potential 
of in vitro growth.

Since studies based on the use of cancer cell lines often showed 
conflicting results, the characterization of the in  vitro models 
used is very important, so that the results achieved by different 
laboratories can be compared. In 2010, the EuroBoNeT consor-
tium characterized a set of 36 commonly used bone tumor cell 
lines (51), including osteosarcoma, EWS, and chondrosarcoma. 
After DNA fingerprint analysis to exclude cross-contamination of 
tumor cell lines, they showed that clones derived from the same 
original cell line (in this case, HOS) showed some differences 
from the parental line, suggesting a genomic evolution of the 
clones used in the study. Moreover, they highlighted a discrep-
ancy between CDKN2A homozygous deletions in osteosarcoma 
and EWS cell lines (42 and 36%, respectively) compared to pri-
mary sarcoma samples, in which the frequency of this deletion is 
expected to be lower. This observation suggests that the cell line 
panel analyzed may be enriched in more aggressive tumors that 
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easily grow in vitro. Finally, they analyzed the expression of TP53, 
a marker accepted for response to chemotherapy. They reported 
that 7 of the 10 TP53wt osteosarcoma cell lines showed low levels 
of TP53 mRNA transcripts and only weak or no staining for 
the corresponding protein. Moreover, this downregulation was 
present only in osteosarcoma cell lines but not in the other seven 
TP53wt bone tumor lines analyzed.

To select cell lines that are more representative of human 
osteosarcoma, the same research group further characterized the 
19 osteosarcoma cell lines available in that study (52) by analyz-
ing their ability to differentiate in  vitro and their tumorigenic 
potential in nude mice. While the differentiation capacity toward 
osteoblasts, adipocytes, or chondrocytes was maintained in all 
cell lines with some cell lines able to differentiate in more than one 
lineage, only eight cell lines developed tumors after subcutane-
ous and intramuscular injection into nude mice. In mice injected 
with HOS-143B cell line, multiple lung metastasis was detected 
during autopsy, demonstrating the metastatic potential of these 
cells. Interestingly, the availability of the non-tumorigenic HOS 
parental line and the corresponding non-metastatic HOS-MNNG 
makes these lines an excellent model for studying osteosarcoma 
progression.

Since 2D in vitro models are inexpensive and relatively easy to 
generate and maintain, they have been broadly used in preclinical 
research. However, these models do not accurately recapitulate 
the three-dimensional (3D) structure of tumor tissues and the 
complex crosstalk between tumor cells and microenvironment.

3D IN VITRO MODelS

Forcing cells to grow in 2D induces alterations in cell morphol-
ogy that in turn translates in changes of the gene and protein 
expression, as well as cell behavior compared to the tissue of 
origin (53–55). These limitations are partially overcome by 3D 
cell cultures that represent the donor-tissues’ architecture includ-
ing cell–cell and cell–matrix interactions and are thus valuable 
tools for investigating the influence of the microenvironment 
and gradients of nutrients and oxygen on the interplay of cells 
within a tumor and their response to drug treatment (56). Since 
little is known about the molecular biology of sarcomas including 
unknown contextual cross talk between signaling pathways and 
other components presumably including epigenetic modifications 
and regulatory RNA sequences, patient-derived sarcoma tumor 
models are desirable tools to fulfill the promises of personalized 
medicine.

Several reports mainly aimed at the study of the presence 
of cells with cancer stem cell characteristics and their role in 
sarcoma tumorigenesis, local relapse, metastasis, and therapy 
resistance were published demonstrating that sarcoma cells 
can grow in non-adherent conditions, forming 3D structures 
called spheroids (49, 57–59). In 2009, Fujii et  al. showed that 
commercially available human sarcoma cell lines such as MG63 
(osteosarcoma), HTB166 (EWS), and HT1080 (fibrosarcoma) are 
characterized by the ability to form sarcospheres with stem-like 
properties. Moreover, they showed that cells grown as spheroids 
were resistant to doxorubicin and cisplatin, drugs frequently used 
for sarcoma treatment (39).

In additional to immortalized cell lines, primary cells can also 
form sarcospheres when grown in non-adherent and serum-
starved conditions. Salerno and coworkers demonstrated that 
isolated tumor spheres were tumorigenic after transplantation 
into mice and that the tumors formed recapitulated the corre-
sponding human disease (58). In addition, they showed that by 
modification of cell culture conditions, it was possible to influence 
the growth of the sarcospheres. Mimicking the tumor microenvi-
ronment by reducing O2 conditions to 1% induced a significant 
increase in the number and the size of the spheres demonstrating 
that 3D sarcoma models are useful tools for studying sarcoma 
development due to their flexibility.

To better model morphology, growth kinetics, and protein 
expression profiles of human tumors, Fong et al. (59) established 
an ex vivo 3D model of EWS by culturing TC-71 cells in porous 
3D electrospun poly(ε-caprolactone) scaffolds. After a 20-day 
culture, a well-differentiated EWS-like phenotype was preserved 
in this in vitro 3D model as verified by expression of diagnostic 
markers such as CD99, keratin, and smooth muscle actin. 
Considering that one of the most promising new treatment strat-
egies in EWS is the inhibition of the IGF-1R/mTOR pathway, they 
showed that the activation of IGF-1R/mTOR signal was higher in 
the 3D model, compared to the 2D counterpart, suggesting that 
the 3D microenvironment has a more physiological effect on the 
intracellular signaling cascade. Finally, they tested the sensitivity 
of this 3D model to doxorubicin, a cytotoxic chemotherapeutic 
agent used in EWS treatment. Similar to the lower sensitivity 
observed in xenografts, an increased resistance was observed in 
the 3D model compared to 2D cells. Taken together, these data 
demonstrated that EWS 3D models are useful and reliable tools 
for evaluating new IGF-1R antagonists not only as single agents 
but also in combined strategies. Moreover, since they better 
mimic the tumor microenvironment, they provide important 
information for identifying new signaling nodes that can repre-
sent potential targets for therapeutic intervention.

One of the main characteristics of EWS cells is the recruitment 
and activation of osteoclasts, leading to the destruction of bone 
tissue by osteoclast-mediated osteolysis. As this process is crucial, 
several groups focused on the development of in vitro models of 
bone osteolysis by coculturing tumor cells with osteoclasts and 
osteoblasts. Recently, Villasante et  al. (60) engineered a healthy 
bone tissue by co-culturing osteoblasts derived from hMSC and 
osteoclasts derived from monocytes isolated from blood samples. 
First, hMSC were seeded within a decellularized bone scaffold and 
differentiated toward osteoblasts. CD14+ monocytes were then 
cocultured with osteoblast and differentiated in osteoclasts. EWS 
aggregates were finally infused into the tissue-engineered bone and 
maintained in culture. The analysis of the bone microenvironment 
highlighted a decrease in bone density, connectivity, and matrix 
deposition in the presence of EWS cells. Moreover, the treatment 
with antiosteolytic drugs inhibited this process limiting osteoclast-
mediated bone resorption. Taken together these data highlight the 
feasibility of developing bone-mimicking models for the study of 
bone tumors and bone metastasis development. The possibility of 
using patient-derived induced pluripotent stem cells for develop-
ing the bone niche suggests the potential of using this model for 
creating personalized models useful for precision medicine.
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tissue without prior cell enrichment are grown as 3D multicellular structures [Modified from Silvestri et al. (64)].
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3D In Vitro Models: From  
Carcinoma to Sarcoma Research
In the last decade, several 3D cell culture models have been 
developed to study different aspects of tumor biology and to test 
the efficacy of new anticancer molecules. While these approaches 
have mainly been established using carcinoma cells, with little 
effort, they can be also applied to the study of sarcoma biology. 
The least complex and therefore most frequently used models 
are based on spontaneous cell aggregation where the reduction 
of the adhesive forces to the surface of the culture plate allows 
cells to adhere spontaneously to each other forming cellular 
spheroids (Figure 2A). These models can be maintained either 
by using non-adhesive surfaces or spinner flasks and gyratory 
rotators, the use of hanging drop cultures, embedding of tumor 
cells in hydrogel matrices, or by the use of microcarrier beads 
and scaffolds. To avoid cell adhesion to the substrate surface, 
non-adhesive surfaces (Figure  3A) can be generated by using 
coatings such as agarose, polyHEMA, positively charged poly-
styrene, or proteoglycans (61–63). More recently, culture plates 

with modified surface chemistry have been developed allowing 
for “out-of-the-box”-ready technology and more reproducible 
growth of cellular spheroids. Besides the biological limitations, 
the main technical limitation of this method is the formation of 
spheroids with variable size and the inability to process upscaling.

The aforementioned limitations are partially overcome using 
spinner flasks or gyratory rotator (Figure 3B) systems, bioreactors 
that allow continuous mixing of medium or a constant rotatory 
movement of the flask, which prevents cell adhesion (65). These 
methods allow massive production of spheroids, therefore 
representing the method of choice for growing high amounts of 
homogeneous spheroids for downstream applications.

A technique often used is the so-called hanging drop method 
(Figure 3C) that makes use of gravity to stimulate cell aggregation. 
Cells in suspension are plated in small drops onto the underside 
of a plate lid that is then carefully inverted. Due to gravity, the 
cells accumulate in the tip of the drop, forming spheroidal aggre-
gates (66). For those cells that do not spontaneously aggregate, 
systems that facilitate cell to cell interaction have been developed. 
Microcarrier beads (Figure 3D) are characterized by differences 
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FiGURe 3 | Different methods for 3D spheroids development and growth. (a) Non-adhesive surfaces: culture plates with modified surfaces to reduce cell adhesion 
stimulate cell aggregation and formation of 3D structures. (b) Spinner flasks: stirred or rotating vessels are used to prevent cell adhesion to the surface of the plate 
allowing 3D spheroids formation. (C) Hanging drop: cells seeded in small drops of medium form cellular aggregates at the tip of the drop due to gravity forces.  
(D) Microcarrier beads: cells adhere to and proliferate on the surface of natural or synthetic solid beads forming 3D structures. (e) Hydrogel matrices: cells are 
seeded into matrices of natural or synthetic origin forming 3D structures by single cells aggregation or by monoclonal cell growth. [Modified from Silvestri et al. (64)].
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in size and composition. Surface coating allows adhesion and 
proliferation of cells consequently forming minispheroids that in 
turn aggregate one to each other, thus forming bigger spheroids 
(67). Another system to facilitate cell aggregation is the use of solid 
scaffolds with different porosity composed by natural or synthetic 
materials such as collagen, chitosan, or d,d,-l,l-polylactic acid. 
After seeding, cells can migrate along the surface, aggregate, and 
create 3D structures (68).

As tumor cells do not exist as isolated entities but rather are 
part of a complex microenvironment, natural or synthetic hydro-
gel matrices (Figure 3E) that mimic the in vivo tissue architecture 
can be used to grow tumor cells in 3D structures. The choice of a 
naturally or synthetically composed gel can be based on the aim 
of the analysis, ranging from single component hydrogels, i.e., 
laminin, collagen, and fibronectin to more complex ones such 
as Matrigel™ or Puramatrix™ (69, 70). Tumor cells can also be 
grown together with other tissue components such as stroma and 
epithelial cells in organotypic cocultures (Figure 2B). This more 

complex model allows to study the influence of tumor microen-
vironment on tumor development and progression as well as on 
drug sensitivity (71–74).

One of the most important tools in medical research is the 
model able to mimic the physiological situation in the closest 
way possible. Since they are commercially available and easy 
to handle, most of the basic and preclinical research in the 
oncological field was done using immortalized cell lines. On the 
downside, long-term in vivo culturing and the immortalization 
process often cause alterations in the molecular and phenotypic 
characteristics of these cells that can strongly differ from the cell 
of origin. To overcome these limitations, fresh tissue directly 
obtained during surgery has been used for isolating and culti-
vating tumor cells. One of the most straight forward methods 
is to cultivate fragments/slices of the tumor tissue as so-called 
organotypic slice cultures (Figure 2C). Several research groups use 
this method to study drug uptake, proliferation, and cell death, as 
well as for molecular characterization before and after treatment 
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(75–77). The main advantage of this system is that the original 
tissue architecture is preserved, allowing the immediate study 
of the normal/altered physiology. Using tissue slices that can be 
maintained in culture for a short period of time only and without 
the opportunity of further expansion strongly limits the use of 
these models.

The currently most innovative and promising approach for 
in vitro model is represented by tumor tissue organoids (Figures 2D 
and 4). Organoids are multicellular structures directly isolated 
from primary tissue and grown in well-defined conditions. 3D 
organoids maintain the complex architecture of their tissue of 
origin and self-organize by reproducing their unique architec-
ture and marker expression. This innovative tool has been used 
by several research groups for studying tumor development and 
progression and for testing drug efficacy (78–81). Interestingly, 
it has been recently demonstrated that this tumor model can be 
easily applied to high-throughput drug screening (82) and to cor-
relate patient’s tumor molecular profiles to drug sensitivity (83).

MOleCUlaR DRiveRS OF SaRCOMa 
DevelOPMeNT aS NOvel TaRGeTS  
FOR iNTeRveNTiON

Genomic analysis of Driver Mutations
In 2010, Barretina and colleagues (84) performed an integrative 
system analysis of DNA sequence, copy number, and mRNA 

expression on 207 soft-tissue sarcoma samples including 7 major 
subtypes to identify novel subtype-specific genomic alterations 
representing potential therapeutic targets. They first studied 
genomic alterations in 47 tumor/normal DNA pairs highlight-
ing 21 totally modified genes. These results were then validated 
in a second study-set of 160 tumors confirming the presence 
of subtype-specific mutations in several genes such as PIK3CA 
in myxoid/round cell liposarcoma, TP53 in pleomorphic 
liposarcoma, and NF1 in myxofibrosarcoma and pleomorphic 
liposarcoma. The data obtained are of high clinical potential 
since they helped identify tumors that might be responsive to 
PI3K or mTOR inhibitors, since NF1 loss causes mTOR pathway 
activation.

Recently, panel sequencing of 194 cancer-related genes in 25 
STS was performed to identify actionable mutations (85). This 
analysis revealed the presence of different mutational profiles. 
In particular, in 60% of the cases targetable mutations for which 
clinical trials are available were highlighted while for another 28% 
of cases mutations which are currently not targetable were pre-
sent. This study demonstrates the versatility of next-generation 
sequencing both in patient stratification for treatment with cur-
rently available therapeutics and in the identification of potential 
targets for developing new molecular treatments.

In the recent years, strong efforts have been made to find 
new biomarkers for selecting the best treatment based on spe-
cific tumor molecular profiles. With the goal of developing an 
efficient approach for patient stratification for treatment, Hanes 
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and colleagues (86) combined tumor genomic characterization 
with drug testing in  vitro in patient-derived cell lines. Three 
metastases from a patient with high-grade dedifferentiated 
liposarcoma previously treated with different chemotherapeutic 
agents were used for the study. Tumor tissues were analyzed 
by exome and transcriptome sequencing as well as DNA copy 
number analysis to highlight genomic aberrations that could 
represent potential targets for treatment. The data obtained 
were then used for selecting those drugs that can directly affect 
the altered gene or the corresponding signaling pathway in a 
cell line derived from the metastatic tissue. Among the altered 
genes observed in the tumor sample, an amplification of FRS2, 
the gene coding for fibroblast growth factor receptor substrate 
2, was revealed. Based on this molecular alteration, they tested 
the in vitro efficacy of NVP-BGJ398 (infigratinib), a pan-FGFR 
inhibitor showing promising inhibition of proliferation induced 
by cell cycle arrest. Taken together, these data demonstrate the 
benefit of combining tumor genomic profiling with in vitro test-
ing for a better selection of treatment in sarcoma patients and 
for selecting new promising treatments for improving sarcoma 
survival.

Proteomic analysis of intracellular 
Pathways alterations
Even if specific mutations have been associated with certain 
sarcoma subtypes, their etiology remain largely unknown. 
An equally important approach in biomarker discovery is the 
analysis of the proteome. Since the proteome is a functional 
translation of the genome, the information provided by its 
in-depth analysis may be a key in understanding sarcoma pro-
gression and therapy failure. Several research groups focused 
on differential expression of proteins in tumor tissue compared 
to the normal counterpart using diverse technologies such as 
Digiwest (87), 2D-PAGE (86, 87), mass spectrometry (87), and 
array technology (88).

Developing new sarcoma diagnostic biomarkers, Suehara 
and colleagues used 2D difference electrophoresis (2D-DIGE) 
analysis performing global protein expression analysis in differ-
ent histological subtypes of soft-tissue sarcoma. Profiling data 
highlighted a set of 67 proteins distinguishing the 80 sarcoma 
samples based on their histological classification. Moreover, a 
signature of five proteins was able to differentiate at time of that 
publication known as grade III malignant fibrous histocytomas 
(today classified as UPS) and leiomyosarcomas into low- and 
high-risk groups characterized by significantly different survival 
rates (88).

The same research group applied a combined 2D-DIGE 
and mass spectrometry approach for profiling patients with 
GIST characterized by good and poor clinical prognosis (89), 
demonstrating the potential of this marker in GIST clinical 
management. This analysis highlighted 43 proteins (spots) 
differentially expressed and corresponding to 25 distinct gene 
products. Among these proteins, the authors focused on pfetin, 
a potassium channel protein, since 8 of the 43 spots that were 
found derived from this protein, and 4 of these had discrimina-
tive power between the two groups. Pfetin expression and its 

correlation with tumor metastasis was confirmed by real-time 
PCR and western blot. Moreover, the authors demonstrated that 
pfetin expression and 5-year metastasis-free survival rate were 
directly correlating.

In another recent study, 59 rhabdomyosarcoma samples 
were microdissected to enrich tumor cell content and analyzed 
by reverse phase protein microarrays (90), an antibody-based 
technology useful in studying the level of expression of selected 
total and phosphoproteins. This study showed that the phos-
phorylation of several components of the Akt/mTOR pathway 
was increased in tumors from patients with short-term survival. 
Moreover, an altered relationship between insulin receptor sub-
strate 1, and this pathway was highlighted in patients with poor 
survival. The significance of these results was demonstrated by 
treating mouse xenografts with CCI-779, an mTOR inhibitor, that 
compared to controls greatly reduced the growth of two different 
rhabdomyosarcoma cell lines. These data showed the utility of 
phosphoproteomic pathway mapping for the study of functional 
drivers of sarcoma progression and for selecting patients for 
anti-mTOR/IRS therapy. These and other proteomic studies in 
different sarcoma subtypes were extensively reviewed by Kondo 
and colleagues (91).

Genomic and proteomic approaches can be synergistically 
applied for a deeper understanding of tumor biology at molecular 
level. Integrating these profiling systems, it is possible to correlate 
the presence of tumor-specific mutations to functional altera-
tions in intracellular pathways. The information obtained from 
a multiomics approach may help in both designing new targeted 
therapies and selecting the best treatment option for a specific 
patient.

PReCliNiCal DRUG SCReeNiNG FOR 
iMPROviNG SaRCOMa TReaTMeNT

Since no innovative therapeutic approaches are available for 
most sarcoma subtypes, several research groups focused on the 
discovery of new targets for sarcoma treatment by screening of 
compound libraries mainly on immortalized 2D cell lines and 
studying their effect on sarcoma cell biology.

As mentioned before, several sarcoma types are characterized 
by the presence of chromosomal translocations that cause the 
production of altered transcription factors. About 85% of EWSs 
express the EWS/FLI1 fusion protein, known to cause altera-
tions in transcriptional regulation and RNA processing. EWS/
FLI1 represents a very attractive drug target since it is specifi-
cally expressed by the tumor cells, but it is absent in the healthy 
tissue. Since, currently, no drugs targeting transcription factors 
are available, one approach is to directly or indirectly inhibit the 
players of the altered connected pathway. To this aim, Grohar 
and coworkers (92) screened more than 50,000 compounds in 
TC32 EWS cells for the ability of altering the expression level 
of the EWS/FLI1 downstream target NR0B1, that was prior 
transfected with a luciferase construct. The 200 compounds that 
showed activity in primary screening were further validated by 
multiplex PCR assay with the aim of selecting those hits that 
best inhibited the expression of a predetermined set of EWS/
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FLI1 downstream target genes. With this approach, they selected 
mithramycin as lead compound able to inhibit EWS/FLI1 activ-
ity. This effect was validated and further characterized in in vitro 
experiments and in in vivo xenograft models. Taken together, 
these data demonstrate the potential efficacy of this compound 
in treating EWS and the utility of applying high-throughput 
screening approaches for selecting new potential drug targets 
and new sarcoma therapies.

A similar study screened a small-molecule compound library 
containing FDA-approved drugs modulating the expression of 
EWS/FLI1 target genes on a panel of six EWS cell lines (93). To 
determine compound efficacy, the expression levels of few, well-
characterized EWS/FLI1 target genes was measured. Among 
the 10 hits with the highest efficacy, several know therapeutic 
agents and fenretinide, currently in clinical trials for Ewing’s 
sarcoma, have been highlighted demonstrating the robustness 
of this screening approach. Moreover, midostaurin, a pan-
kinase inhibitor, resulted in one of the most promising novel 
compounds. Interestingly, the efficacy of this drug was already 
shown in rhabdomyosarcoma, another pediatric sarcoma type. 
Moreover, midostaurin is currently undergoing phase II clinical 
trials for leukemia in adults and children, with a low toxicity in the 
pediatric population that make this drug a promising candidate 
to be tested in pediatric sarcoma patients.

The determination of new drug targets and efficient 
therapeutics requires even more the investigation of sarcoma 
subtypes that, unlike EWS, are not characterized by a known 
driver molecular alteration. Several groups tested available 
compound libraries to better characterize the drug sensitivity 
of different sarcoma subtypes and to correlate the response to 
specific compounds with the molecular characteristics of the 
tumor. Teicher and coworkers (94) screened the response of 63 
sarcoma cell lines to 100 FDA-approved anticancer drugs and 
to a library of 345 investigational oncology agents. Moreover, 
they correlated treatment response with cell molecular profiles 
obtained by exon and microRNA arrays. The authors highlighted 
important correlations between cell characteristics such as 
sarcoma subtype and gene/miRNA expression, demonstrating 
that this screening approach is useful in studying the efficacy of 
FDA-approved drugs in specific sarcoma subtypes, in defining 
new potential therapeutic agents and for correlating sarcoma 
molecular profiles with drug sensitivity.

With such screening platforms available, it will become 
possible to investigate combination therapies for “vertical 
inhibition” of a single pathway or inhibition spanning multiple 
pathways.

CliNiCal OPPORTUNiTieS FOR PaTieNT-
DeRiveD 3D (PD3D) IN VITRO MODelS

Ever since the sequencing of the first human genome, hopes 
were high that knowledge of the cancer genome landscape 
would bring an end to cancer and other diseases. Yet, sequenc-
ing alone has proven to be “remarkably unhelpful,” and the 
belief that sequencing your DNA is going to extend your life is 
“a cruel illusion” as James Watson put it in a recent interview 

with the New York Times (95). Today, genome researchers still 
struggle to be able to sufficiently support clinical decision-
making with meaningful sequence data, and to compensate for 
this deficit, they propose that “more is more” (96). Yet, these 
genome centrics are neither feasible in the clinical setting nor 
payable by the majority of patients and insurance companies. 
Using PD3D cell cultures and exploiting their phenomics by 
combining multiple layers of evidence is expected to soon 
become the state-of-the-art approach. All current reports share 
the assumption that short-term PD3D cell cultures have already 
proven their superior predictive value in the preclinical arena, 
ousting other in vitro models in the development of new drugs. 
Pauli et  al. have reported that they can successfully establish 
3D cell cultures from surgically removed specimen within 
weeks (97). Therefore, leading comprehensive cancer centers 
around the world have started including patient-specific cell 
culture data in their infrastructure, as detailed by Shraddha 
Chakrandhar in Nature Medicine (98). Drug screenings in an 
automated setup, as described in 2016 by Boehnke et al. (82), 
take about 1 week once enough cells are available. In parallel, 
ultra-deep targeted sequencing can be performed, focusing 
on only those mutations that are relevant for the clinical 
decision-making.

Of course, the panels of target genes to be sequenced has to 
be updated with latest clinically relevant information to ensure 
that oncologists can stay focused on the immediate needs of 
the patients. Protein extracts from before and after the drug 
screening can be used for methods like Digiwest, a bead-based, 
multiplexed western blot (87). With this method, a selection of 
up to 200 (phospho-)proteins can be quantified at once, provid-
ing differential information not only on expression levels but 
also on the activation of key signaling kinases, such as those 
along them TOR, WNT, MAPK, or PI3K axes. Taking into 
consideration the time frame in which additional information 
can be used to support the decision-making process and the 
nature of information that becomes available from measuring 
cellular phenomics for the discussion in tumor boards, PD3D 
models may indeed become an integral part in clinical oncology 
of the 21st century.

CONClUSiON

Recent research efforts in sarcoma has enabled important 
improvements in the knowledge of sarcoma histopathology 
that in turn defined sarcomas not as a single tumor entity 
but rather as different tumor subtypes with histology-specific 
molecular characteristics. The recent development of targeted 
therapies significantly contributed to the improved treatment 
options for sarcoma patients. Considering that this approach, 
first developed in carcinomas, showed efficacy in GIST, the next 
step in sarcoma research is to focus on the molecular charac-
terization of the different subtypes to highlight new potential 
targets for therapy.

Since the availability of in vitro models that reliably represent 
the physiological tumor behavior is a prerequisite for successful 
sarcoma preclinical and translational research, several models 
have been developed for discovering new potential targets for 
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