
The Effect of a DK280 Mutation on the Unfolded State of
a Microtubule-Binding Repeat in Tau
Austin Huang, Collin M. Stultz*

Harvard–MIT Division of Health Sciences and Technology, Department of Electrical Engineering and Computer Science, Research Laboratory of Electronics, Massachusetts

Institute of Technology, Cambridge, Massachusetts, United States of America

Abstract

Tau is a natively unfolded protein that forms intracellular aggregates in the brains of patients with Alzheimer’s disease. To
decipher the mechanism underlying the formation of tau aggregates, we developed a novel approach for constructing
models of natively unfolded proteins. The method, energy-minima mapping and weighting (EMW), samples local energy
minima of subsequences within a natively unfolded protein and then constructs ensembles from these energetically
favorable conformations that are consistent with a given set of experimental data. A unique feature of the method is that it
does not strive to generate a single ensemble that represents the unfolded state. Instead we construct a number of
candidate ensembles, each of which agrees with a given set of experimental constraints, and focus our analysis on local
structural features that are present in all of the independently generated ensembles. Using EMW we generated ensembles
that are consistent with chemical shift measurements obtained on tau constructs. Thirty models were constructed for the
second microtubule binding repeat (MTBR2) in wild-type (WT) tau and a DK280 mutant, which is found in some forms of
frontotemporal dementia. By focusing on structural features that are preserved across all ensembles, we find that the
aggregation-initiating sequence, PHF6*, prefers an extended conformation in both the WT and DK280 sequences. In
addition, we find that residue K280 can adopt a loop/turn conformation in WT MTBR2 and that deletion of this residue,
which can adopt nonextended states, leads to an increase in locally extended conformations near the C-terminus of PHF6*.
As an increased preference for extended states near the C-terminus of PHF6* may facilitate the propagation of b-structure
downstream from PHF6*, these results explain how a deletion at position 280 can promote the formation of tau aggregates.
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Introduction

Alzheimer’s disease (AD) pathology is characterized by extracel-

lular aggregates of Ab-amyloid (Ab) and intraneuronal tau

aggregates, known as senile plaques and neurofibrillary tangles

(NFTs), respectively [1]. Despite much focus on Ab amyloid in AD

research, tau seems to play an important role as well. For example,

the number of NFTs and not the number of senile plaques in the

neocortex correlates with the severity of dementia in AD patients,

and there are data that imply that abnormalities in tau alone may

cause neurodegeneration [2]. In light of these observations, a

detailed characterization of the structure of tau protein may provide

insights into the pathogenesis of AD and other neurodegenerative

disorders associated with tau pathology. However, probing the

structure of tau is difficult because tau protein is natively unfolded (or

intrinsically disordered) in solution. Several studies suggest that tau

retains its function after heat or acid-induced denaturation and both

CD and X-ray scattering experiments imply that tau does not adopt

a well-defined folded structure in solution [3–5]. Consequently,

obtaining structural and hence functional information on tau is

problematic because the direct observation of unfolded states is

typically difficult to achieve experimentally.

Initially, unfolded proteins were described as random coils

whose properties are derived from Flory’s statistical description of

chain molecules [6]. For such polymers, the radius of gyration, RG,

follows the scaling law RG = R0Nn, where R0 is the radius of

gyration of a monomeric subunit (a function of the persistence

length), N is the number of subunits in the polymer, and n is a

scaling factor that depends on the solvent characteristics. The most

common measure of whether a protein behaves as a random coil is

to test whether its radius of gyration follows this scaling law.

However, while a structurally disordered molecule can exhibit

random coil statistics, the converse is not necessarily true; i.e.,

random coil statistics do not imply that the structure is completely

disordered [7]. Slight structural preferences may exist for some

natively unfolded proteins and small changes in the distribution of

conformers within an unfolded ensemble may play a role in the

normal and pathological functioning of intrinsically disordered

systems. A recent study, for example, suggests that inducer-

mediated tau polymerization involves an allosterically regulated

conformational change [8]. This is consistent with the notion that

the formation of tau fibrils is associated with a shift in the

conformational distribution of tau such that the unfolded state has

a preference for proaggregatory conformations in the presence of

an inducer. In light of this, constructing detailed ensembles that

model the unfolded ensemble of tau may facilitate the identifica-

tion of structural properties that promote aggregation.

As full-length tau contains more than 400 amino acids (441

residues for the htau40 isoform [9]) constructing detailed

ensembles that model the unfolded state of this protein is a
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daunting task. Fortunately, tau contains three or four imperfect

microtubule-binding repeats (MTBRs) near the C-terminus of the

protein, and almost all known mutations of tau that are associated

with inherited forms of neurodegenerative diseases are located in

MTBR domains or their nearby flanking regions [10]. As these

data suggest that MTBRs play an important role in the

progression of inherited tauopathies, we first focus on building

ensembles that model the structure of individual MTBRs. It is

important to note, however, that we do not strive to model the

structure of a given MTBR fragment alone in solution. Rather,

our goal is to generate ensembles that model the range of

conformations that a MTBR can adopt when it is part of full

length tau. In the present study we focus on building ensembles for

the second MTBR, henceforth referred to as MTBR2. This repeat

is of particular interest because it contains both a six amino-acid

repeat, PHF6*, which is a minimum interaction motif that can

initiate tau aggregation in vitro [11,12], and the site of the

proaggregatory mutation, DK280, which is associated with some

forms of frontotemporal dementia [13–16].

We have developed a method, called energy-minima mapping

and weighting (EMW), to construct ensembles that model the

unfolded state of proteins. The underlying assumption that forms the

basis of this approach is that the unfolded state can be modeled as a

set of energetically favorable conformers, where each conformer

corresponds to a local energy minimum. The method involves

constructing a library of energetically favorable conformations and

selecting conformations from this library to form ensembles that are

consistent with a given set of experimental data. We use EMW to

build ensembles for wild-type (WT) MTBR2 and the corresponding

DK280 mutant. By comparing data from the two sets of ensembles,

we deduce structural preferences in the DK280 ensemble that

explain its increased propensity to form tau aggregates.

Results

The EMW method begins by constructing sets of energetically

favorable conformations for a sequence of amino-acids within a

natively unfolded protein (Figure 1). In the case of tau we focus on

MTBR2 since this region contains the aggregation-initiating

sequence PHF6* as well as the site of a mutation that is associated

with increased tau aggregation in vitro [17]. A set of local energy

minima is then constructed for this subsequence, hence forming

the candidate ensemble (Figure 1). Associated with each structure

in this ensemble is a weight, vi, which corresponds to the

probability that the given subsequence adopts the ith conformation

in the candidate ensemble. We say that an ensemble is fully

specified when the local energy minima and weights are known.

Initial weights for structures in the candidate ensemble are

calculated from the relative energies of each structure, as shown in

Figure 1. However, as sampling is performed on a relatively small

subsequence these weights may not reflect the relative probabilities

of different conformations when the subsequence is part of the larger

protein. For example, compact states may be preferred over

extended states when the subsequence is in isolation but not when

part of tau. Therefore, the composition of the ensemble is optimized

and the members of the candidate ensemble are reweighted in light

of experimental data that is obtained on a larger segment of tau

protein. Sampling small subsequences increases the chance that we

will observe a relatively large number of accessible states for this

system. Using experimental data obtained on a larger region of tau

(and not just the subsequence of interest) helps to ensure that the

calculated ensemble represents the local structure of the sequence as

it appears within full length tau.

A central component of EMW is that we do not strive to

construct a single model for the unfolded state. We recognize that

the construction of unfolded ensembles that agree with any given

set of experimental data is largely an underdetermined problem;

hence it is likely that there are a number of different ensembles

that are consistent with a given set of experimental data.

Consequently, we constructed several ensembles that are all

consistent with the experimental measurements and focused our

analysis on local structural motifs that are present in all ensembles.

For this study, we focused on NMR data that are available for both

WT MTBR2 and a DK280 mutant. These data were kindly

provided by Marco Mukrasch, Daniela Fischer, and Markus

Zweckstetter [17,18].

Using the EMW method, 100 ensembles were constructed for

both wild-type (WT) and DK280 sequences of MTBR2 (a total of

200 ensembles). Each ensemble was constructed to minimize the

difference between calculated 13Ca chemical shifts and the

corresponding experimentally determined 13Ca chemical shifts.

The number of structures in each ensemble corresponds to the

minimal number of structures needed to fit the available chemical

shifts. Preliminary calculations found that 15 conformers were

needed; i.e., fewer structures resulted in worse fits to the 13Ca
chemical shifts and more structures did not significantly improve

the quality of fits. We note that other models examining residual

structure in the unfolded state have utilized a similar number of

representative conformers [19].

Application of EMW yielded ensembles that were in excellent

agreement with experimentally determined absolute 13Ca chem-

ical shifts (Figure 2A and 2B). The average RMS error between

the calculated 13Ca chemical shifts and the corresponding

experimental values was 0.1 ppm—well below the error associated

with SHIFTX chemical shift predictions and similar to the error

associated with experimental chemical shift measurements on K18

constructs [17,20]. However, given that measured absolute

chemical shifts for the 20 amino acids vary significantly according

to the amino-acid type, reasonable correlations to absolute

chemical shifts may be achieved by simply predicting amino-acid

specific random coil values. Given this, we analyzed the

relationship between the chemical shifts, after subtracting out

residue-specific random coil chemical shift values; i.e., the

secondary chemical shifts. Overall, there is excellent agreement

between calculated secondary chemical shifts and the correspond-

ing experimental values for each residue in the sequence

Author Summary

Alzheimer’s disease pathology is characterized by two
types of protein aggregates that are found in the brain—
amyloid plaques and neurofibrillary tangles. Several
studies suggest that these aggregates also play an active
role in the disease process. Thus, an understanding of
disease pathogenesis may be facilitated by a detailed
characterization of the proteins that comprise these
aggregates. Our study aims to model structural character-
istics of tau protein, which is found in neurofibrillary
tangles. Modeling of tau is particularly difficult because the
protein is intrinsically disordered and therefore must be
modeled as an ensemble of structurally dissimilar states.
We developed a novel modeling approach that incorpo-
rates experimental measurements to generate ensembles
of conformations that model the unfolded state of tau. By
analyzing structural properties in these model ensembles
for both normal and disease-associated forms of the
protein, we identify structural features that may facilitate
tau aggregation.

The Unfolded State of MTBR2
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(Figure 2C and 2D). These data demonstrate that the calculated

models yield agreement with experiment on a per residue basis.

In the next step of our protocol, carbonyl carbon (13CO)

chemical shifts were used to test whether the resulting ensembles

can predict experimental observations that were not used to

construct the model. This helps to ensure that our models are not

‘‘overly fit’’ to the 13Ca chemical shifts. In general, a model that is

over-fit to a given set of experimental data can reproduce that data

remarkably well but cannot reproduce data that was not used to

generate the model. Therefore we consider an ensemble to be

validated if new experimental results can be accurately predicted

from the ensemble. For both the WT and DK280 sequences, each

of the 100 ensembles was ranked based on its ability to predict
13CO chemical shifts. Based on these data the thirty best

ensembles were chosen for further analysis. The RMS difference

between the calculated 13CO chemical shifts and the correspond-

ing experimental values are below 0.9 ppm; i.e., below the error

associated with available chemical shift prediction algorithms

(Table 1) [20]. To further demonstrate that these thirty ensembles

can reproduce additional data not used in the model constructed,

we computed the error between calculated amide hydrogen (1HN)

chemical shifts and the corresponding experimental values. The

Figure 1. Outline of EMW method. The subsequence chosen for simulations is colored blue and contains an aggregation initiating sequence
(colored yellow). A set of local energy minima can be enumerated using quenched molecular dynamics. Chemical shifts are calculated for the
candidate ensemble and compared to chemical shifts obtained on the entire sequence. Weights of ensemble members are modified to improve
agreement with experiment. Si

Ca jð Þ denotes the chemical shift of the Ca atom in the jth residue of the ith structure of the ensemble. Si
Ca jð Þ is

computed from the ith structure using SHIFTX [20]. SCa(j) is the statistical mechanical equivalent of the experimentally observed chemical shift of the
Ca atom in the jth residue. We note that although the aggregation-initiating sequence is shown at the center of the chosen subsequence, this need
not be the case. For MTBR2, the aggregation-initiating sequence is located at the N-terminus.
doi:10.1371/journal.pcbi.1000155.g001

The Unfolded State of MTBR2
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resulting values agreed with the experimentally measured ones to

within 0.3 ppm (Table 1).

As expected, structures that comprise the WT (Figure 3A) and

DK280 (Figure 3B) ensembles are heterogeneous in that they

sample a wide range of conformations. Since each of the 30

ensembles represents an independent representation of the

unfolded state, we searched for local structural motifs that are

found in all of the ensembles. More precisely, the existence of a

local conformation that is consistently adopted by a given

subsequence in MTBR2 suggests that this conformation is needed

to reproduce the experimental results. We therefore consider

conserved motifs to represent local conformational preferences.

We begin with an assessment of the local conformation of

PHF6* in both the WT and DK280 ensembles. Since PHF6* in

the WT sequence spans residues 275–280, the DK280 mutant

sequence has a deletion in the six-residue stretch corresponding to

PHF6*. However, since residue 281 is also a lysine, the DK280

mutant contains an equivalent PHF6* subsequence at its N-

terminus (Figure 4). This allows us to directly compare the

conformation of PHF6* in both sequences. To identify preserved

conformations of PHF6*, we first determined the different types of

structures that this subsequence can adopt by clustering structures

using only the backbone atoms of PHF6* (Figure 5). The

probability that a given cluster occurs in an ensemble is equal to

the sum of the weights of structures in that ensemble that contains

a motif in the cluster. Preserved structural motifs are defined as

clusters that have a nonzero weight in every ensemble (Figure 5);

i.e., a preserved motif is found in all ensembles. For comparison,

we repeated this procedure for all contiguous six-residue

subsequences within MTBR2, yielding a collection of approxi-

mately 300 clusters that represent all possible structural motifs in

our ensembles that any six-residue sequence in MTBR2 can

adopt. Using the criterion outlined above, roughly 5% of these

clusters were preserved across all ensembles.

In WT MTBR2, clustering based on the conformation of

PHF6* yielded 12 distinct conformations. However, only one of

these states was present in all 30 ensembles (Figure 6A and 6B).

Similarly, while PHF6* clusters into 11 distinct conformations in

the mutant DK280 ensembles, only one conformation was

preserved (Figure 6C and 6D). In both cases, the preserved

conformation of PHF6* is extended and has Q, y angles that fall

within the broad region of the Ramachandran plot corresponding

to b-structure. This observation is consistent with the notion that

PHF6* a priori adopts extended conformations that can readily

form cross b-structure with other tau monomers [21]. Since the

formation of cross b-structure is believed to play an essential role

in the formation of protein aggregates, these data are consistent

with the notion that PHF6* promotes aggregation by forming b-

structure between tau monomers [11,12].

To explore the effect of the DK280 mutation on the local

structure of MTBR2, we analyzed the structure of the subse-

quences 278INKKLD283 and 278IN-KLDL284 in the WT and

Figure 2. Model versus experimental absolute Ca chemical shifts and Ca secondary chemical shifts. Model versus experimental absolute
Ca chemical shifts for (A) 100 WT ensembles and (B) 100 DK280 ensembles are shown. Ca secondary chemical shifts (DCa) are also shown for the (C)
WT and (D) DK280 sequences using the ensemble that had the worst agreement with experiment. The worst model is defined as the ensemble that
has the greatest RMSD between the calculated and experimentally determined values.
doi:10.1371/journal.pcbi.1000155.g002

The Unfolded State of MTBR2
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DK280 sequences, respectively. For WT MTBR2, two conforma-

tions for 278INKKLD283 were found in all ensembles. The first is a

loop/turn that is associated with a change in the direction of the

mainchain (Figure 7A and 7B). In this structure residue K280 has

Q, y angles of approximately 2102u and 230u, respectively; i.e.,

mainchain dihedral angles consistent with an a-helical/turn

conformation. The second conformation is more extended, having

Q, y angles that place its residues within the broad region

corresponding to extended b-structure (Figure 7C and 7D). In the

mutant sequence, residue K280 is absent and the corresponding

sequence, 278IN-KLDL283, has one preserved conformation. The

deletion of residue 280, which can adopt an a-helical/turn

conformation in the native sequence, leads to a relative increase in

results in extended states in this region (Figure 7E and 7F). The

deletion, however, also introduces a slight kink in the mainchain of

the sequence (Figure 7F).

In a prior work, N–H residual dipolar coupling (RDC) values

were measured for residues in the WT K18 construct in

polyacrylamide gel [22]. While most residues in MTBR2 have

relatively large negative RDC values, S285 has a large positive

value [22]. This difference can be explained by either a change in

the local alignment tensor at S285, or the presence of a-helical/

turn structure at this site [23–26]. Accelerated molecular dynamics

simulations of WT K18, however, confirm that the sequence
283DLSN286 samples turn conformations with relatively high

frequency [22]. In light of these observations, we explored the

structure of the six residue segment, 282LDLSNV287, which

includes residue S285. This region adopts two conformations that

are preserved across all WT ensembles. One of the conformations

contains a loop/turn (Figure 8A and 8B) where residue S285 has

Q, y angles of 263u and 239u, respectively; i.e., near the optimal

a-helical values (Figure 8B). The alternate conformation is

extended and does not result in a change in the direction of the

mainchain (Figure 8C and 8D). However, in the DK280 mutant,
282LDLSNV287 has one structure that is preserved across all

ensembles (Figure 8E and 8F). In this structure S285 again adopts

Table 1. RMSD between calculated and experimental CO and
H chemical shifts.

Ensemble
13CO 1HN

WT DK280 WT DK280

1 0.58 0.78 0.20 0.25

2 0.59 0.78 0.23 0.28

3 0.60 0.80 0.20 0.25

4 0.65 0.80 0.26 0.25

5 0.66 0.80 0.20 0.19

6 0.66 0.82 0.21 0.23

7 0.67 0.83 0.21 0.23

8 0.67 0.83 0.21 0.25

9 0.68 0.83 0.20 0.23

10 0.68 0.84 0.26 0.28

11 0.69 0.86 0.21 0.20

12 0.70 0.86 0.20 0.25

13 0.70 0.86 0.20 0.26

14 0.70 0.86 0.21 0.28

15 0.71 0.86 0.23 0.24

16 0.71 0.87 0.18 0.23

17 0.71 0.87 0.25 0.21

18 0.72 0.87 0.16 0.23

19 0.72 0.87 0.23 0.28

20 0.72 0.87 0.20 0.29

21 0.72 0.87 0.23 0.20

22 0.73 0.87 0.21 0.29

23 0.73 0.87 0.20 0.21

24 0.73 0.88 0.21 0.27

25 0.73 0.88 0.19 0.24

26 0.73 0.88 0.24 0.26

27 0.73 0.88 0.20 0.23

28 0.73 0.88 0.19 0.25

29 0.73 0.89 0.21 0.24

30 0.74 0.89 0.22 0.27

doi:10.1371/journal.pcbi.1000155.t001 Figure 3. An alignment of structures from (A) all 30 WT
ensembles and (B) all 30 DK280 ensembles.
doi:10.1371/journal.pcbi.1000155.g003
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Q, y angles (295u and 263u, respectively) that are consistent with

an a-helical/turn conformation (Figure 8F). These data agree with

the RDC data mentioned above and suggest that this region in

both the WT and mutant sequences is able to adopt turn-like

conformations in solution as well as in a polyacrylamide gel.

Discussion

Dynamical simulations provide a valuable tool for the analysis

of unfolded proteins, providing insights that would be difficult to

obtain from experiments alone [27]. A number of simulation

methods have been developed to model the unfolded states of

proteins and useful insights have been obtained with these

techniques. Many of these approaches generate ensembles by

directly incorporating experimental constraints into molecular

dynamics simulations in order to facilitate conformational

sampling. These methods bias molecular trajectories to sample

conformers that are consistent with a given set of experimental

data. One problematic issue with biased sampling, however, is that it

can suffer from over-fitting—a process that may yield a

distribution of conformers that does not accurately model the

range of structures that comprise the unfolded state [27]. Given

this concern, a number of unbiased methods have been developed

to generate ensembles for unfolded proteins. These approaches

utilize fast algorithms, which do not employ a physical potential

energy function, to obtain representative structures of the unfolded

state, and in some cases experimental data can then be used to

improve the resulting ensembles [28–31]. The algorithm EN-

SEMBLE, for example, adjusts population weights for pregener-

ated conformers to improve agreement with experimental data in

a manner similar to that described here [30].

A unique feature of the present method is that it does not strive to

generate a single ensemble that represents the unfolded state. Given

that accurate modeling of an unfolded protein is an undetermined

problem, it is likely that there are a number of different ensembles

that agree with any given set of experimental data. Moreover, given

the immense number of potential conformations that an unfolded

protein can adopt, this may be true even when a relatively large

number of experimental constraints are used to construct the

ensemble. Hence our goal was to construct several candidate

ensembles, each of which agrees with a given set of experimental

constraints, and focus our analysis on local structural features that

are preserved across all ensembles. Local structural features that are

found in all independent ensembles likely represent motifs that are

required to reproduce the experimental data. In other words, given

the underdetermined nature of the problem, it is not clear how to

determine when one has the ‘‘correct’’ ensemble. However, local

structural motifs that consistently appear in all independent

ensembles are likely to also be present in the ‘‘correct’’ ensemble.

Consequently, we consider locally preserved structural motifs to

represent local conformational preferences.

An important consideration in our method is the choice of

experimental data that is used to build and validate the

constructed ensembles. In principle, EMW can use any set of

experimental measurements to optimize and validate model

ensembles. Indeed, as more structural information is made

available, additional data can and should be used to further refine

the set of model ensembles. In this regard, we note that although a

number of NMR measurements have been made on native tau

constructs, the data available for constructs containing a DK280

mutation is relatively limited. In a prior study, nuclear chemical

shifts and HSQC spectra were measured for the K18DK280

construct, which contains all four MTBRs and the DK280

mutation [17]. Data were obtained for both free K18DK280

and for K18DK280 in the presence of the polyanion heparin and

microtubules [17]. However, as we are interested in building

structural models for MTBR2 in solutions free of compounds that

promote tau self-association (e.g., heparin) and free of proteins

known to bind tau, we focused on measurements obtained with the

free K18DK280 construct. Additionally, as there are a number of

existing methods that relate chemical shift measurements to three

dimensional protein structures [20,32–34] we considered 13Ca,
13CO, 1HN, and 15N chemical shift measurements; i.e., the only

available chemical shifts for K18DK280 [17]. Furthermore,

established methods for estimating NMR chemical shifts can

predict carbon and amide proton chemical shifts with an error of

approximately 1 ppm or less, while the error associated with

predicting nitrogen chemical shifts is substantially larger (,2–

2.5 ppm) [20,33–35]. Therefore we focused on the 13Ca, 13CO,

and 1H chemical shifts for this study because these data represent

measurements that can be calculated with the greatest accuracy

and that are available for both native tau constructs and the

DK280 mutant.

It has long been recognized that chemical shifts of a given

residue are, in general, largely a function of the local environment

of the residue in question [36,37]. Since we generate ensembles

that agree with chemical shifts, a limitation of the results reported

here is that we do not explicitly include experimental data that

more directly reveal information about non-local interactions.

While long range contacts have been identified in some natively

unfolded proteins (e.g., [19]), the dimensional scaling character-

istics of intrinsically disordered proteins suggests that stable long-

range contacts are sparse in these systems [38]. Nevertheless, we

Figure 4. Aligned sequences of WT and DK280 tau. The PHF6* region is underlined in red.
doi:10.1371/journal.pcbi.1000155.g004

The Unfolded State of MTBR2

PLoS Computational Biology | www.ploscompbiol.org 6 August 2008 | Volume 4 | Issue 8 | e1000155



suggest that the combination of a physical potential energy

function, which can in principle model long range interactions,

and experimentally determined chemical shifts can provide insight

into the structure of proteins in general. In this regard we note that

data are emerging that suggest that backbone chemical shifts,

when used in conjunction with a physical energy function, may be

sufficient to adequately predict tertiary folds, and consequently

stable non-local contacts, for some proteins [39,40].

Although our work focuses on the structure of the MTBR2

without explicitly including other MTBRs, our findings may also

have implications for full length tau. Once a representative set of

conformers for MTBR2 is generated, we strive to ensure that the

calculated chemical shifts agree with chemical shifts obtained using

a construct that contains all MTBRs. This helps to guarantee that

the ensemble models the structure of MTBR2 as it appears in full

length tau. In short, we are not interested in the structure of

MTR2 as it appears alone in solution; instead we hope to deduce

structural features of MTBR2 as it appears in full length tau. In

addition, as MTBR2 contains an aggregation-initiating sequence

that is known promote tau aggregation in vitro as well as the site of

a mutation that leads to in increased tau aggregation in vitro and

in vivo, studies of both its WT and mutant forms may lead to

insights into the mechanism of tau aggregation [12,15,41].

The ability to form intermolecular b-sheet conformations

appears to be a relatively general property of polypeptide chains

that are associated with disorders of protein misfolding and

aggregation [42–45]. Therefore it is likely that an inherent

propensity to form extended conformations, that are consistent

with b-structure, will promote aggregation in natively unfolded

systems. When EMW is applied to MTBR2, we find that the

aggregation-initiating sequence, PHF6*, adopts an extended

conformation in both the WT and DK280 ensembles, a finding

consistent with the observation that these peptides can initiate tau

aggregation [11,12]. Interestingly, in a prior work we demonstrat-

ed that a related hexapeptide, PHF6, preferentially adopts an

extended state that can facilitate the formation of cross-b-structure

between tau monomers [21]. The present study suggests that this

property is preserved when aggregation-initiating sequences are

Figure 5. Outline of the method used for clustering local
conformations. First, a six-residue local region is selected for analysis.
Clusters of structures with similar conformations in the region of
interest are formed based on pairwise RMSDs for backbone atoms in
the local region. E1–E5 represent different ensembles. Clusters that are
present in all model ensembles are circled in red, while clusters that are
not preserved are circled in green.
doi:10.1371/journal.pcbi.1000155.g005

Figure 6. Structures of the cluster representing the local
conformation of PHF6* that is preserved in all ensembles. (A)
Aligned structures for WT tau and (B) average backbone conformation
for this cluster; (C) aligned structures for the DK280 mutant and (D)
corresponding average structure. The backbone of PHF6* is shown in
yellow for the average structures.
doi:10.1371/journal.pcbi.1000155.g006

The Unfolded State of MTBR2
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part of their corresponding MTBRs. That is, PHF6* a priori

adopts extended conformations that can readily form hydrogen-

bonded b-structure. Additionally, a recent survey of amyloido-

genic proteins suggests that fibrillogenesis for natively unfolded

proteins involve the formation of partially folded intermediates

that can subsequently go on to form amyloid fibrils [45]. Our

findings are consistent with these observations. That is, our results

imply that formation of a locally stable, and extended, conforma-

tion plays a role in the formation of tau aggregates.

Recently, several studies have attempted to characterize residual

structure of MTBRs in tau [17,18,22,46–48]. These studies can be

roughly divided into two categories: descriptions of ensemble

average characteristics based on NMR measurements

[17,18,22,46], and NMR solution structures of local regions

obtained by adding organic solvents to stabilize a unique fold

[47,48]. Since the presence of organic solvents leads to significant

changes in the conformational distribution of states, as evidenced by

dramatic changes in the CD spectra [5,47,48], the physiologic

relevance of these latter results remains unclear. However, early

characterizations of MTBRs in nonorganic solvents, found that the

PHF6 region likely has a higher propensity for extended, b-strand-

like conformations—a finding in accord with our data [18,46].

Given that both WT and DK280 tau contain aggregation-

initiating sequences (Figure 4), it is not clear how b-strand

propensity in this region explains the difference in aggregation

potential between the two sequences. Therefore to deduce

structural features of the DK280 mutant that explain its proclivity

to form aggregates, we analyzed the structure of MTBR2 in the

vicinity of the mutation site. Unfolded ensembles of WT MTBR2

contain two conformations at the mutation site that were present

in all ensembles—a loop/turn conformation and an extended

state. In contrast to the WT MTBR2 ensembles, models of DK280

in the same region had one conformation that was present in all

ensembles. This state is relatively extended and contains a kink at

the site of the deletion. While the slight disruption in the extended

state of the mutant may also influence the ability to form

hydrogen-bonded cross-b-structure, a loop/turn at the C-terminus

of PHF6* constitutes a much greater impediment to the formation

of b-structure. Since residue K280 has a relative preference for

nonextended states, deletion of this residue leads to increased

sampling of extended states downstream from PHF6*. The relative

preference for extended structures downstream from PHF6* in the

DK280 mutant suggests that the ability to propagate b-structure

distal to PHF6* can affect the aggregation potential of tau. These

Figure 7. Preserved structures for the region corresponding to
278INKKLD283 in both the WT (A–D) and 278IN-KLDL284 DK280
ensembles (E,F). (A,C) Aligned structures corresponding to a
preserved cluster in the WT ensembles aligned by backbone atoms of
residues of 278INKKLD283 and (B,D) the corresponding average
structures. (E) Aligned structures of the preserved cluster in DK280
ensembles, aligned by backbone atoms of residues 278IN-KLDL284. (F)
The average conformation of the preserved cluster in DK280 ensembles.
In the average structures, residues belonging to PHF6* are in yellow.
doi:10.1371/journal.pcbi.1000155.g007

Figure 8. Preserved structures for the region corresponding to
residues 282LDLSNV287 in both the WT (A–D) and DK280
ensembles (E,F). (A,C) Aligned structures corresponding to a
preserved cluster in the WT ensembles aligned by backbone atoms of
residues of 282LDLSNV287 and (B,D) the corresponding average
structures. (E) Aligned structures of the preserved cluster in DK280
ensembles, aligned by backbone atoms of residues 282LDLSNV287. (F)
The average conformation of the preserved cluster in DK280 ensembles.
The location of S285 is shown in red in the average structures.
doi:10.1371/journal.pcbi.1000155.g008
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observations therefore explain how the deletion of a single residue

can change the aggregation potential of tau.

We also find that in both WT and mutant ensembles residue

S285 can adopt Q, y angles consistent with an a-helical/turn

structure. Recent data on the WT sequence are also consistent

with these observations as RDC values and molecular dynamics

simulations suggest that S285 adopts an a-helical/turn structure.

Since those experiments were performed in polyacrylamide gel,

our data suggest that this structure also occurs with relatively high

frequency in solution. It is also worthwhile to note that although

we find that a six-residue region including K280 can adopt a

similar loop/turn conformation, the associated RDCs for this

region are not associated with a change in sign, like that observed

at S285 [27]. Nonetheless, unlike RDC measurements for folded

proteins, RDC values for unfolded proteins can be difficult to

interpret [49]. This is due, in part, to the fact that prior to the

measurement of RDC values, the protein of interest must first be

embedded in an alignment medium [26]. This induced steric

alignment of unfolded proteins may lead to results that do not fully

capture the range of structures that an unfolded protein can adopt

in solution. Hence the absence of particular RDC values in

polyacrylamide gel (or any other alignment media) does not

necessarily imply that a given conformation is not present in

solutions containing the unfolded protein of interest.

The formation of tau aggregates is likely a complex process as a

number of factors have been shown to influence the formation of

tau aggregates in vitro [1–3]. Consequently, there may be

additional factors that contribute to the increased ability of the

DK280 mutant to form aggregates; e.g., a DK280 mutation leads

to an overall decrease in the strength of the intermolecular charge-

charge repulsion between tau monomers that self-associate [12].

Nonetheless, our data demonstrate that small changes in the

sequence of tau can lead to localized structural changes in the

unfolded ensemble that may affect tau’s ability to form cross-b-

structure. Overall, our data suggest that small sequence-specific

changes can promote tau aggregation and that interventions that

prevent the propagation of b-structure downstream from aggre-

gation-initiating sequences, may form the basis for therapies that

prevent tau aggregation.

Methods

Energy-Minima Mapping and Weighting
The EMW method constructs ensembles for unfolded proteins

that are consistent with a given set of experimental data. Our

model for an unfolded ensemble consists of structures correspond-

ing to local energy minima and associated probabilities (weights)

that are assigned to the different conformations. For this work, the

experimental measurement used to optimize and validate the

model ensembles are chemical shifts for the second tau

microtubule binding repeat [17]. In principle, EMW can be used

with any given set of experimental data. In this application we

focus on chemical shifts that were available for both the K18 and

K18DK280 constructs.

The EMW method can be decomposed into three steps (i)

conformational sampling, (ii) model optimization, and (iii)

ensemble validation. Conformational sampling uses high temper-

ature molecular dynamics (MD) followed by minimization of the

resulting structures (i.e., quenched dynamics) to create a library of

widely varying conformations representing minima on the

potential energy surface. Model optimization is performed to

select a subset of these structures and optimize weights that

represent the relative prevalence of each structure. Validation is

performed by computing additional chemical shifts that not used

to construct the ensemble and comparing these data to

experimentally measured carbonyl carbon shifts. In what follows

we outline each step of the EMW method.

Conformational sampling. We used quenched molecular

dynamics (QMD) to sample different local energy minima of the

R2 peptide. Conformational sampling was performed on a

blocked peptide with the sequence corresponding to the second

microtubule binding repeat. A polar-hydrogen model of the WT

(VQIINKKLDLSNVQSKCGSKDNIKHVPGGGS) and DK280

(VQIINKLDLSNVQSKCGSKDNIKHVPGGGS) MTBR2

peptides were constructed using CHARMM [50]. The N and C-

termini were blocked using ACE and CBX residues defined in the

effective-energy function-1 (EEF1) model [51]. This sampling

procedure consisted of high temperature molecular dynamics

(used to randomize the initial conformation of the protein)

followed by quenched dynamics. To ensure that a wide range of

conformations was sampled, constraints were imposed on the

peptide for the high temperature and quenching steps. Specifically,

conformational sampling was performed in a series of molecular

dynamics simulations. In each simulation the end-to-end distance

of MTBR2 was restrained to a pre-defined value; i.e., 3, 4, 5, …,

70 Å, where the end-to-end distance was defined as the distance

between the Ca carbons on residue VAL1 and SER31 of the

peptide. End-to-end restraints were used to ensure that both

compact and extended states were sampled during the high

temperature simulations. For each end-to-end distance, 4 ns of

high temperature MD at 1,000 K was performed with the EEF1

implicit model of solvent [51]. All simulations employed a

Berendsen thermostat to maintain the system temperature at the

desired value [52]. Hydrogen bond lengths were held near their

equilibrium values using SHAKE [53] and a 2 fs timestep was

used. Coordinates were saved every 10 ps, yielding a total of 400

structures per end-to-end distance. This procedure was applied to

both WT and DK280 sequences, producing a total of 27,200

structures for each sequence.

Each structure was then used to initiate a new MD trajectory

which cools the system to 298 K over 40 ps of simulation by

coupling the sampled system (including atom coordinates and

corresponding velocities) to a Berendsen heat bath at 298 K. At the

end of this cooling simulation, structures were minimized for 10,000

steps using the adopted basis Newton–Rhapson algorithm [50].

Restraints were removed for the minimization step to ensure that

minima on the unbiased energy surface are sampled. Searching for

minima in the vicinity of the randomized conformation by cooling

and equilibration followed by minimization rather than simply

performing direct minimization allows the structures to escape

shallow local energy minima and find more stable states.

As the conformation of PHF6* is of particular importance,

additional simulations were performed to ensure that a large range of

PHF6* conformations were represented in the ensembles. Each

additional simulation constrained the PHF6* radius of gyration to

adopt a predefined radius of gyration (4–5.9 Å) while the restricting

the end-to-end distance of MTBR2 to be near 9 Å. This was done

because our initial data suggested that compact conformations of

MTBR2 were relatively undersampled after early QMD simulations.

In total 31,200 local energy minima were generated for the native

polypeptide and 31,200 structures were generated for the mutant

structure. We refer to this set as our structure library.

We note that no single structure in our structure library had

calculated backbone chemical shifts that agreed with the

corresponding experimental values. For example, amongst the

31,200 structures, we found one conformer that had a 13Ca
chemical shift error of approximately 1 ppm (compared to the

ensemble shift errors of 0.1 ppm). In addition, this structure had a
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13CO chemical shift error of 2.3 ppm (compared to the ensemble

CO errors which were all below 0.9 ppm).

Ensemble optimization. The optimization procedure strives

to obtain ensembles that have calculated chemical shifts that agree

with experiment. The function to be minimized is:

f vi,Xif gN
i~1

� �
~
Xr

j~1

SCa jð Þ{S
Exp
Ca jð Þ

� �2

ð1Þ

where N is the number of structures in the ensemble, Xi is the

Cartesian coordinates of the ith structure, vi is the weight of the

ith structure, r is the number of residues in MTBR2, S
Exp
Ca jð Þ is the

experimentally determined Ca chemical shift of residue j, and

SCa(j) is the calculated Ca chemical shift of residue j. Using the

definition of SCa(j) shown in Figure 1 we have:

f vi,Xif gN
i~1

� �
~
Xr

j~1

viS
Xi

Ca jð Þ
� �

{S
Exp
Ca jð Þ

� �2

ð2Þ

where SXi

Ca jð Þ is the calculated chemical shift of residue j in

structure Xi. SXi

Ca jð Þ is computed using SHIFTX [20]. We note

that reported errors for the experimentally determined chemical

backbone shifts are all approximately 0.1 ppm [17]. Therefore,

the experimental errors of individual shifts are not explicitly

included in Equation 2. Lastly, errors reported in the text

represent
ffiffiffi
f

p
and are therefore in units of parts-per-million (ppm),

i.e., the same units used for chemical shift data.

We used a simulated annealing algorithm to minimize f in

Equation 2. To implement a simulated annealing protocol we first

need an initial ensemble. The candidate ensemble was constructed

by dividing the structure library into n different sets based on the

radius of gyration of the different conformers (n was allowed to vary

between 1 and .100, see below). One structure was randomly

chosen from each set to form the initial ensemble. This ensures that

our simulated annealing protocol begins with a set of structures that

span many different radii of gyration for the molecule. The weights

for structures in this ensemble were calculated from the relative

energy of each conformation as follows:

vi~
e{

Ei{TSið Þ
kT

P
j

e{
Ej {TSjð Þ

kT

ð3Þ

where the energy associated with each conformation, Ei, is the EEF1

potential energy, Si is the vibrational entropy, and T = 298 K [21].

This initial model (structures and weights) was the starting point of

our simulated annealing protocol.

In our simulated annealing protocol, one performs a number of

Monte Carlo steps at a given value of a control parameter (also

referred to as the temperature). As the control parameter is

gradually decreased, the system approaches its global minimum

[54]. Central to any simulated annealing method is the protocol

for decreasing the control parameter; i.e., the cooling schedule.

We use a cooling scheduled based on the work of Nulton et al. and

described in reference [55,56].

Each Monte Carlo step consisted of several stages:

N Generating a new candidate ensemble:

N At each MC step, a structure from the current ensemble was

replaced by a new structure from the library of minima

(structure library) sampled by QMD to create a new candidate

ensemble.

N Choosing weights for a given set of structures

N Given a new choice of n structures, weights were optimized

using an minimization algorithm that employs an interior-

reflective Newton method, to find a set of weights, vi, which

minimize [57,58] Equation 2.

N Metropolis acceptance criteria

N The new ensemble (structures and weights) is accepted or

rejected based on a Metropolis criterion.

The simulated annealing algorithm was implemented MATLAB

(Mathworks). The number of Monte Carlo steps for a given value of

the control parameter is as described in a previous work [55].

To determine the appropriate number of conformers in each

ensemble, we performed the optimization procedure described

above assuming that the ensemble had n structures, where n

ranged from 1 to .100. These calculations found that a minimum

of approximately 15 conformers were needed to fit the Ca
chemical shifts to within 0.1 ppm, which is approximately equal to

the experimental error associated with these chemical shift

measurements [17] and well-below the error associated with

SHIFTX chemical shift predictions [20]. Including additional

structures did not significantly improve the error.

Ensemble validation. Validation consists of computing

chemical shifts, using the final optimized model from, and

comparing these data to experimentally measured values that

were not used in step (ii). As described in the text, 13Ca-chemical

shifts were used to construct the model and 13CO and 1HN shifts

were used for validation purposes. The error between calculated

and measured shifts is computed using Equation 2, with 13CO

atoms substituted for 13Ca atoms. Models were ranked by their

error and the 30 models with the best agreement with the 13CO

shifts were selected for more detailed analysis as described in the

text. To further test whether these models could be used to

calculated quantities not used in model construction we computed
1HN chemical shifts from these thirty ensembles and compared

these data to the corresponding experimental values.

Identifying Locally Preserved Conformations
We searched for conformations of six-residue subsequences that

are present in every ensemble. Six residues was a natural

characteristic size for a local region of interest, as it is the length of

PHF6*. To this end, all structures in each ensemble of either WT or

DK280 MTBR2 were clustered using a matrix consisting of the

pairwise RMSD backbone deviation of the each contiguous six-

residue segment. Structures were clustered using MATLAB (Math-

works) such that the maximum RMSD between two structures in a

cluster was 2.5 Å. A range of maximum RMSD values (1–6 Å) were

examined empirically, and it was found that a cutoff of 2.5 Å was

sufficient to prevent similar conformations from being divided into

separate clusters, while also ensuring that clusters included a

relatively homogeneous set of conformations. The probability that

a given cluster occurs in an ensemble is equal to the sum of the

weights of all structures that contain that motif. Preserved local

structural motifs were found by identifying clusters where the total

weight of its structures was non-zero across all ensembles.

Structures for each cluster were visualized in VMD. To

facilitate visualization of the overall conformation associated with

a cluster, an average structure for each cluster was generated after

5,000 steps of steepest descent minimization to remove bad

contacts (only the 6 residues were minimized). Visual inspection

verified that the energy minimized structures did not differ
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significantly from their un-minimized counterparts. All molecular

structures were made with VMD [59].
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