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Neuron’s shape and dendritic architecture are important for biosignal transduction in neuron networks. And the anatomy
architecture reconstruction of neuron cell is one of the foremost challenges and important issues in neuroscience. Accurate recon-
struction results can facilitate the subsequent neuron system simulation.With the development of confocal microscopy technology,
researchers can scan neurons at submicron resolution for experiments. These make the reconstruction of complex dendritic trees
becomemore feasible; however, it is still a tedious, time consuming, and labor intensity task. For decades, computer aided methods
have been playing an important role in this task, but none of the prevalent algorithms can reconstruct full anatomy structure
automatically. All of these make it essential for developing new method for reconstruction. This paper proposes a pipeline with a
novel seeding method for reconstructing neuron structures from 3Dmicroscopy images stacks.The pipeline is initialized with a set
of seeds detected by sliding volume filter (SVF), and then the open curve snake is applied to the detected seeds for reconstructing
the full structure of neuron cells. The experimental results demonstrate that the proposed pipeline exhibits excellent performance
in terms of accuracy compared with traditional method, which is clearly a benefit for 3D neuron detection and reconstruction.

1. Introduction

Higher-order cognitive functions in anthropic brain are
intricately linked with the processes of nervous system at
different biological levels (such as molecular level, cellular
level, and system level). The morphological properties of
axonal and dendritic arborizations are important aspects of
neuronal phenotype.These properties assure the connectivity
in the neuron network, thereby facilitate the biological signals
transduction in nervous system [1]. Therefore, depicting the
function and anatomy structure of neuron cell and networks
is of great importance for understanding the way brain
works in modern neuron science [2]. Furthermore, great
understanding of the mechanism of nervous system can also
promote drugs and therapies researching for neurological
and psychiatric disease treating.

Extracting neuron morphology from microscopic image
data sets is a key point in neurology research. Accurate and

efficient reconstruction protocol can facilitate the researches
on the function and anatomy structure of neuronal cells and
networks. Unfortunately, manually reconstructing neuron
structure from microscopy image data sets is labor intensity
and time consuming, since the axonal arbors and dendritic
are so complex in scale and structure. Therefore, developing
new computational methods for neuronal anatomy studying
is of particular importance in this context. During the past
decades, lots of algorithms and software have been proposed
for this task, but most of them achieved limited success.

Since Cohen’s team proposed the first fully automated 3D
neuron tracing algorithm [3], a large number of approaches
have been published for handling the same task in the
literature. Generally speaking, these methods can be mainly
categorized as minimal path based tracing methods [4, 5],
minimum spanning tree methods [6, 7], sequential tracing
methods [8, 9], skeletonization methods [3, 10], neuromus-
cular projection fibers tracing methods [11–16], and active
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contour based tracing methods [17, 18]. In the minimal path
based tracing methods, algorithms were performed in image
subregions instead of the entire image, but these methods
cannot extract the exact centerline of tubular structures, such
as vessels and neuron fibers. In the minimum spanning tree
methods, serious of critical seed points were detected firstly
and then the detected seeds were linked into tree representa-
tion, such as MDL-MST method and k-MST method [6, 7].
The sequential tracing methods were starting from a set of
seed points, but the results of these methods were affected by
foreground discontinuity, such as gaps and holes, and these
defects required additional post- or preprocessing procedures
to overcome [8, 9]. The skeletonization methods mainly
relayed on a point-spread function based protocol to trace
the neuron anatomy structure, but they were also prone to
produce loops and spurs which needed extra postprocessing
to smooth the noise [10]. Active contour based methods were
particularly attractive for neuron tracing and reconstruction
was themost employedprotocol for this task [17, 18]. Schmitt’s
group proposed the first active contour tracing method [17],
in which the neuron skeleton was parameterized into a
4D snaxels sets that was characterized by its location and
radius [17]. But this method needed to manually set some
branching, ending, and other critical points. Vasilkoski and
Stepanyants [18] proposed a new method for optimizing
the tracing based on the active contours. Following that,
Roysam’s team proposed an open curve snake based tracing
method which was broadly applied in this area [19], and
it can allow fully automated processing and user control
tracing, but thismethod can only handle distinct edge neuron
images data sets and cannot get accurate neuron radius
in vague boundary [19]. Beyond that, there still are some
automated tracing tools such as Neuromantic [20], Simple
Neurite Tracer [21], NeuronJ [22], and a complete list of the
tracing tools that can be founded in the survey paper of
Meijering [23].However,most of these tools still needmanual
assistance to reconstruct the dendritic and axonal arbors.
Therefore, automated 3D neurons anatomy tracing tools need
a continuous improvement in the future time.

Traditionally speaking, the pipeline of tracing was initial-
ized by a serious of preprocessing methods, followed by a
critical point detection procedure, which was called seeding.
Then, these points were linked by center line extraction
method, and, finally, radius estimation was applied to recon-
struct the full structure [17]. As depicted in Figure 1, the full
pipeline was organized in the work flow. In this pipeline, as a
key step, excellent seeding method can assure the accuracy of
the following skeletonization. There are two approaches for
seeding: (i) segmentation and (ii) filtering. The first one is
based on a segmentation process, inwhich the image volumes
covered by the neuron were separated from tissue, such as
three-dimensional thinning algorithm, but this method is
sensitive to noise. The second approach is using a filter to
enhance the line elements. Sato’s [24] group proposed a 3D
multiscale liner image filter to extract the critical property
in medical images. This method employed a combination of
eigenvalues in hessian matrix of image intensities. Following
this approach, Pizer’s group proposed another method based
on the concept of cores that detected medial points of the
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Figure 1: Work flow of neuron tracing pipeline.

object by correlating opposite boundary points [25]. Butmost
of the seed points detected by thesemethods were distributed
unevenly and located at noncritical position [19].

Radius estimation is another important part in this
pipeline, for it is essential for neuron system simulation [23].
Pock’smethodwas greatly accepted inmany tracing tasks and
was also used in this paper for the tube-like radius estimation.

In this paper, we proposed a new 3D image filter called
sliding volume filter (SVF) to enhance the 3D neuron image
data sets and then the most listed voxels were chosen as the
final seed points.Then, an open curve snake was employed to
reconstruct the neuron anatomy structure. Compared with
traditional seed detection method, the SVF method could
improve the accuracy of neuron anatomy structure in 3D
tracing. Finally, radius estimation was applied to the trace the
result for the future functional simulation. And the rest of
this paper was organized as follows: data sets collection and
method designwere illustrated in Section 2, the experimental
results and discussions were presented in Section 3, and
finally the conclusions were drawn in Section 4.

2. Methodology

Our works were greatly related to Roysam’s pipeline for
neuron reconstruction, which was based on open curve
snake tracing [19]. In this paper, a SVF was designed for
seeding by enhancing the spatial tube-like regions and it
could provide seed points for the automatic initialization of
open-snake models. At last, Pock’s method was applied for
radius estimation [23].

SVFwas expanded from 2D sliding band filter (SBF). As it
was depicted in Quelhas’ work [26], the 2D SBF could detect
rounded convex region in images. It was firstly introduced for
detecting cell center in 2Dmicroscopic images [26]. Recently,
our research group employed the SBF to detect cells in section
images of cat retinal [27] and another transformed SBF to
detect insect cells in light field microscopic images [28]. In
3D volume data sets, a rounded convex region was the same
as they were in 2D images in gradient vector distribution and
we called it spatial convex region.
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Figure 2: Test data: Helix tube.

Figure 3: Drosophila olfactory axonal data.

2.1. Data Sets Used in This Paper. In this paper, we choose
two kinds of data sets to validate our proposed seeding
method. Figure 2 shows a helix image volume data which
is a classical test data in neuron tracing [19]. Figure 3 is
drosophila olfactory axonal image volume data, and this
image data set is firstly designed for single cell label and
image registration. Both of these data sets were visualized
using Ray casting algorithm in our work and all of the tracing
algorithms were performed on these volume data sets.

2.2. 2D Sliding Band Filter (SBF). To introduce SVF, a concept
of 2D SBF is important for understanding. The 2D SBF
is a member of Convergence Index (CI) family and firstly
introduced for detecting cell center in 2Dmicroscopic images
[26]. Unlike most of the liner filters’ small support regions
(𝑚 × 𝑚 pixels, where 𝑚 ∈ {2, 3, 5 . . .}), the SBF filter has a
larger support region. It has a band with fixed width support
region, whose position changes in each radius direction and
that allows the maximization of the average Convergence
Index in the bandwidth. Figure 4 indicates the support region
in SBF and is defined as
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Figure 4: 2D sliding band filter (SBF).

where

CI (rad, 𝑛) = cos (𝜑rad − 𝛼 (𝜑rad, 𝑛)) ,

𝜑rad =
2𝜋 (rad − 1)

𝑁

,

𝛼 (𝜑rad, 𝑛) = arctan(
Grad
𝑛𝐶

Grad
𝑛𝑅

) ,

(2)

where Grad
𝑛𝐶

and Grad
𝑛𝑅

represent the column and row
gradient at image position 𝑛, 𝑁 represents the number of
support region lines irradiate from the center pixel (𝑥, 𝑦), Bw
represents the sliding band width, 𝑟 represents the poison of
band center in the support region line ranging from 𝑅min to
𝑅max, and cos(𝜑rad − 𝛼(𝜑rad, 𝑛)) represents the angle between
the gradient vector at (𝜑rad, 𝑛) and the direction of 𝜑rad.

2.3. SVF Seed Detecting. Before the SVF, this part firstly
introduces a concept of Spatial Convergence Index (SCI); see
Figure 5. Point 𝑂(𝑥, 𝑦, 𝑧) is the origin in 3D space and the
center of support region 𝑅. Point 𝑝 is the voxel in support
region𝑅, and its coordinate relative to𝑂 is (𝑖, 𝑗, 𝑘).The radius
of the support region 𝑅 is 𝑟. 𝜙 represents the angle between
the gradient vector of 𝑃 and 𝑃𝑂. And the SCI of 𝑃 relative 𝑂
is defined as follows:

SCI
𝑃𝑂
(𝑖, 𝑗, 𝑘) = cos𝜑 (𝑖, 𝑗, 𝑘) . (3)

Then, the SCI of point 𝑂 in the support region is
calculated as
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Figure 5: Scheme of spatial convergence index (SCI).

where𝑁 is the number of voxel in the support region𝑅. Based
on these concepts, the SVF is defined as

SVF (𝑥, 𝑦, 𝑧)
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where𝑀 represents the section in the support region 𝑅, 𝑃
𝑛

represents the support region line in the 𝑠th section, and 𝑉
𝑡

represents the thickness of the sliding volume.The scheme of
SVF is depicted in Figure 6.

Seed detection is a critical step before the tracing, it can
provide seed points for automatic initialization of the open-
snake models. In this paper, seed points are detected by SVF
filter voxel by voxel from the start position to the end position
in the volume data firstly, and then candidate seeds are chosen
if they are extreme in the normal plane of the vessel/axon.
Detected seeds are then sorted by the SVF response values,
from the largest to the smallest value, and created a seed list
for tracing.

z

r

y

x
d

Rmin
Rmax

O

RadR: support region

Rs: sliding volume

Q(qxr, qyr, qzr)

Figure 6: Scheme of sliding volume filter (SVF).

2.4. Neuron Tracing Model. Accurate neuron anatomy struc-
ture reconstruction is an import task in neurology. In this
part, after initial points selection by the SVF filter, an
open-curve snake model for neuron 3D tracing is used for
reconstructing the full structure. The open-curve snake is a
parametric open curve model. Let 𝑐(𝑠) = (𝑥(𝑠), 𝑦(𝑠), 𝑧(𝑠)),
𝑠 ∈ [0, 1] and let the snake energy to be minimized as

𝐸total = ∫
1

0

𝐸int (𝑐 (𝑠)) + 𝐸ext (𝑐 (𝑠)) 𝑑𝑠, (7)

where 𝐸int(𝑐(𝑠)) represents the internal energy for smooth-
ness constraint:

𝐸int (𝑐 (𝑠)) = 𝛼 (𝑠)
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where 𝛼(𝑠) and 𝛽(𝑠) represent the “elasticity” and “stiffness”
in the snake, respectively, and

𝐸External = 𝐸im (𝑐 (𝑠)) + 𝑘 (𝑠) 𝑔𝐸str (𝑐 (𝑠)) , (9)

where
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(10)

In (8), 𝛼(𝑠) and 𝛽(𝑠) are “elasticity coefficient” and “stiffness
coefficient,” respectively, in internal energy, and they embed-
ded the regularity of the curve. 𝛼(𝑠) was selected to be 0 for
𝑠 ∈ [0, 1], and set 𝛽(𝑠) was selected to be 0 at 𝑠 = 0 and 𝑠 = 1.
In (10), the external energy term is employed for making the
snake deform along the center line of the neuron fiber, where
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Figure 7: Thresholding seeds detection method.

∇𝐸im is the negative normalized gradient vector flow, 𝑘(𝑠) is
a weighted parameter, 𝑒V

1
(𝑐(𝑠)) is the first principal direction

of the Jacobian matrix, and the ∇𝐸str(𝑐(𝑠)) is nonzero item
when it is located at the tail and the end pointing to the right
direction of the snake.

2.5. Radius Estimation. In the following work, to provide
more detailed information for functional simulation, the
radius estimation is applied to each point on the snake after
tracing. As shown in Figure 9, Pock’s method is applied for
boundaries measurement to detect the tube edge [23]. The
edge of the tube-like volume is𝐵, and it is defined as a circular
centered at 𝑂 which is a seed point, shown in Figure 9.
Equation (11) describes the boundary as follows:

𝐵 (𝑜, 𝑟)

=

1

𝑁

𝑁

∑

𝑖=1

grad (𝑜 + 𝑟Vai) gmax (−∇𝐼GVF (𝑜 + 𝑟Vai) gVai, 0) ,

(11)

where Vai = cos(ai)V
1
+ sin(ai)V

2
is the radial vector in the

V
1
-V
2
plane of point 𝑂 on the snake and grad(𝑜 + 𝑟Vai) is the

gradient magnitude of the point on the circle. The radius 𝑟 is
sampled in the circle by a certain angle distance and in this
paper the𝑁 is set as 8 in the radius circle.

3. Results and Discussion

For all the image data sets, the following parameters were
chosen as the default setting by visual estimation of diameter
in average radius of the neuron cross-section. For seeds
detection, parameter 𝑀 = 32, 𝑃

𝑛
= 32 was chosen,

respectively, the remaining parameters of SVF were chosen
as 𝑉
𝑡
= 8, 𝑅min = 10, and 𝑅max = 30, and the unit of all

parameters was “pixels.” Comparison of test data sets seeding
results between threshold method and SVF method results
has shown an excellent detection results of SVF method in
seed detection. Figure 7 shows a traditional threshold seeding

Figure 8: SVF seeds detection method.
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Figure 9: Illustration of the circular cross-section. V
3
is the tangent

vector in point 𝑂, and V
1
and V

2
are the two orthogonal vectors

defining the normal plane.

method and there are some seed points that fall out of the
edge of real Helix body, which are headlight with red arrows.
And Figure 8 is of the same perspective as Figure 7 and shows
that the SVF seeding method can detect most of the critical
points as candidate seeds. After tracing from the detecting
seeds points by SVF, the whole structure of test data sets is
generated accurately which are shown in Figure 10.

When it is applied to real data sets, the SVF seeding
method can detect most of the critical seed points in the body
of olfactory axonal, shown in Figure 11. Threshold seeding
method is not shown here for its poor results. After specifying
the branching points, the tracing result of the open curve
snake is shown in Figure 12, and it clearly indicates that nearly
all of the anatomy structure is reconstructed after tracing.

After tracing the full structure, the radius of the olfactory
axonal is estimated as a following-upprocedure for functional
simulation. As shown in Figure 13, the gray and black area
represents the body of the olfactory axonal, the green line
represents the central line of the olfactory axonal, and the
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Figure 10: Tracing results by SVF seeds.

Figure 11: SVF seed detection results for olfactory axonal.

Figure 12: Open curve snake tracing results of olfactory axonal.

blue ring represents the radius of each part from the central
line, and it depicts that most of the radius is estimated by
the method. Figure 14 exhibits a magnification of the red
rectangle area in Figure 13. And another magnification of red
rectangle area in Figure 14 is shown in Figure 15.

In Figure 15, the width of olfactory axonal, estimated
radius, and center line are marked separately. This task is
for the future functional neuronal simulation which is not
discussed in this paper.

4. Conclusion

In this paper, a novel seeding method based on spatial SVF is
proposed for neuron reconstruction frommicroscopic image

Figure 13: Radius estimation of olfactory axonal.

Figure 14: Magnification part of olfactory axonal radius estimation
in Figure 11.

Width of neuron

Radius

Centerline

Figure 15: Magnification part of olfactory axonal radius estimation
in Figure 12 and detail of radius estimation.
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data sets which were collected by confocal microscopy. The
seeding results comparison shows that the SVF method can
detect seed points accurately in test data sets and detect
most of the critical points in olfactory axonal data sets. After
open curve snake tracing, both of the data set’s structures are
reconstructed from SVF seeds. In the last part of our work, a
radius estimation method is applied to the tracing result for
future functional simulation.

Finally, it is worth noting that this method can clearly be
a benefit for seeding task in the protocol of neuron tracing.
However, uneven illumination produced by a microscope
is also a critical factor influenced the seeding accuracy.
Therefore, some illumination correction methods will be
studied to improve our method in the future works.
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