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Purpose: The synergistic use of k-t undersampling and multiband (MB) imag-
ing has the potential to provide extended slice coverage and high spatial reso-
lution for first-pass perfusion MRI. The low-rank plus sparse (L+ S) model has
shown excellent performance for accelerating single-band (SB) perfusion MRI.
Methods: A MB data consistency method employing ESPIRiT maps and
through-plane coil information was developed. This data consistency method
was combined with the temporal L+ S constraint to form the slice-L+ S method.
Slice-L+ S was compared to SB L+ S and the sequential operations of split
slice-GRAPPA and SB L+ S (seq-SG-L+ S) using synthetic data formed from
multislice SB images. Prospectively k-t undersampled MB data were also
acquired and reconstructed using seq-SG-L+ S and slice-L+ S.
Results: Using synthetic data with total acceleration rates of 6–12, slice-L+ S
outperformed SB L+ S and seq-SG-L+ S (N = 7 subjects) with respect to nor-
malized RMSE and the structural similarity index (P< 0.05 for both). For the
specific case with MB factor = 3 and rate 3 undersampling, or for SB imag-
ing with rate 9 undersampling (N = 7 subjects), the normalized RMSE values
were 0.037± 0.007, 0.042± 0.005, and 0.031± 0.004; and the structural simi-
larity index values were 0.88± 0.03, 0.85± 0.03, and 0.89± 0.02 for SB L+ S,
seq-SG-L+ S, and slice-L+ S, respectively (P< 0.05 for both). For prospec-
tively undersampled MB data, slice-L+ S provided better image quality than
seq-SG-L+ S for rate 6 (N= 7) and rate 9 acceleration (N= 7) as scored by blinded
experts.
Conclusion: Slice-L+ S outperformed SB-L+ S and seq-SG-L+ S and provides
9 slice coverage of the left ventricle with a spatial resolution of 1.5 mm× 1.5 mm
with good image quality.
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1 INTRODUCTION

First-pass myocardial perfusion MRI plays an important
role in the clinical assessment of ischemic heart disease.1
Although the method is very useful, current clinical pro-
tocols generally acquire 3 slices with 2–3 mm in-plane
spatial resolution,2 and greater slice coverage and higher
spatial resolution could improve clinical performance.3,4

However, achieving greater slice coverage and higher spa-
tial resolution is technically challenging because of the
requirements to provide high temporal resolution and high
SNR,2 making the use of optimized acceleration methods
essential. Both k-t undersampling methods5–7 and simul-
taneous multislice (or multiband (MB)) methods can be
applied to first-pass MRI, and their synergistic use for this
application has high potential.8–12

The use of k-t undersampling for single-band (SB)
first-pass MRI has been studied extensively, including
with parallel imaging,13,14 compressed sensing,5 parallel
imaging with compressed sensing,6 low-rank methods,15

and sparse and low-rank methods.7,16 An important find-
ing was that of joint sparsity,6,7 where it was shown
that compressed sensing regularization methods such as
low-rank plus sparse (L+ S)7 are more effective and effi-
cient when applied to coil-combined data because corre-
lations between coils are simultaneously exploited with
compressed sensing regularizations. In addition, the L+ S
matrix decomposition model outperformed k-t SPARSE
for accelerated first-pass MRI by exploiting the ability of
low rank to approximate the background signal and the
ability of compressed sensing to approximate the dynamic
signal.7

Whereas k-t undersampled methods that utilize par-
allel imaging make use of in-plane coil sensitivities, MB
imaging is an alternative method to acquire more slices
per unit time, utilizing through-plane coil information
to separate data acquired simultaneously from multiple
slices.17–20 For MB imaging without k-t undersampling,
the SNR is not reduced by

√
R, where R is the in-plane

acceleration rate. Furthermore, MB imaging with con-
trolled aliasing in parallel imaging (CAIPIRINHA)21 has
a favorable geometry factor, providing further SNR advan-
tages. Slice separation of MB data is performed effectively
using the split slice-GRAPPA (SG) method,19 which uti-
lizes a through-plane GRAPPA kernel calibrated to reduce
slice separation artifacts. For k-t undersampled MB
first-pass MRI, the sequential operations of compressed
sensing and slice separation have been used8; however,
sequential operations do not globally minimize the aggre-
gate error from multiple sources. Iterative MB CG-SENSE
simultaneously reduces in-plane and through-plane
artifacts22; however, it does not use through-plane coil
information to its fullest potential, resulting in residual

artifacts.18,22 Recently, slice-SPIRiT was introduced to
iteratively utilize through-plane coil information for slice
separation in a MB data consistency term while simulta-
neously enforcing in-plane coil calibration consistency.23

The slice-SPIRiT study showed the advantage of utiliz-
ing in-plane SPIRiT kernels and slice separation using
split slice-GRAPPA applied coil by coil in an integrated
iterative model for MB reconstruction, and it showed the
potential to add regularization terms such as temporal
sparse or low rank constraints. However, slice-SPIRiT did
not provide joint sparsity of slice-separated data.

To develop an improved reconstruction method for
k-t undersampled MB first-pass imaging, we propose a
method that uses slice-separating kernels followed by coil
combination to compute coil-combined slice-separated
gradients for the data consistency term that enable the
use of L+ S regularization applied to slice-separated
coil-combined images (slice-separated joint sparsity). We
also address challenges related to solving the slice-L+ S
minimization problem, which includes l2, l1, and nuclear
norm terms. Slice-L+ S (with MB = 3 and R = 2–4) is eval-
uated using synthetic undersampled MB first-pass images
generated from SB images of human subjects. Using syn-
thetic data, slice-L+ S is compared to undersampled SB
first-pass imaging with a SB L+ S reconstruction and to
MB reconstruction using the sequential operations of slice
separation followed by SB L+ S (seq-SG-L+ S), all with
the same total acceleration rates of 6–12. Slice-L+ S is also
compared to seq-SG-L+ S using prospectively acquired
undersampled MB first-pass data from human subjects
with MB = 3 and R = 2 and 3. An overview of the methods
investigated in this study is provided in Figure 1.

2 THEORY

To integrate the use of in-plane coil sensitivities,
through-plane coil information, temporal L+ S constraint,
and simultaneous reduction of artifacts due to k-t under-
sampling and slice separation, we propose a slice-L+ S
method to provide slice-separated joint sparsity of coils
and L+ S of concatenated coil-combined slice-separated
images. Slice-L+ S includes a new MB data consistency
method to jointly enforce data consistency of all separated
slices. Because we will compare slice-L+ S to seq-SG-L+ S
(and to SB L+ S), we will first describe the implementation
of seq-SG-L+ S (SB L+ S has previously been described7).

2.1 Sequential operations method
(seq-SG-L + S)

The seq-SG-L+ S reconstruction model (Figure 1) first
applies split slice-GRAPPA19 for slice separation and
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F I G U R E 1 Reconstruction schemes for k-t undersampled MB data including (A) the sequential operations method of split
slice-GRAPPA followed by single-band L+ S (seq-SG-L+ S), and (B) the integrated use of MB data consistency and L+ S of multiple slices
(slice-L+ S). (A) For seq-SG-L+ S, a split slice-GRAPPA kernel is applied to separate k-t undersampled MB k-space data, and then the
separated data are input into SB L+ S. (B) The slice-L+ S method employs an integrated approach that simultaneously optimizes MB data
consistency and jointly enforces the L+ S constraint of multiple separated slices. L+ S, low-rank plus sparse; MB, multiband; seq-SB L + S,
sequential operations of split slice-GRAPPA and SB L+ S.

then applies SB L+ S.7 The use of split slice-GRAPPA is
expressed as:

yz = P∗z KzyMB, (1)

where yMB is the MB multicoil k-space data; P∗z is the
CAIPRINHA phase demodulation matrix; Kz is the split
slice-GRAPPA kernel; and yz is the separated k-space data
corresponding to slice z (z = 1, 2, … Ns) where NS is the
number of MB slices. Using yz from Equation 1 in the data
consistency term, the standard SB L+ S reconstruction
model for slice z is described in Equation 2 as:

argmin
Lz ,Sz

‖‖Az (Lz + Sz) − yz
‖‖

2 + 𝜆L ‖Lz‖∗ + 𝜆S ‖T (Sz)‖1 ,

(2)
where Lz and Sz, respectively, represent the low-rank and
the sparse components of the zth slice (the reconstructed
image = Lz + Sz); the operator Az = ftEz; and A∗

z = E∗z f−1
t

is the Hermitian adjoint of Az. ft is the fast Fourier trans-
form (FFT); f−1

t is the inverse fast Fourier transform (IFFT)
and application of the sampling mask of the tth measure-
ment; Ez is the ESPIRiT map for the zth slice; 𝜆L is the
weight for the low-rank nuclear norm constraint; 𝜆S is
the weight for the temporal frequency l1-norm constraint;
and T is the temporal FFT operator. A simplified notation

is being used without showing the temporal dimension
in Equations 1–2 (e.g., Lz refers to Lz[x, y, t]; Sz refers to
Sz[x, y, t]; and yz refers to yz[x, y, coil, t]). Here, if x is an
image, then ||x||∗ is the nuclear norm, which is defined as
the sum of singular values of the matrix x. The l1 norm
is defined as the sum of absolute values given by ||x||1 =∑

i |xi| of the matrix x. The l2 norm is defined as the sum
of values given by ||x||2 =

(∑
i |xi|2

)1∕2 of the matrix x.

2.2 Slice-L + S

Here we introduce the slice-L+ S reconstruction method
that enforces consistency with the acquired MB data and
also enforces temporal low-rank plus sparse constraints
applied to multiple slices. The proposed slice-L+ S recon-
struction model (Figure 2) is expressed in Equation 3 as:

argmin
L,S

‖‖‖‖‖‖‖‖‖‖‖‖‖

H

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

L1 + S1

L2 + S2

…

LNs + SNs

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

− yMB

‖‖‖‖‖‖‖‖‖‖‖‖‖

2

+ 𝜆L

‖‖‖‖‖‖‖‖‖‖‖‖‖

L1

L2

…

LNs

‖‖‖‖‖‖‖‖‖‖‖‖‖∗

+ 𝜆S

‖‖‖‖‖‖‖‖‖‖‖‖‖

T

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S1

S2

…

SNs

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

‖‖‖‖‖‖‖‖‖‖‖‖‖1

,

(3)
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F I G U R E 2 Schematic of the solution of the slice-L+ S method of Equations 3–6, alternating between the conjugate gradient solution of
the MB data consistency subproblem and the soft thresholding solution of the L+ S subproblem using variable splitting. (A) Images of all
slices are initialized to 0. Subproblem 1 applies soft thresholding to solve the L+ S optimization of coil-combined images of readout
concatenated separated slices. Specifically, singular value soft thresholding (second term, Equation 3), and soft thresholding of temporal
sparsity using the temporal FFT (third term, Equation 3) are used. Subproblem 2 employs the conjugate gradient method to solve the MB
data consistency term (first term, Equation 3). Subproblem 2 pertains to consistency with the k-t undersampled MB data and utilizes the
slice-collapsing (H) and slice-separating (Ĥ∗) operations. In (B), the H operator of Equation 3 is depicted, showing multiplication by ESPIRiT
maps, FFT, and application of undersampling masks for each temporal frame, phase modulation, summation operation, and repeat of
CAIPIRINHA-modulated MB data for each slice. In (C), the Ĥ∗ operator of Equation 3 is depicted, including application of the
slice-separating K kernels, phase demodulation, the IFFT transform and coil combination using ESPIRiT maps. Bold k-space lines indicate
MB k-space data. Non-bold k-space lines indicate SB k-space data. CAIPIRINHA, controlled aliasing in parallel imaging; FFT, fast Fourier
transform; H, slice-collapsing; Ĥ∗, slice-separating; IFFT, inverse fast Fourier transform; SB, single-band.

where the operator H (as shown in Figure 2B) is
defined as H =

(
P1ftE1,P2ftE2, … ,PNs ftENs

)
= PFE; Pz

is the CAIPIRINHA phase modulation matrix for the

zth slice; P =
(

P1,P2, … PNs

)
; F =

(f1 · · · 0
⋮ ⋱ ⋮
0 · · · fNs

)

; and

E =

(E1 · · · 0
⋮ ⋱ ⋮
0 · · · ENs

)

. In Equation 3, L =
⎛
⎜
⎜
⎜
⎝

L1
L2
…
LNs

⎞
⎟
⎟
⎟
⎠

and

S =
⎛
⎜
⎜
⎜
⎝

S1
S2
…
SNs

⎞
⎟
⎟
⎟
⎠

represent the concatenated Ns coil-combined

low-rank and sparse components of the images under-
going reconstruction. A simplified notation is being
used neglecting the temporal dimension (e.g., L refers
to L[x, y, z, t]; S refers to S[x, y, z, t]; and yMB refers to
yMB[x, y, coil, t]). Next, we define the conjugate of H as
H∗, and we further define an approximation of H∗ as
̂H∗ = E∗F−1P∗K, providing the use of through-plane coil
information and in-plane slice-by-slice ESPIRiT maps for
slice separation (Figure 2C), similar to the slice separation

method employed for slice-SPIRiT.23 Here P∗ =
⎛
⎜
⎜
⎜
⎝

P∗1
P∗2
…
P∗Ns

⎞
⎟
⎟
⎟
⎠

is
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the phase-demodulation operator for all slices; F−1 is the

IFFT for all slices; and K =

(K1 · · · 0
⋮ ⋱ ⋮
0 · · · KNs

)

performs a

convolution using slice-separating split slice-GRAPPA ker-
nels for all slices. It is through the use of E in H as well
as E∗ and K in ̂H∗ that, in this new MB data consistency
term, slice-L+ S utilizes both in-plane coil sensitivity and
through-plane coil information (Figure 2C).

Notably, the present MB data consistency method is
designed to provide a coil-combined slice-by-slice gradi-
ent using both split slice-GRAPPA19,23 and ESPIRiT24,25 for
efficiently reducing artifacts due to slice separation and k-t
undersampling. In addition, this method applies the tem-
poral L+ S matrix decomposition to multiple images that
undergo slice separation.

To solve this optimization problem, variable splitting26

is employed as shown in Figure 2 and expressed as:

argmin
m,m̂

‖‖‖‖‖‖‖‖‖‖‖

H

⎛
⎜
⎜
⎜
⎜
⎜
⎝

m1

m2

…
mNs

⎞
⎟
⎟
⎟
⎟
⎟
⎠

− yMB

‖‖‖‖‖‖‖‖‖‖‖

2

+ 𝜆L

‖‖‖‖‖‖‖‖‖‖‖

L1

L2

…
LNs

‖‖‖‖‖‖‖‖‖‖‖∗

+ 𝜆S

‖‖‖‖‖‖‖‖‖‖‖

T

⎛
⎜
⎜
⎜
⎜
⎜
⎝

S1

S2

…
SNs

⎞
⎟
⎟
⎟
⎟
⎟
⎠

‖‖‖‖‖‖‖‖‖‖‖1

+ 𝜇
2||m − m̂||2, (4)

where m̂ = L + S is an auxiliary variable. Equation 4 is
decomposed into 2 subproblems. The m optimization sub-
problem is written as

argmin
m

‖Hm − yMB‖
2 + 𝜇

2||m − m̂||2, (5)

and is solved using the conjugate gradient algorithm. The
m̂ = L + S subproblem is written as

argmin
L,S

𝜆L||L||∗ + 𝜆S||TS||1 + ||m − m̂||2, (6)

and is solved using iterative soft thresholding. In
Equation 6, 𝜇

2 trades off the iterative speed between
splitting iterations and conjugate gradient iterations.

3 METHODS

Slice-L+ S was evaluated for first-pass perfusion MRI.
MRI was performed using a 1.5 Tesla system (MAGNE-
TOM Aera, Healthcare, Erlangen, Germany) with chest
and spine phased-array receiver coils (20–34 channels).

SB datasets, either with full sampling or using rate 2
undersampling, were acquired from patients to facili-
tate the generation of synthesized undersampled images.
Synthetic MB data were used to determine the param-
eters in the reconstructions and to compare the pro-
posed slice-L+ S method to seq-SG-L+ S and to SB L+ S
using the same total acceleration rates. Lastly, prospec-
tively acquired k-t-undersampled MB imaging of patients
was performed, and the slice-L+ S method was compared
by expert readers to seq-SG-L+ S. The comparison of
slice-L+ S and SB L+ S was made in order to evaluate a
SB k-t undersampled acquisition and L+ S reconstruction
versus a MB k-t undersampled acquisition and slice-L+ S
reconstruction. The comparison of slice-L+ S and sequen-
tial operations was made in order to evaluate the use of
integrated operations with L+ S of multiple slices versus
sequential operations with SB L+ S, keeping a consistent
L+ S regularization.

3.1 Pulse sequence

A saturation-recovery gradient-echo sequence was modi-
fied to use either SB or MB excitation with CAIPIRINHA
phase modulation and Poisson-disc k-t undersampling. To
acquire SB data to be used to form synthetic MB images,
we either acquired fully sampled data or we acquired
rate 2 undersampled data (even lines in even heartbeats
and odd lines in odd heartbeats). A standard sinc pulse
was used for SB RF excitation, and simple MB excita-
tion pulses were implemented by summing 3 sinc pulses
with appropriate phase modulation, as described.27 For
MB acquisitions, SB kernel calibration data were acquired
in the first heartbeat. Twenty-four phase-encoding lines
at the center of k-space for each slice were acquried, and
calibration data for multiple slices were acquired consecu-
tively.6,28

3.2 Image reconstruction

All image reconstruction was performed offline on a
desktop computer using MatLab 2019a (MathWorks, Inc.,
Natick, MA). Split slice-GRAPPA kernels were fitted as
described.19 In-plane ESPIRiT maps were calculated based
on the ESPIRiT algorithm.29 The SB L+ S method was
solved using iterative soft thresholding as described7 and
was utilized for seq-SG-L+ S. The slice-L+ S reconstruc-
tion was split into MB data consistency and L+ S parts: the
first part was solved by conjugate gradient using LSQR,29

and the second part was solved using iterative soft thres-
holding.7 The 2 parts were connected using variable split-
ting.26,29
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For rate 2 undersampled data, even k-space lines in
even heartbeats and odd lines in odd heartbeats were
firstly reconstructed by merging data from 2 successive
heartbeats to generate SB reference data. The IFFT recon-
structions of SB data were used as the reference standard
to quantify the errors of various reconstruction meth-
ods. Using these reference images, the normalized RMSE
(nRMSE)30 and the structural similarity (SSIM)31 were
computed for each reconstruction method. The nRMSE
was computed as:

nRMSE = 1
max(m) −min(m)

√√√√ 1
N

N−1∑

i=0
(m(i) − m̃(i))2, (7)

where m̃ is the concatenated SB images matched with the
MB reconstructed images; m is the concatenated recon-
structed images of simultaneously acquired slices; and N
is the total number of pixels. The SSIM was computed as:

SSIM = (2𝜇m𝜇m̃ + c1) (2𝜎mm̃ + c2)(
𝜇

2
m + 𝜇

2
m̃ + c1

)(
𝜎

2
m + 𝜎

2
m̃ + c2

) , (8)

where 𝜇m and 𝜎m are the average and variance of m; 𝜎mm̃ is
the covariance of m and m̃; and c1 and c2 are variables that
stabilize the division with a weak denominator, chosen as
described in Ref.31

The split slice-GRAPPA kernel size was of the size 5
× 5, as used in the original slice-GRAPPA work,18 and
ESPIRiT maps used a kernel size of 6 × 6.29 For SB
L+ S, images were initialized using coil combination after
IFFT of k-t undersampled SB data.7 For seq-SG-L+ S,
images were initialized using slice separation by split
slice-GRAPPA, IFFT, and coil combination applied to
k-t undersampled MB data. The weighting parameters of
𝜆L= 0.014 and 𝜆S = 0.018 × M0 for SB L+ S and 𝜆L= 0.018
and 𝜆S = 0.026 × M0 for seq-SG-L+ S were found to mini-
mize the nRMSE relative to SB reference images, as shown
in Supporting Information Figures S7 and S8, where M0 is
the maximum magnitude of the initialized images.

For the slice-L+ S method, images were initialized to
0 because split slice-GRAPPA is used in MB data con-
sistency term of Equation 3. The slice-L+ S weighting
parameters of 𝜆L and 𝜆S were determined by compar-
ing reconstructed images of synthetic MB data to the
SB reference images over a range of values. Regulariza-
tion parameter values of 0.01 for 𝜆L and 0.01 × M0 for
𝜆S were found to minimize the nRMSE relative to SB
reference images, as shown in the Supporting Informa-
tion Figure S6A. The parameter 𝜇

2 was selected as 0.4,
which is the same value used in l1-ESPIRiT.29 Although the
parameters for the reconstructions were mainly found by
minimizing nRMSE, we also considered the SSIM values

and the visualized image quality to find the overall best
parameters.

To reduce the reconstruction time, coil compression
was performed at 5% tolerance for the MB datasets before
application of the iterative reconstruction methods using
a method similar to SB coil compression.32 The number
of virtual coils was about half of the number of original
coils. For SB L+ S and seq-SG-L+ S, we used the same
stopping criterion as in Ref.7 For slice-L+ S, the iterative
procedure was terminated when the change in the data
consistency term was less than 10−5 or a preset number
of 25 iterations was reached22 as justified in Supporting
Information Figure S6B.

3.3 Comparison of slice-L + S with SB
L+ S and seq-SG-L + S using synthetic
undersampled MB data

SB first-pass images were acquired at rest from 7 patients
to generate synthetic data with reference standard images.
All patients provided informed consent, and all studies
were performed in accordance with protocols approved
by our institutional review board. Patient informa-
tion is provided in Supporting Information Appendix
S2. First-pass MRI utilized prospective electrocardio-
gram triggering, patients were instructed to breathhold
as long as possible and then breathe shallowly when
they could no longer breathhold, and 0.075 mmol/kg
of gadolinium-based contrast agent (Dotarem, Guer-
bet, Paris, France) was injected intravenously at a rate
of 4 mL/s, followed by 25 mL of saline flush at 4 mL/s.
Three short-axis slices were acquired at basal, midven-
tricular, and apical locations using SB saturation-recovery
gradient-echo acquisitions. For fully sampled (N = 3
patients) and rate-2 undersampled merged SB datasets
(N = 4), common sequence parameters included 3 slices
per heartbeat, saturation-recovery delay time = 20 ms,
repetitions = 40, flip angle = 12◦–15◦, slice thick-
ness = 8–10 mm, and interslice gap of 12.5–16 mm.
For fully sampled datasets, FOV = 320× 238–307 mm2,
TR = 2.42 ms, TE = 1.23 ms, spatial resolu-
tion = 3.3 mm× 3.3 mm, bandwidth = 1002 Hz/pixel,
and temporal resolution = 172.8–222.6 ms, respec-
tively, for the 3 patients, corresponding to phase FOV
values of 74.4%–95.8%. For rate 2 merged datasets,
FOV = 360–380× 270–288 mm2, TR = 1.94 ms,
TE = 1 ms, spatial resolution = 2.25 mm× 2.25 mm,
bandwidth = 650 Hz/pixel and temporal resolu-
tion = 169.4–180.7 ms, respectively for the 4 patients,
corresponding to phase FOV values of 75%–80%.

These SB datasets were used to synthesize k-t
undersampled MB images with MB = 3 and R = 2–4
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by applying CAIPIRINHA phase modulation, summing
them, and applying the Poisson-disc k-t undersam-
pling mask. SB k-t undersampled data with the same
total accelerations of R = 6–12 were simulated by
applying the Poisson-disc k-t undersampling mask to
SB k-space. The simulated undersampled SB datasets
were reconstructed using SB L+ S, and the synthesized
undersampled MB datasets were reconstructed using
seq-SG-L+ S and slice-L+ S. To quantitatively com-
pare these methods, nRMSE and SSIM were computed
using fully sampled or rate 2 merged SB images as the
reference.

Normalized RMSE and SSIM were assessed using
2-way analysis of variance with a statistically significant
difference defined as P< 0.05. Pairwise comparisons were
evaluated using the Bonferroni post hoc test with adjusted
P values, where the 2 factors were measurements and
reconstruction methods, and replications occurred over
subjects.

3.4 Comparison of slice-L + S
with seq-SG-L + S for the reconstruction
of prospectively acquired k-t undersampled
MB first-pass data

To evaluate reconstruction methods for prospectively
acquired k-t undersampled MB imaging, 7 patients were
scanned using MB = 3 and R = 2, and 7 patients were
scanned using MB = 3 and R = 3. Scan parameters
were 9 slices per heartbeat (6 slices per heartbeat in
1 patient with paroxysmal atrial fibrillation), MB = 3,
R = 2–3, FOV = 360 × 270–297 mm2, TR = 2.82–2.95 ms,
TE = 1.45–1.47 ms, bandwidth = 694–992 Hz/pixel, and
temporal footprint = 169 ms to 195 ms, corresponding to
phase FOV values of 75% to 82.6%. The interslice gap was
16 mm for each MB excitation, and the interslice gap was
0 between neighboring slices. For R = 2 the spatial reso-
lution was 2.25 mm× 2.25 mm, and for R = 3 the spatial
resolution was 1.5 mm× 1.5 mm.

All prospectively acquired MB datasets were recon-
structed using both seq-SG-L+ S and slice-L+ S. All slices
reconstructed by both methods were scored by 2 cardiolo-
gists using a 1–5 scale, with 1 corresponding to worst and
5 to best, where the assessments were based on residual
artifacts, noise, sharpness of borders and overall impres-
sion. Both expert readers (c.m.k. and m.s.) have greater
than 15 years of experience in cardiovascular MRI inter-
pretation and have cardiovascular MR certification level
3. The correlation coefficient was used to assess agree-
ment of the scores between the observers. The Wilcoxon
signed rank test was used to test for differences between
the reconstruction methods.

4 RESULTS

4.1 Evaluation of slice-L + S
and comparisons with SB L+ S
and seq-SG-L + S using synthetic
undersampled MB data

Example synthetic undersampled MB images recon-
structed using slice-L+ S with MB = 3 and total accelera-
tion = 6, 9,10,11, and 12, along with SB reference images
and error maps, are shown in Figure 3A,B, respectively.
As expected, residual artifacts and spatial blur increase
with increasing undersampling rates. In Figure 4, example
synthetic images from retrospectively undersampled data
comparing SB L+ S (R = 9), seq-SG-L+ S (MB = 3, R = 3),
and slice-L+ S (MB = 3, R = 3) are shown, along with
corresponding error maps, demonstrating that slice-L+ S
provides the best image quality. In this example, the SB
L+ S method produced higher overall artifact levels com-
pared to slice-L+ S, especially at the myocardial regions
highlighted by red arrows, where slice-L+ S provided
reduced artifacts in the myocardium and elsewhere. Slice
separation artifacts are more prominent for seq-SG-L+ S,
and higher overall artifact levels are seen compared with
slice-L+ S. Examples images for 2 more cases are provided
in the Supporting Information Figure S4. A limitation of
results from synthetic images is that potential benefits
related to a shorter acquisition window of prospective SB
L+ S are not accounted for.

Figure 5 summarizes the nRMSE and SSIM results
for retrospectively undersampled data reconstructed using
SB L+ S, seq-SG-L+ S, and slice-L+ S for multiple total
acceleration rates, and shows that slice-L+ S provides
the lowest nRMSE and highest SSIM for all total accel-
eration rates of 6–12, with SB L+ S performing second
best. As expected, for all reconstruction methods, nRMSE
increases and SSIM decreases as the total acceleration rate
increases. With comparisons over reconstruction method,
nRMSE and SSIM were lower for slice-L+ S compared
to SB L+ S and seq-SG-L+ S at all acceleration rates
(P< 0.05, analysis of variance). For acceleration rates of 6,
9, 10, 11, and 12, the nRMSE values for slice-L+ S were
0.023 ± 0.004, 0.031± 0.004, 0.034± 0.005, 0.038± 0.005,
and 0.042± 0.006; and the SSIM values were 0.92± 0.02,
0.89± 0.02, 0.87± 0.03, 0.86± 0.03, and 0.84± 0.03, respec-
tively. For rate 9, the nRMSE and SSIM for myocardium
only are shown in Supporting Information Figures S9–S12.

Example signal x-t plots from synthetic data are shown
in Figure 6 for the SB L+ S, seq-SG-L+ S, and slice-L+ S
recontruction methods, demonstrating worse temporal
fidelity for the SB-L+ S and seq-SG-L+ S methods and
better temporal fidelity for slice-L+ S compared with the
reference SB x-t plots. Figure 7 quantitatively shows that
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F I G U R E 3 Example images and error maps for the slice-L+ S method computed using synthetic k-t undersampled MB first-pass
perfusion images from a patient. Images with MB factor = 3 and R = 2–4 are shown, resulting in total acceleration rates of 6–12. (A) Synthetic
k-t undersampled MB data were reconstructed using the slice-L+ S method. (B) Image artifacts relative to the original fully sampled
reference images are shown. At MB = 3, as the undersampling factor R is increased, image artifacts and spatial blur are more prominent. R,
in-plane acceleration rate.

F I G U R E 4 Comparison of the SB L+ S method (R = 9), the MB sequential operations method (seq-SG-L+ S) (MB = 3 and R = 3), and
the MB slice-L+ S method for reconstruction of synthetic k-t undersampled SB or MB first-pass perfusion images for 1 patient with aggregate
rate 9 acceleration (A–C). Synthetic k-t undersampled SB data were reconstructed using SB L+ S, and k-t undersampled MB data were
reconstructed using seq-SG-L+ S and slice-L+ S. Image artifacts relative to the original reference SB images are shown. The SB L+ S and
seq-SG-L+ S produced higher overall artifact levels, with slice-L+ S demonstrating reductions in artifacts. In-plane residual artifacts and
slice separation artifacts are more prominent for SB L+ S and seq-SG-L+ S, respectively, as indicated by the red arrows

slice-L+ S provides higher SSIM and lower nRMSE for
all the temporal measurements compared to SB L+ S and
seq-SG-L+ S. SSIM and nRSME plots along time for 2
more cases are provided in the Supporting Information
Figure S4.

All reconstructions were performed in MatLab
2019a (MathWorks) on a desktop computer (3.6 GHz
Intel(R)Xeon(R) W-2123 CPU with 32 GB RAM). The
computation times to reconstruct 40 measurements of 1
slice using seq-SG-L+ S and slice-L+ S were 460.8 and
887.9 s, respectively.

4.2 Comparison of slice-L + S
and seq-SG-L + S for the reconstruction
of prospectively acquired k-t undersampled
MB first-pass data

Example images showing 3 slices with spatial resolution of
1.5 mm× 1.5 mm using MB = 3 and R = 3 from 1 patient
are shown in Figure 8 that compare seq-SG-L+ S and
slice-L+ S for the reconstruction of prospectively under-
sampled MB first-pass data. Various time points are shown
including the baseline, peak enhancement of the right
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F I G U R E 5 Quantitative comparisons of different methods for reconstruction of synthetic k-t undersampled MB first-pass perfusion
images for various acceleration rates. For SB L+ S, R = 6–12 were evaluated; and for the multiband methods, MB = 3 and R = 2–4 were used,
leading to rate 6 to rate 12 aggregate acceleration for all methods. As shown in (A), the nRMSE was highest for the sequential operations
method (seq-SG-L+ S), intermediate for SB L+ S, and lowest for slice-L+ S (*P< 0.05, ANOVA). In (B), the SSIM was lowest for the
seq-SG-L+ S, intermediate for SB L+ S, and highest for slice-L+ S (*P< 0.05, ANOVA). Error bars indicate SDs. N = 7 patients were studied.
ANOVA, analysis of variance; nRMSE, normalized RMSE; SSIM, structural similarity.

F I G U R E 6 Comparison of signal x-t plots corresponding to SB L+ S (R = 9), seq-SG-L+ S (MB = 3 and R = 3), and slice-L+ S (MB = 3
and R = 3) for the reconstruction of synthetic k-t undersampled perfusion images for the patient in Figure 4. Slice-L+ S presents better
temporal fidelity than SB L+ S and seq-SG-L+ S compared the fully sampled reference x-t plots

ventricular blood, peak enhancement of the left ventric-
ular blood, and peak enhancement of the myocardium.
The slice-L+ S method demonstrates sharper borders
and greater contrast, especially at peak myocardial

measurements. Example images, also with spatial reso-
lution of 1.5 mm× 1.5 mm and MB = 3 and R = 3, for
an additional patient showing different time points are
provided in the Supporting Information
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F I G U R E 7 Plots of nRMSE and SSIM along time for the 3 reconstruction methods (SB L+ S, seq-SG-L+ S, and slice-L+ S)
corresponding to synthetic k-t undersampled first-pass perfusion MRI (R = 9 for the single-band method, and MB = 3 and R = 3 for the
multiband methods) of the patient in Figure 4. The nRMSE was similar for SB L+ S and seq-SG-L+ S, and lower for slice-L+ S for all
temporal measurements. The SSIM was similar for SB L+ S and seq-SG-L+ S, and higher for slice-L+ S for all temporal measurements

F I G U R E 8 An example comparison of (A) the sequential operations method (seq-SG-L+ S) and (B) slice-L+ S for the reconstruction of
prospectively undersampled MB first-pass perfusion MRI (MB = 3 and R = 3) with a spatial resolution of 1.5 mm× 1.5 mm and 9-slice
coverage of the left ventricle (3 of 9 slices are shown at different time points). Overall, seq-SG-L+ S produced more artifacts, especially for
peak Myo images, with slice-L+ S demonstrating reductions in artifacts. The slice-L+ S method provides fewer residual artifacts, sharper
borders and greater contrast compared to reconstruction using sequential operations. LV, left ventricle; Myo, myocardium; RV, right ventricle.

Figure S5. Example images showing 9-slice
whole-heart coverage using the 2 reconstruction meth-
ods are compared in Figure 9. Qualitatively, slice-L+ S
method is seen to provide fewer residual artifacts,
sharper borders, and greater contrast than seq-SG-L+ S.
Image quality assessments by 2 experts resulted in both
reviewers consistently ranking the slice-L+ S method
as better than the sequential method for all cases. For
rate 6, the expert scoring results were 3.3± 0.87 versus
3.9± 1.03 (P< 0.05) for seq-SG-L+ S versus slice-L+ S,
respectively, with good agreement between observer

ratings (r = 0.54, P < 0.05). Also, expert scores were
4.25± 0.71 and 3.9 ± 1.03 for slice-L+ S retrospective
versus prospective studies, respectively, with good agree-
ment between observer ratings (r = 0.55). For rate 9, the
scoring results were 3.3± 0.70 versus 4.0± 0.63 (P< 0.05)
for seq-SG-L+ S and slice-L+ S, respectively, with good
agreement between observer ratings (r = 0.49, P < 0.05).
Videos showing all first-pass measurements of 2 k-t under-
sampled MB datasets are provided in the Supporting
Information Video S1 (MB = 3 and R = 2) and S2 (MB = 3
and R = 3).
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F I G U R E 9 Example images showing all 9 slices of prospectively accelerated high-resolution (1.5 mm× 1.5 mm) perfusion MRI with
MB = 3 and R = 3 reconstructed using the sequential operations method (seq-SG-L+ S) and the slice-L+ S method for 1 patient. Slice-L+ S
shows better performance for the removal of aliasing artifacts associated with undersampling.

5 DISCUSSION

We developed an iterative reconstruction method for
k-t undersampled MB first-pass perfusion MRI that
uniquely incorporates L+ S applied to coil-combined
slice-separated data by using slice separation with split
slice-GRAPPA when solving the MB data consistency
term. It is through the use of slice-GRAPPA followed by
coil combination in solving the MB data consistency term
in slice-L+ S that we exploit joint sparsity of coil-combined
slice-separated images. The major results of our experi-
ments are (1) slice-L+ S provides a more accurate recon-
struction of undersampled MB first-pass perfusion images
than seq-SG-L+ S; and (2) slice-L+ S with a k-t undersam-
pled MB acquisition outperformed SB L+ S using a k-t
undersampled SB acquisition (with a matched total accel-
eration rate) with regard to SSIM, nRMSE, and temporal
fidelity. Other important aspects of this study are (1) the
MB data consistency method described in Figure 2 pro-
vides a coil-combined slice-by-slice gradient that enables
an efficient combination with L+ S of multiple slices; (2)
the MB data consistency method reduces slice separation
artifacts in both k-space using split slice-GRAPPA and
image space using ESPIRiT; (3) slice-L+ S resolves under-
sampling artifacts and slice separation artifacts simultane-
ously; and (4) the implementation uses a variable splitting
method that enabled alternation between conjugate gradi-
ent and soft thresholding in order to converge to a solution,
and therefore can easily be extended to incorporate other

constraints commonly used for SB compressed sensing
reconstructions.

5.1 Insights into k-t undersampled MB
reconstruction and MB data consistency
terms

k-t undersampled MB images suffer from both coher-
ent slice-separation artifacts and coherent and inco-
herent artifacts due to k-t undersampling with a fully
sampled k-space center and randomness at higher ky
values. Although split slice-GRAPPA provides better
through-plane artifact reduction than competing noniter-
ative methods, slice separation is imperfect.19 It has been
shown previously that further reduction of slice separa-
tion artifacts can be achieved using iterative methods.23,33

For iterative reconstruction, the data consistency method
of Equation 3 and Figure 2 can minimize the coherent
artifacts related to slice separation and in-plane undersam-
pling (as well as enforce MB data fidelity), whereas the
L+ S constraints of multiple slices can minimize the inco-
herent artifacts due to k-t undersampling with random-
ness. The MB data consistency term in Equation 3 is differ-
ent from the MB data consistency used for the slice-SPIRiT
method23 because slice-SPIRiT uses slice-by-slice coil
information, which decreases the performance of tem-
poral sparsity.6,34 The residual artifacts of seq-SG-L+ S
observed in Supporting Information Videos S1 and S2 are
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mainly due to the SB data consistency term. Such a SB
data consistency is based on imperfectly separated data
with artifacts due to slice separation and k-t undersam-
pling. The data consistency term makes the reconstructed
image consistent with corrupted SB data. In Supporting
Information Appendix S1 and Supporting Information
Figure S1, we investigate alternative MB data consistency
terms, comparing 3 of them, all using L+ S regularization.
As shown in Supporting Information Figures S2 and S3,
the data consistency method of slice-L+ S had the best per-
formance. The imperfect slice-separating kernel affects all
methods, including slice-L+ S. We found that the use of
both of a slice-separating kernel and ESPIRiT improves
performance.

5.2 Solving slice-L + S using variable
splitting

Because the slice-L+ S optimization function includes an
l2 norm, nuclear norm, and l1 norm, we used variable
splitting to decompose the global nonlinear minimization
into 2 subproblems. Our algorithm alternated between the
2 subproblems, where the data consistency subproblem
was solved using the LSQR conjugate gradient method
and the L+ S subproblem was solved using iterative soft
thresholding, and this approach provided an efficient and
stable method to solve Equation 3. Instead of enforcing
the low-rank constraint for each slice,35 slice-L+ S applies
the temporal low-rank plus sparse constraint to multi-
ple concatenated slices, which leverages multiple slices to
generate a bigger matrix, providing better low-rank char-
acteristics.36

5.3 Comparison with SB L+ S

We compared slice-L+ S, seq-SG-L+ S, and SB L+ S using
synthetic datasets with the same total accelerations of
6–12. When the same total acceleration rates are used for
SB and MB imaging, seq-SG-L+ S did not outperform SB
L+ S, which indicates that k-t undersampled MB imaging
may not always outperform k-t undersampled SB imag-
ing, and a well-designed reconstruction method for k-t
undersampled MB imaging is needed. Also, we observed
in Figure 5 that the SDs of the nRMSE and SSIM values for
SB L+ S are higher than slice-L+ S and seq-SG-L+ S for
acceleration rates of 6–12. The k-t undersampling rate of
SB imaging is MB times higher than that of MB imaging.
The higher SD may be due to higher k-t undersampling
rates for SB imaging and lower SNR of k-t undersampled
SB imaging with the same total acceleration rates. We also
note that the lower undersampling rate for MB imaging

results in a longer acquisition window, which could be a
disadvantage, especially during adenosine stress imaging,
and that our study did not account for potential benefits to
SB L+ S related to a shorter acquisition window.

5.4 Comparison with other k-t MB
reconstruction models

In conventional undersampled MB imaging, split
slice-GRAPPA followed by GRAPPA37 has been previ-
ously used,18,19 and split slice-GRAPPA has been shown to
be an effective method for MB cardiac MRI.23,38,39 These
results motivated the selection of split slice-GRAPPA for
slice separation within seq-SG-L+ S and slice-L+ S. In
addition to the methods employed in the present study,
other methods to reconstruct k-t undersampled MB
imaging have been proposed, one of which is simultane-
ous multi-slice (SMS)-Slice-L1-SPIRiT.40 In comparing
slice-L+ S with SMS-Slice-L1-SPIRiT, we note that
whereas slice-L+ S (a) exploits slice-separated joint spar-
sity, (b) uses L+ S regularization of multiple slices, and (c)
utilizes slice-GRAPPA to perform slice separation (facili-
tating slice-separated joint sparsity), SMS-Slice-L1-SPIRiT
does not exploit joint sparsity, enforces S, and utilizes
slice-GRAPPA for coil consistency but not for slice separa-
tion. Also, coil-by-coil compressed sensing, as performed
in SMS-Slice-L1-SPIRiT, increases the memory require-
ment and reconstruction time.8,10,40 Other methods, such
as SMS- low-rank modeling of local k-space neighbor-
hoods, have also been proposed for calibrationless single-
or multicoil MB reconstruction, although temporal L+ S
and through-plane coil information were not included.
Recently, an SMS-balance steady state free precession
compressed sensing method was proposed with spatial
and temporal wavelet regularizations12; however, it did
not use through-plane coil information in the MB data
consistency term. Another method, readout concatenated
k-space-SPIRiT, based on readout concatenation and
coil self-consistency, has not been combined with joint
sparsity.41

5.5 Limitations and future work

We evaluated slice-L+ S using Cartesian first-pass perfu-
sion MRI because Cartesian is the most widely used trajec-
tory; however, the method could be modified and applied
to non-Cartesian trajectories. We investigated MB = 3 and
R = 2–4 using synthetic datasets and MB = 3 and R = 2
and 3 using prospectively acquired MB datasets, but other
combinations of through-plane and in-plane acceleration
factors should be compared in the future. Although a proof
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of concept was shown using retrospective studies, future
studies could compare k-t undersampled SB and MB L+ S
methods with matched total acceleration rates to further
demonstrate the advantages of slice-L+ S for first-pass
perfusion MRI. We quantified residual artifacts, includ-
ing artifacts due to slice-leakage and k-t undersampling,
by error maps relative to SB reference images, similar to
the approach used by Ref.19 We acknowledge that these
methods do not distinguish between artifacts due to k-t
undersampling versus artifacts due to slice leakage. We
tested our method in subjects undergoing MRI at rest;
future studies could evaluate slice-L+ S for stress imaging.
We tuned the model hyperparameters using retrospective
data, which, due to differences in eddy currents and object
motion in data sampling windows of different durations, is
not identical to prospectively acquired data. However, car-
diologist scoring showed that prospective and retrospec-
tive data reconstructed using slice-L+ S provided similar
image quality scores and that image quality was consid-
ered diagnostic. These results suggest that the choices of
slice-L+ S hyperparameters are reasonable for prospec-
tively acquired undersampled MB data. The computation
time of slice-L+ S may be too long for online recon-
struction. Faster computation could be achieved using
deep learning. The number of datasets used to evaluate
our methods was limited, and further experience with
more subjects would be warranted to move these methods
toward clinical use.

We utilized the proposed MB data consistency method
to develop slice-L+ S. However, our MB data consistency
could be used with other regularizations such as wavelets42

to reconstruct nondynamic images using soft-thresholding
algorithms like l1-ESPIRiT.29 To incorporate the low-rank
constraint, we applied the low-rank plus sparse con-
straint to concatenated multiple slices; however, the sub-
space method43,44 could also be utilized with the proposed
MB data consistency. Other types of MB reconstructions
should also be compared in the future such as regularized
nonlinear inversion.24

6 CONCLUSION

A method to reconstruct k-t undersampled MB first-pass
perfusion images was developed that outperforms
approaches that use the sequential operations of slice
separation followed by L+ S and SB L+ S with the same
total acceleration rates. The MB data consistency method
provides a coil-combined slice-by-slice gradient to effi-
ciently reduce artifacts due to slice separation and k-t
undersampling. With slice-L+ S and k-t undersampled
MB imaging, 9 slices may be acquired per heartbeat,

providing improved coverage and 1.5 mm× 1.5 mm spatial
resolution for first-pass perfusion MRI.
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Appendix S1. Comparison of two alternative MB data
consistency methods with the L+ S constraint with the
proposed slice-L+ S method
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Appendix S2. Information describing twenty-one patients
undergoing clinically-ordered first-pass perfusion studies.
Figure S1. Schematic of alternative MB data consis-
tency methods using (A) in-plane sensitivity maps only
(𝜆2 = 0) and (B) in-plane sensitivity maps and consis-
tency with MB data that has been separated using a
split slice-GRAPPA kernel as an additional l2 constraint
(𝜆2 > 0)
Figure S2. Slice-L+ S, as proposed, was compared to
slice-L+ S implemented using two alternative MB data
consistency methods (ADCM1 and ADCM2) of Equation
S1 and Figure S1 using synthetic undersampled MB
first-pass perfusion MRI (MB = 3 and R = 2)
Figure S3. Quantitative analyses of the comparisons of dif-
ferent MB data consistency methods using synthetic k-t
undersampled MB first-pass perfusion MRI (MB = 3 and
R = 2) of 3 patients
Figure S4. Comparison of the SB L+ S method (R= 9), the
sequential operations method (seq-SG-L+ S) (MB = 3 and
R = 3), and slice-L+ S (MB = 3 and R = 3) for reconstruc-
tion of synthetic k-t undersampled MB first-pass perfusion
MRI with the same total acceleration rate of 9 for two
patients (A and B)
Figure S5. Comparison of (A) the sequential operations
method (seq-SG-L+ S) and (B) the slice-L+ S method
for reconstruction of prospectively k-t undersampled MB
first-pass perfusion images (MB = 3 and R = 3) with
a spatial resolution of 1.5 mm× 1.5 mm and coverage
of nine slices (3 slices are shown) at different time
points
Figure S6. (A) Mean SSIM and nRMSE of all temporal
measurements for one patient using different combina-
tions of the weighting parameters for L and S using SB
images as references. The results indicate that 0.01 for 𝜆L
and 0.01 ×M0 for 𝜆S are the optimal weighting parameters
for the proposed slice-L+ S method. (B) Plot of residual
norm (in log scale) versus number of iterations for the
slice-L+ S reconstruction.
Figure S7. Mean SSIM and nRMSE of all temporal mea-
surements for one patient using different combinations of
the weighting parameters for L and S using SB images as
references. The results indicate that 0.014 for 𝜆L and 0.018
× M0 for 𝜆S are the optimal weighting parameters for the
SB L+ S method at 1.5 T scanner
Figure S8. Mean SSIM and nRMSE of all temporal mea-
surements for one patient using different combinations of
the weighting parameters for L and S using SB images as
references. The results indicate that 0.018 for 𝜆L and 0.026
× M0 for 𝜆S are the optimal weighting parameters for the
seq-SG-L+ S method at 1.5 T scanner
Figure S9. Quantitative comparisons of different meth-
ods for reconstruction of synthetic k-t undersampled MB

first-pass perfusion images using rate-9 acceleration, con-
sidering just the myocardial region of interest at different
slice locations. As shown in (A), the nRMSE was high-
est for SB L+ S, intermediate for seq-SG-L+ S, and low-
est for slice-L+ S (*p < 0.05, ANOVA). In (B), the SSIM
was lowest for SB L+ S, intermediate for seq-SG-L+ S,
and highest for slice-L+ S (*p < 0.05, ANOVA). Error
bars indicate standard deviations. N = 7 patients were
studied
Figure S10. Quantitative comparisons of different meth-
ods for reconstruction of synthetic k-t undersampled
MB first-pass perfusion images using rate-9 accelera-
tion, considering just the American Heart Association
segments of the basal slice as the regions of inter-
est. As shown in (A), the nRMSE was highest for
SB L+ S, intermediate for seq-SG-L+ S, and lowest
for slice-L+ S (*p < 0.05, ANOVA). In (B), the SSIM
was lowest for SB L+ S, intermediate for seq-SG-L+ S,
and highest for slice-L+ S (*p < 0.05, ANOVA). Error
bars indicate standard deviations. N = 7 patients were
studied
Figure S11. Quantitative comparisons of different meth-
ods for reconstruction of synthetic k-t undersampled
MB first-pass perfusion images using rate-9 accelera-
tion, considering just the American Heart Association
segments of the midventricular slice as the regions of
interest. As shown in (A), the nRMSE was highest
for SB L+ S, intermediate for seq-SG-L+ S, and low-
est for slice-L+ S (*p < 0.05, ANOVA). In (B), the SSIM
was lowest for SB L+ S, intermediate for seq-SG-L+ S,
and highest for slice-L+ S (*p < 0.05, ANOVA). Error
bars indicate standard deviations. N = 7 patients were
studied
Figure S12. Quantitative comparisons of different meth-
ods for reconstruction of synthetic k-t undersampled MB
first-pass perfusion images using rate-9 acceleration, con-
sidering just the American Heart Association segments
of the apical slice as the regions of interest. As shown
in (A), the nRMSE was highest for SB L+ S, intermedi-
ate for seq-SG-L+ S, and lowest for slice-L+ S (*p < 0.05,
ANOVA). In (B), the SSIM was lowest for SB L+ S,
intermediate for seq-SG-L+ S, and highest for slice-L+ S
(*p < 0.05, ANOVA). Error bars indicate standard devia-
tions. N = 7 patients were studied
Video S1. Comparison of (Left) the sequential operations
method (seq-SG-L+ S) and (Right) the slice-L+ S method
for reconstruction of prospectively k-t undersampled MB
first-pass perfusion images (MB = 3 and R = 2) with a spa-
tial resolution of 2.25 mm× 2.25 mm and coverage of nine
slices at forty time points. Overall, the slice-L+ S method
provides sharper borders and fewer artifacts compared to
seq-SG-L+ S



SUN et al. 1155

Video S2. Comparison of (Left) the sequential operations
method (seq-SG-L+ S) and (Right) the slice-L+ S method
for reconstruction of prospectively k-t undersampled MB
first-pass perfusion images (MB = 3 and R = 3) with a spa-
tial resolution of 1.5 mm× 1.5 mm and coverage of nine
slices at forty time points. Overall, the slice-L+ S method
provides sharper borders and fewer artifacts compared to
seq-SG-L+ S

How to cite this article: Sun C, Robinson A,
Wang Y, et al. A Slice-Low-Rank Plus Sparse
(slice-L + S) Reconstruction Method for k-t
Undersampled Multiband First-Pass Myocardial
Perfusion MRI. Magn Reson Med.
2022;88:1140-1155. doi: 10.1002/mrm.29281


	A Slice-Low-Rank Plus Sparse (slice-L +&thinsp;S) Reconstruction Method for k-t Undersampled Multiband First-Pass Myocardial Perfusion MRI 
	1 INTRODUCTION
	2 THEORY
	2.1 Sequential operations method (seq-SG-L +&thinsp;S)
	2.2 Slice-L +&thinsp;S

	3 METHODS
	3.1 Pulse sequence
	3.2 Image reconstruction
	3.3 Comparison of slice-L +&thinsp;S with SB L&thinsp;+&thinsp;S and seq-SG-L +&thinsp;S using synthetic undersampled MB data
	3.4 Comparison of slice-L +&thinsp;S with seq-SG-L +&thinsp;S for the reconstruction of prospectively acquired k-t undersampled MB first-pass data

	4 RESULTS
	4.1 Evaluation of slice-L +&thinsp;S and comparisons with SB L&thinsp;+&thinsp;S and seq-SG-L +&thinsp;S using synthetic undersampled MB data
	4.2 Comparison of slice-L +&thinsp;S and seq-SG-L +&thinsp;S for the reconstruction of prospectively acquired k-t undersampled MB first-pass data

	5 DISCUSSION
	5.1 Insights into k-t undersampled MB reconstruction and MB data consistency terms
	5.2 Solving slice-L +&thinsp;S using variable splitting
	5.3 Comparison with SB L&thinsp;+&thinsp;S
	5.4 Comparison with other k-t MB reconstruction models
	5.5 Limitations and future work

	6 CONCLUSION

	CONFLICT OF INTEREST
	ORCID
	REFERENCES
	Supporting Information

