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Abstract  
The spatial arrangement of the cell is important and considered as underlying mechanism for mathematical 
modeling of cell to cell interaction. The ability of cells to take on the characteristics of other cells in an organ-
ism, it is important to understand the dynamical behavior of the cells. This method implements experimental 
parameters of the cell-cell interaction into the mathematical simulation of cell arrangement. The purpose of 
this research was to explore the three-dimensional spatial distribution of anterior horn cells in the rat spinal 
cord to examine differences after sciatic nerve injury. Sixteen Sprague-Dawley male rats were assigned to con-
trol and axotomy groups. Twelve weeks after surgery, the anterior horn was removed for first- and second-or-
der stereological studies. Second-order stereological techniques were applied to estimate the pair correlation 
and cross-correlation functions using a dipole probe superimposed onto the spinal cord sections. The findings 
revealed 7% and 36% reductions in the mean volume and total number of motoneurons, respectively, and a 
25% increase in the neuroglial cell number in the axotomized rats compared to the control rats. In contrast, 
the anterior horn volume remained unchanged. The results also indicated a broader gap in the pair correla-
tion curve for the motoneurons and neuroglial cells in the axotomized rats compared to the control rats. This 
finding shows a negative correlation for the distribution of motoneurons and neuroglial cells in the axoto-
mized rats. The cross-correlation curve shows a negative correlation between the motoneurons and neuroglial 
cells in the axotomized rats. These findings suggest that cellular structural and functional changes after sciatic 
nerve injury lead to the alterations in the spatial arrangement of motoneurons and neuroglial cells, finally 
affecting the normal function of the central nervous system. The experimental protocol was reviewed and 
approved by the Animal Ethics Committee of Shahid Beheshti University of Medical Sciences (approval No. 
IR.SBMU.MSP.REC1395.375) on October 17, 2016.  
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Introduction 
Injury to the sciatic nerve is relatively common and can be 
caused by crushing, wounds, fractures or surgical interven-
tion (Sun et al., 2009a; Yin et al., 2010). The sciatic nerve is 
a mixed nerve that contains motor, sensory and autonomic 
fibers (Li et al., 2006); thus, injury to this nerve usually leads 
to significant motor, sensory, and autonomic dysfunctions 
(Sun et al., 2009b). Despite the numerous techniques for the 
treatment of nerve injury, nerve regeneration is hindered by 
the following factors: Wallerian degeneration of axons distal 
to the site of the lesion (Brodal, 1981) and neuronal apopto-
sis at the corresponding spinal segments (Chen et al., 2013; 
Lu et al., 2014; Preyat et al., 2015). 

Neuronal apoptosis can be induced by lack of neurotrophic 
factors when retrograde axonal transport is interrupted follow-
ing axonal injury, preventing neurotrophic factors from being 
delivered to neuronal bodies from the target organs (Tong and 
Rich, 1997; Nakamura and Myers, 2000). In addition, simul-

taneous Ca2+ influx results in disturbance in intracellular Ca2+ 
homeostasis and subsequent activation of proteolytic enzymes. 
This initiates a number of immune responses that lead to 
neuronal apoptosis (Preyat et al., 2015). Motoneuron apopto-
sis is characterized by chromatolysis followed by progressive 
condensation in the cytoplasm and nucleus (Martin, 1999) 
and accumulation of neurofilaments in the proximal axon and 
perikaryon (Manetto et al., 1988; Munoz et al., 1988). These 
events lead to motoneuron loss in the anterior horn and will 
undoubtedly alter the spatial distribution of motoneurons, 
neuroglia and the relationship between them. 

Aside from reports on the quantitative aspects of the an-
terior horn (Mayhew et al., 1979; Bjugn et al., 1993; Low et 
al., 2003; Kakinohana et al., 2004; Walloe et al., 2011), no 
research has addressed the spatial distribution of cells in the 
anterior horn. Little is reported about the effects of spatial 
arrangement of neurons and glial cells in the spinal cord af-
ter sciatic nerve injury. Therefore, the aim of this study was 
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to investigate the relationship between the spatial arrange-
ment alteration of neurons and glial cells in the anterior 
horn of spinal cord after axotomy with the first order and 
second order stereological methods.
  
Materials and Methods   
Animals
Sixteen Sprague-Dawley male rats, weighing 220–260 g, were 
purchased from Laboratory Animal Center of Pasteur Insti-
tute, Tehran, Iran. The experimental protocol was reviewed 
and approved by the Animal Ethics Committee of Shahid 
Beheshti University of Medical Sciences (approval No. 
IR.SBMU.MSP.REC1395.375) on October 17, 2016. The rats 
were randomly allocated to the control (normal control) and 
axotomy groups (n = 8/group) and were maintained under 
standard laboratory conditions. Anesthesia induction was 
achieved in the axotomy group with ketamine hydrochloride 
(50 mg/kg) plus xylazine hydrochloride (20 mg/kg). After 
disinfection, the skin and underlying muscles of the right 
hind limb were incised along the femoral axis and a 1-cm-
long segment of the sciatic nerve was transected. 

Tissue preparation 
At 12 weeks after surgery, the animals were sacrificed by deep 
anesthesia and then perfused intracardially using 0.9% physi-
ological saline and 4% paraformaldehyde. After extraction of 
the spinal cord, samples were obtained from the correspond-
ing spinal segments (L4 and L5) (Gelderd and Chopin, 1977) 
and were maintained in 4% paraformaldehyde for 7 days. 
Complete paraffin serial sections (10 and 25 µm thick) were 
made using a microtome (Leica RM2125; Nnussloch, Germa-
ny). By systematic uniform random sampling, 10 sections of 
each sample were selected by randomly choosing a numbered 
sample (between 1 and 10). The sample then was stained with 
hematoxylin & eosin (H&E; Sigma, St. Louis, MO, USA) and 
Cresyl violet (Sigma). The sections were evaluated in stere-
ological software (Stereo Investigator, Williston, VT, USA), 
and the anterior horn volume, motoneuron mean volume, 
and motoneuron and neuroglial cell numbers were estimated 
(Gundersen et al., 1988a, b).

Total volume of the anterior horn of the spinal cord
Cavalieri’s principle was applied for the assessment of the an-
terior horn volume using the following equation (Gundersen 
et al., 1988a, b; Noorafshan et al., 2014):

where ΣP is the sum of the falling points on the anterior 
horn histological sections, a/p is the area per point and t is 
the distance among the sections (Figure 1).

Motoneuron mean volume 
The nucleator method was applied to estimate the motoneu-
ron mean volume as:

where ln are two horizontal directions from the central 
point of the nucleolus to the cell borders (Gundersen et al., 
1988a, b; Noorafshan et al., 2014) (Figure 2). 

Motoneuron and neuroglial cell numbers
The optical dissector method was applied to estimate the 
motoneuron and neuroglial cell number in the anterior 
horn (Gundersen et al., 1988b; Noorafshan et al., 2014). The 
anterior horn cell nucleus distribution was assessed in the 
z-axis. There are ten columns and each column represents 
the percent of the counted nuclei in 10% of the tissue section 
thickness (Figure 3A). The numerical density (Nv) of the 
motoneurons and neuroglial cells was calculated as:

where (ΣQ) is the sum of the cells with nuclei, ΣP is the 
sum of counting frame, h is the dissector height, a/f is the 
area of the frame, t is the real thickness of the section and 
BA is the microtome section thickness (Figure 3B and C). 
The total number of motoneurons and neuroglial cells was 
calculated as:

In this formula, Nv is the numerical density of neurons and 
glial cells and V is the total volume of anterior horns.

Glial fibrillary acidic protein expression 
Immunohistochemical staining was used to analyze the 
expression of glial fibrillary acidic protein (GFAP), an astro-
cyte marker, in the sections of the anterior horn. First, the 
tissue section slides were deparaffinized in xylene (Merck, 
Darmstadt, Germany) and the slides were immersed in eth-
anol (Merck) for rehydration. Afterwards, the tissue slides 
were transferred to a 10 mM sodium citrate buffer (Sigma) 
at pH 6.0 for antigen retrieval. The endogenous peroxidase 
was blocked by tissue incubation in 3% hydrogen peroxide. 
Among incubations, two washes were performed with Tris/
HCl buffer (Sigma) at pH 6.0. Next, tissue samples were in-
cubated with rabbit polyclonal anti-GFAP antibody (1:250; 
Invitrogen, Carlsbad, CA, USA) with immunoglobulin 
overnight at 4°C and then with biotinylated goat anti-mouse 
antibody (1:200; Invitrogen) for 2 hours at room tempera-
ture according to manufacturer instructions. Visualization of 
immunoreactivity was achieved after incubation of the tissue 
sections in diaminobenzidine solution (0.1%; Sigma). Final-
ly, counterstaining was performed using Harris-modified 
hematoxylin solution (Sigma).

TUNEL assay
Apoptosis was evaluated by TUNEL staining to analyze DNA 
damage. After axotomy, the spinal cord tissues were fixed 
and embedded in paraffin and then sectioned on glass slides. 
Staining was performed according to TUNEL protocol (In 
Situ Apoptosis Detection Kit, Roche, Mannheim, Germany).  
Finally, the percentage of TUNEL-positive cells was calculat-
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Figure 1 Total volume of the anterior horn of the spinal cord.
(A) Schematic of transverse section of L5 spinal cord of animals from the control and axotomy groups. The anterior horn of the spinal cord consists 
of Rexed laminae VII–VIII and IX. Lamina VII forms the central part of the anterior horn. Lamina VIII occupies the antero-medial part of the 
anterior horn. Lamina IX is located in the most anterior and lateral parts of the anterior horn; (B) photomicrograph of the spinal cord stained with 
Cresyl violet (original magnification, 4×). Scale bar: 10 μm. A point grid is superimposed over the photomicrograph for measuring the anterior 
horn volume (AH denotes anterior horn); (C, D) photomicrographs of the spinal cord stained with hematoxylin & eosin (original magnification, 
4×) from the control and axotomy groups, respectively. Scale bar: 100 μm. 

Figure 2 Motoneuron mean volume in the anterior horn of the spinal 
cord.
Photomicrograph of the anterior horn stained with hematoxylin and 
eosin (original magnification, 40×). Scale bar: 10 μm. Ln is the distance 
in two directions from the center of the nucleolus to the motoneuron 
borders for estimating the mean volume of the anterior horn motoneu-
ron. Counting frames are superimposed over the photomicrographs to 
measure motoneuron mean volume. The yellow box is counting frame.

Figure 4 The micrograph illustrating the codes of cells in the spinal 
cord for creating a data matrix. 
The distance (r = 2.6 µm) between two points of grid is 2.6 µm. Each point 
of the grid is coded in Figure 9 as 1, 2 and 3 if the point is placed over 
the motoneuron (N), neuroglial cell (G), and neuropil (NP), respectively.  
Scale bar: 10 μm. 

Figure 3 Motoneuron and glial cell numbers in the anterior horn of 
the spinal cord.
(A) Anterior horn cell nucleus distribution on z-axis. Each of the 10 
histograms shows the percentage of located cell nuclei in 10% of the tis-
sue section; (B, C) photomicrographs of the anterior horn stained with 
hematoxylin & eosin (original magnification, 40×). Counting frames 
are superimposed over the photomicrographs to measure the number 
of motoneurons (N) and neuroglial cells (G). The yellow box is count-
ing frame. Scale bars: 10 μm. 
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ed in three sections per sample by stereological methods. 

Coefficient of error (CE)
CE (V) was calculated using the following equation:

where CE(V) is the CE for determining the total volume 
of the anterior horn of the spinal cord. In this formula, P 
and Pi are the sum of the falling points on the anterior horn 
histological sections. The CE for determining the number 
of motoneurons and neuroglial cells and the total volume of 
the anterior horn of the spinal cord was calculated as follows 
(Gundersen and Jensen, 1987):

Table 1 shows the values of the CEs.

Covariance function
The covariance of a component (X) was estimated as follows 
(Mayhew, 1999a, b; Reed and Howard, 1999; Reed et al., 2010):

Both end points of the dipoles (DP) of class size r = 1 
(equivalent to 2.6 µm) had a chance of being included in the 
same cell profile. When evaluating Vv, C(r), and g(r), the dis-
tance among the points (DP) ranged from r = 0 (equivalent 
to 0 µm) to r = 49, making the total distance of 127.4 µm (49 
× 2.6 = 127.4 µm) (Figure 4). MATLAB software (version 
R2016a; Math Works, Plano, TX, USA) was used to convert 
the data matrix to image type. 

Pair correlation function
The pair correlation function is the normalized covariance 
function obtained by dividing the covariance by the refer-
ence value (squared volume fraction) as follows (Mayhew, 
1999a, b; Reed and Howard, 1999; Reed et al., 2010):

In this formula, C(r) is covariance and Vv2 is the reference 
value (squared volume fraction).

Cross-covariance function
The cross-covariance (C(r)X, Y) was applied to spatial ar-

rangement quantification and evaluated as follows (Mattfeldt 
et al., 1993, 2006; Mayhew, 1999a, b; Reed and Howard, 
1999; Krasnoperov and Stoyan, 2004; Reed et al., 2010):

In this formula, DP (XY, r) and DP (ref, r) are the dipole 
length which hit the favored structure (neuron or glia) and 
the nervous tissue, respectively.

Cross-correlation function
The cross-correlation is normalized to remove volume frac-
tion differences by the evaluation of cross-correlation func-
tion as follows (Reed and Howard, 1999; Reed et al., 2010; 
Mayhew, 1999a, b):

In this formula, C(r)XY is the cross-covariance between 
the two components (X, Y) is defined as the probability that 
an isotropic dipole of length “r” hits components X and Y 
simultaneously divided by the number of the dipoles hitting 
the reference volume (Vv) X and Y ref.

Statistical analysis
All data analyses were accomplished by the Mann-Whitney 
U test, Pfaffl method and one-way analysis of variance with P 
≤ 0.05 being considered significant. Coefficients of variation 
among animals (CV = mean ± SD) were calculated for neu-
ron and glia volume within spinal cord. g(r) of the neurons 
and glial cells and cross-correlation were compared between 
groups using Mann-Whitney U test.

Results
Motoneuron and neuroglial cell numbers in the anterior 
horn of the spinal cord
Assessment of the anterior horn sections of the spinal 
cord revealed significantly lower numbers of motoneurons  
(~36%) in the axotomized animals compared to the control 
animals (Figure 5A). Significantly more neuroglial cells 
(~25%) were observed in the axotomized animals compared 
to the control animals (Figure 5B).

Mean volume of motoneurons and total volume of the 
anterior horn of the spinal cord
The results showed that the mean volume of the motoneu-
rons was significantly lower by ~7% in the axotomized ani-

Table 1 Coefficients of error (CE) for total volume of the anterior horn and the number of neurons and glial cells

Group
Volume of the anterior 
horn

Numerical density of 
neurons 

Numerical density of 
glial cells Number of neurons Number of glial cells

Control (n = 6) 0.04 0.05 0.05 0.05 0.03
Axotomy (n = 6) 0.03 0.04 0.03 0.04 0.04

Vv2

g(r)XY
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mals compared to the control animals (Figure 5C). However, 
the total volume of the anterior horn remained unchanged 
(Figure 5D). 

GFAP expression 
GFAP expression in the anterior horn was significantly 
up-regulated in the axotomized animals compared to the 
control animals (Figure 6).

TUNEL assay 
The effect of axotomy on apoptotic changes in the anteri-
or horn motoneurons was investigated by TUNEL assay. 
TUNEL+ cell counts showed that apoptosis was significantly 
enhanced in the axotomized animals compared to the con-
trol animals (Figure 7).

Conversion of data matrix to image type 
Sciatic nerve axotomy altered the spatial distribution of the 
motoneurons and neuroglial cells such that these cells were 
dissociated in most places. To better understand what oc-
curred, the data matrices of the control and axotomy groups 
were converted to image types in MATLAB (Figure 8).         

Spatial arrangement of motoneurons
The g(r) for motoneurons versus the dipole distance, r, was 
plotted (Figure 9A). The estimated values from the begin-
ning to the end of the curve (r = 0 to 7.8 µm, r = 18.2 to 54.6 
µm, r = 59.8 to 75.4 µm, r = 80.6 to 91 µm, and r = 109.2 to 
119.6 µm) revealed a significant difference between groups. 
After the gap, the data points for both groups were arranged 
randomly at longer distances (P < 0.05).

Spatial arrangement of neuroglial cells
The g(r) for neuroglia versus dipole distance, r, was plotted 
(Figure 9B). The estimated values from the beginning to the 
end of the curve (r = 0 to 5.2 µm, r = 46.8 to 57.2 µm, r = 80.6 
to 88.4 µm and r = 114 to 124.8 µm) revealed a significant dif-
ference between groups. After the gap, the data points for both 
groups were arranged randomly at longer distances (P < 0.05).

Cross-correlation of motoneurons and neuroglial cells
The cross-correlation curve shows a negative correlation 
between the motoneurons and neuroglial cells at 20.8–36.4, 
85.8–88.4 and 117–127.4 µm of the axotomized animals 
compared to the control animals (P < 0.05). When the cross 
covariance was located above the reference line, a positive 
correlation among components was indicated. When the 
cross covariance was located below the line, a negative cor-
relation was indicated. The findings in the present work indi-
cate that there was a positive correlation among the anterior 
horn cells in the control animals, but a negative correlation 
in the axotomized animals (Figure 9C).

Discussion
The spatial distribution of the cells was strongly associated 
with their interactions. One hypothesis states that spatial cell 
distribution is related to cellular behavior of coordinates. In 

a multicellular organ, cells function through spatial distri-
bution in the tissues (Altomare and Fare’, 2008; Ekerdt et al., 
2013). The cell-to-cell interaction relates to normal func-
tioning of the organ; however, changes in these cell-to-cell 
interactions can result in abnormal tissue physiology related 
to disease (Altomare and Fare’, 2008; Ekerdt et al., 2013).

In this study, we obtained an accurate evaluation and 
unique quantitative analysis of the cellular spatial patterns 
in the anterior horn. The present work determined the 
quantitative alterations in spatial distribution of the moto-
neurons and neuroglial cells within the anterior horn using 
second-order stereology. Our findings demonstrate that total 
number and mean volume of the motoneurons decreased in 
the anterior horn after sciatic nerve injury. We also found 
significantly more neuroglial cells in the axotomized animals 
compared to the control animals. The positive astrocytic 
GFAP in the anterior horn was also significantly different 
between groups. These can be linked to the altered spatial 
distribution in the anterior horn. The pair-correlation curve 
for motoneurons and neuroglial cells indicated a broader gap 
in their spatial distribution in the axotomy group. Of course, 
these gaps could be filled with neurophil. The cross-correla-
tion function also showed that the motoneurons and neu-
roglial cells in the axotomy group were negatively correlated. 

The mechanisms underlying motoneuron/motoneuron, 
neuroglial/neuroglial and motoneuron/neuroglial commu-
nication after axotomy remain poorly understood. Several 
mechanisms could be responsible for the disturbance in the 
spatial distribution of the anterior horn cells after axotomy. 
Peripheral nerve axotomy results in motoneuron apoptosis 
by expression of the genes involved in promoting apoptosis, 
including the apoptotic activator factor 1, Bax, caspase-3 and 
caspase-9 and triggers intracellular death pathways. More-
over, sciatic nerve injury causes necrosis of the gray matter, 
followed by destruction of the motoneurons, neuroglial cells 
and blood vessels, increasing the glutamate concentration 
and decreasing the cAMP (Sendtner et al., 1992; Griffin et 
al., 1995; Oppenheim et al., 1995).

The findings obtained in this work were consistent with 
those of our previous study that showed alterations in the 
neuronal and neuroglial distribution of the rat prefrontal 
cortex following chronic stress (Noorafshan et al., 2015). In 
another study, we reported that the spatial pattern of cerebel-
lar Purkinje cells altered following 3-acetylpyridine induc-
tion in rats. This difference was coincident with a reduced 
number of purkinje cells at the same place (Mohammadi et 
al., 2017). A previous study has shown that the neuronal and 
neuroglial arrangement changed in the anterior cingulate 
cortex of patients with schizophrenia (Benes and Bird, 1987). 
In another study, a 3D model of the neuronal locations of 
the cerebral cortex was created by density maps (Cruz et al., 
2008). Jinno et al. (2007) investigated the stereological spatial 
distribution of microglia and astrocytes in the hippocampus 
of mice. 

The spatial distribution of the spinal neuroglial cells is 
related to their functions. These cells provide support and 
nutrition for neurons. After sciatic nerve injury, neuroglial 
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Figure 5 Representation of the estimated parameters of the anterior horn of rat spinal cord. 
(A) Motoneuron number; (B) neuroglial cell number; (C) total volume of motoneurons; (D) total volume of the anterior horn in the spinal cord in the 
axotomy and control groups. *P < 0.05, vs. axotomy group (Mann-Whitney U test). All data are expressed as the mean ± SD of the studied groups.

Figure 6 Astrocytic immunostaining for glial fibrillary acidic protein (GFAP) in the anterior horn of the spinal cord.
(A, B) Control group; (C, D) axotomy group (AH denotes the anterior horn, arrow denotes astrocyte). Scale bars: 100 μm in A and C, 10 μm in B and 
D. (E) numerical density of GFAP-positive cells in the anterior horn. *P < 0.05, vs. axotomy group (Mann-Whitney U test). Data are expressed as the 
mean ± SD. GFAP: Glial fibrillary acidic protein. 

Figure 7 TUNEL detection of apoptotic anterior horn motoneurons in the axotomy and control groups. 
(A) Control group; (B) axotomy group. Apoptotic cells (brown; indicated by arrows). Scale bars: 100 μm. (C) Percentage of TUNEL-positive cells in 
the anterior horn. *P < 0.05, vs. axotomy group (Mann-Whitney U test). Data are expressed as the mean ± SD.
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cells begin to experience irreversible morphological and 
functional changes. The physiological and structural changes 
are accompanied by cell distribution alterations; however, 
the spatial distribution of motoneurons and neuroglial cells 
within a given region of the anterior horn may have import-
ant implications for the function of that region. Analysis of 
the spatial arrangement provides useful information about 
larger and smaller structures of the cells such as the renal 
glomeruli and cellular organelles (Mayhew, 1999a, b). In 
summary, our findings have provided valuable and import-
ant additional information about the spatial distribution 
of the anterior horn cells following sciatic nerve injury, but 
have not allowed us to completely understand the pathology 
of these cells after injury. 

Conclusion
The results of this work revealed a difference between the 
control and axotomy groups regarding the spatial patterns of 
cells in the anterior horn after sciatic nerve injury. Cell-cell 

dissociation (a gap) was detected between the motoneurons 
and neuroglial cells in the anterior horn of the spinal cord 
following sciatic nerve injury. Although further analysis 
will be required, the present findings provide a key to un-
derstanding the relationship between the motoneurons and 
neuroglial cells. 
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