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Immune checkpoint genes (ICGs), the foundation of immunotherapy, are

involved in the incidence and progression of hepatocellular carcinoma

(HCC). Cuproptosis is characterized by copper-induced cell death, and

this novel cell death pathway has piqued the interest of researchers in

recent years. It is worth noting that there is little information available in

the literature to determine the relationship between cuproptosis and anti-

tumor immunity. We identified 39 cuproptosis-related ICGs using ICGs co-

expressed with cuproptosis-related genes. A prognostic risk signature was

constructed using the Cox regression and the least absolute shrinkage and

selection operator analysis methods. The signature was built using the

Cancer Genome Atlas (TCGA)-Liver Hepatocellular Carcinoma database.

The TCGA and International Cancer Genome Consortium cohorts were

classified into two groups; the low- and high-risk groups were

determined using a prognostic signature comprised of five genes. The

multivariate Cox regression analysis revealed that the signature could

independently predict overall survival. Furthermore, the level of immune

infiltration analysis revealed the robustness of the prognostic signature-

immune cell infiltration relationship observed for Tregs, macrophages,

helper T cells, and naive B cells. Both groups showed significant

differences in immune checkpoint expression levels. The gene

enrichment analysis was used for characterization, and the results

revealed that enriching various pathways such as PI3K-AKT-mTOR

signaling, glycolysis, Wnt/beta-catenin signaling, and unfolded protein

response could potentially influence the prognosis of patients with HCC

and the level of immune infiltration. The sensitivity of the two groups of

patients to various drug-targeted therapy methods and immunotherapy was

analyzed. In conclusion, the findings presented here lay the foundation for

developing individualized treatment methods for HCC patients. The findings

also revealed that studying the cuproptosis-based pathway can aid in the

prognosis of HCC patients. It is also possible that cuproptosis contributes to

developing anti-tumor immunity in patients.
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Introduction

Liver cancer is the third leading cause of cancer-related deaths

worldwide, with hepatocellular carcinoma (HCC) accounting for

75% of all primary liver cancer cases (Sung et al., 2021). According

to the World Health Organization, HCC will cause approximately

one million deaths by 2030 (Villanueva, 2019). Surgical and

locoregional methods are first-line treatments for early to

advanced-stage liver cancer (Llovet et al., 2021a). Systemic

therapies treat approximately 50–60% of HCC patients. (Llovet

et al., 2018; Llovet et al., 2021b). Systemic therapy has emerged as a

standard treatment option for patients with advanced-stage liver

cancer. Sorafenib and lenvatinib are used as first-line treatments

for HCC patients (median survival: 11–14 months), and

cabozantinib and ramucirumab are used as second-line

treatments (median survival: 8–11 months) (Llovet et al., 2022).

The immune checkpoint inhibitor (ICI)-based immunotherapy

has revolutionized HCC treatment, and promising outcomes

obtained with nivolumab (anti-PD-1 antibody), tremelimumab

(anti-CTLA-4 antibody), athezolizumab (anti-PD-L1 antibody),

and bevacizumab (anti-VEGFA antibody) (Sangro et al., 2013;

ChiewWoon et al., 2020; Finn et al., 2020). Over 20 phase III trials

using ICI combination therapy are currently in progress. (Llovet

et al., 2021b). Furthermore, the U.S. Food and Drug

Administration has approved pembrolizumab as monotherapy

and the combination of nivolumab and ipilimumab as second-

line treatment for advanced-stage HCC patients (Zhu et al., 2018;

Yau et al., 2020). Many patients do not respond to immune

checkpoint blockade (ICB) treatment, which can be attributed

to complex pathogenesis, tumor immune microenvironment

characteristics of HCC, and tumor heterogeneity (Ribas and

Wolchok, 2018; Centanni et al., 2019). Moreover, specific

clinical characteristics affect immunotherapy efficacy (Hu et al.,

2019; Yu et al., 2021). Therefore, analyzing molecular or gene

signatures and particular models can aid in predicting individual

responses to immunotherapy. Researchers discovered a link

between immune checkpoint genes (ICGs) and cancer onset

and progression. It has also been reported that the ICGs may

be potential targets for ICB therapy (Liu et al., 2019; Tan et al.,

2021; Wu et al., 2021). The analysis of the available clinical

information and expression data on the combination of ICGs

can aid in identifying targets for personalized therapy and

optimizing the existing therapeutic strategies.

Tsvetkov et al. (2022) recently identified a novel copper-

induced cell death pathway known as cuproptosis. Cell death is

caused by the direct binding of copper to lipoylated components

of the tricarboxylic acid (TCA) cycle, resulting in lipoylates

protein aggregation, iron-sulfur cluster protein loss, and

proteotoxic stress, eventually culminating in cell death

(Tsvetkov et al., 2022). The relationship between various cell

death mechanisms associated with ferroptosis, pyroptosis, and

necroptosis and the tumor immune microenvironment has

previously been reported. Complex crosstalk between anti-

tumor immune cells has also been observed (Wang et al.,

2019; Tang et al., 2020; Xu et al., 2021). However, the

relationship between cuproptosis and anti-tumor immunity

has yet to be investigated. Studying the co-expression

relationship between cuproptosis-related genes (CRGs) and

ICGs can help understand the relationship between

cuproptosis and anti-tumor immunity.

This study presents the findings from analyzing the

expression levels of the cuproptosis-related ICGs, the

interaction between the ICGs and the prognosis of HCC

patients, and anti-tumor immunity. The enriched

signaling pathway and the correlation between the

cuproptosis-related ICGs and infiltrated immune cells were

studied to understand the underlying mechanisms better. The

association between gene signature and systematic therapy,

including targeted therapy and immunotherapy, was

investigated. The findings could aid in developing

individualized HCC treatment.

Materials and methods

Data collection

The mRNA expression data were rectified to fragments per

kilobase million (FPKM). Data corresponding to simple

nucleotide variation and the relevant clinical information of

377 patients were obtained from the Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov/reposiory).

The mRNA expression profiles (normalized read count) and

the clinical information of 231 patients were retrieved from the

International Cancer Genome Consortium (ICGC) database

(https://dcc.icgc.org/projects/LIRI-JP). The gene expression

profiles were normalized with the R package “Linear Models

for Microarray Data (limma)”. The ICGC and TCGA databases

are freely accessible to the public. Therefore, the local ethics

committees waived the ethical approval requirement. Several

studies (Hu et al., 2020; Oliveri, 2022; Tsvetkov et al., 2022)

provided information on the genes linked to ICG and

cuproptosis. Finally, 13 CRGs and 79 ICGs were identified

and used in the experiments. Our study included 231 HCC

patients from the ICGC (LIRI-JP) cohort and 365 HCC

patients from the TCGA-LIHC cohort. Data on patients’

clinical baseline characteristics are shown (Table 1). Figure 1

depicts the relevant flow chart.
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Construction and validation of a
prognostic cuproptosis-related immune
checkpoint gene signature

The TCGA cohort’s precancerous and cancerous tissues were

compared using the “limma” R package to identify the differentially

expressed cuproptosis-related genes (DECGs). If the genes met

certain criteria (false discovery rate (FDR): < 0.05; |Fold

Change|: > 1), they were classified as DECGs. Pearson’s test

investigated the correlation between the DECGs and the ICGs

(p < 0.05; |correlation coefficient|: > 0.21). The differential

expression and the correlation analysis were visualized using

heatmap and Cytoscape (version 3.6.1). The univariate Cox

regression analysis method was used to identify the prognostic

genes among the cuproptosis-related immune checkpoint genes

(p < 0.05). Data overfitting was avoided using the “glmnet”

package to integrate the gene expression data, survival status, and

survival time. The least absolute shrinkage and selection operator

(LASSO)–Cox analysis method was used for regression analysis. A

10-fold cross-validationmethodwas used to construct the optimized

model. The risk score was calculated, and the following regression

coefficients were determined:

∑number ofgenes

x
the expression level ofxgenepcorresponding coeffcient

The median risk score was calculated to classify the patients

into low- and high-risk groups. The R packages “Survival,”

“survminer,” and “timeROC” were used for survival analysis,

and the R setting “maxstat” was used to determine the optimal

cut-off expression level during the survival analysis of each gene.

The “Rtsne” package was used for the t-distributed stochastic

neighbor embedding (t-SNE) analysis, and the prcomp function

in the “stats” package was used for principal component analysis

(PCA). The multivariate Cox regression analysis method

(p-value < 0.05) was used to identify the independent risk

factors. Subsequently, the ICGC database (LIRI-JR) validated

the prognostic signature using the same risk score calculation

formula and statistical analysis methods. Multivariate and

univariate Cox regression analyses were carried out to test the

independent prediction ability (p-value < 0.05). The “rms”

package in R was used to construct a prognostic nomogram,

and the calibration curve was used to evaluate the predictive

performance of the nomogram. A bootstrap method with

1,000 resamples was used to evaluate the signature’s predictive

TABLE 1 Clinical baseline characteristics of the patients.

Characteristics TCGA
cohort (n = 365)

ICGC
cohort (n = 231)

Total (n = 596) p-value

Gender 0.13

Female 119 (19.97%) 61 (10.23%) 180 (30.20%)

Male 246 (41.28%) 170 (28.52%) 416 (69.80%)

Age

Mean ± SD 59.65 ± 13.36 67.30 ± 10.13 62.61 ± 12.76

Median [min-max] 61.00 [16.00, 90.00] 69.00 [31.00, 89.00] 64.50 [16.00, 90.00]

Grade

1 55 (15.07%) 55 (15.07%)

2 175 (47.95%) 175 (47.95%)

3 118 (32.33%) 118 (32.33%)

4 12 (3.29%) 12 (3.29%)

NA 5 (1.37%) 5 (1.37%)

Stage < 0.05

I 170 (28.52%) 36 (6.04%) 206 (34.56%)

II 84 (14.09%) 105 (17.62%) 189 (31.71%)

III 83 (13.93%) 71 (11.91%) 154 (25.84%)

IV 4 (0.67%) 19 (3.19%) 23 (3.86%)

NA 24 (4.03%) 0 24 (4.03%)

Survival Time (days)

Mean ± SD 811.93 ± 725.80 812.34 ± 418.56 812.09 ± 624.50

Median [min-max] 596.00 [1.00, 3675.00] 780.00 [10.00, 2160.00] 660.00 [1.00,3 675.00]

Survival Status < 0.05

Alive 235 (39.43%) 189 (31.71%) 424 (71.14%)

Deceased 130 (21.81%) 42 (7.05%) 172 (28.86%)
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ability using the concordance index. The TCGA cohort’s results

were obtained using multivariate and univariate methods.

Analysis of the immune infiltration

The relationship between the level of immune infiltration

realized and the ICG signature was determined using data

from the Tumor Immune Estimation Resource (TIMER 2.0;

http://timer.cistrome.org/) and CIBERSORTx (https://

cibersortx.stanford.edu). They assess the score of immune

infiltrating cells from each TCGA and ICGC cohort sample.

The results were obtained for each of the TCGA and ICGC

cohort samples. Several methods, including CIBERSORTx

algorithm, (Newman et al., 2019), MCPCOUNTER, (Becht

et al., 2016), TIMER 2.0, (Li et al., 2016), EPIC, (Racle et al.,

2017), xCELL, (Aran et al., 2017), and QUANTISEQ,

(Finotello et al., 2019), were used to analyze the

relationship between the immune cell infiltration levels

and risk scores. The Immuno-Oncology Biological

Research (IOBR) package was used to calculate the

infiltration scores of immune cells [including macrophages,

FIGURE 1
The flowchart of the overall study.
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CD4+ T cell, B cell, neutrophils, CD8+ T cell, and dendritic

cell (DC)]. The expression level of each gene was analyzed to

determine the infiltration scores for every patient in the

TCGA-LIHC database. Pearson’s correlation coefficient

was used to determine the correlation for each signature

gene. The “psych” package in R was used to generate the

results. Finally, the Wilcoxon test was used to compare the

difference in immune checkpoints between the two groups.

P < 0.05 was accepted as statistically significant.

Function enrichment analysis

The potential molecular mechanisms and biological

functions of the ICG signature were analyzed using the Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis. The differentially expressed genes (DEGs) for the two

groups (high- and low-risk group) were extracted in the limma R

package with FDR < 0.05 and |log2FoldChange| >1. The

“enrichplot,” “org.Hs.eg.db,” and “clusterProfiler” packages

were used for KEGG analysis (statistical significance: p and

q < 0.05). The gene set enrichment analysis (GSEA) method

was used to understand the enriched pathways in both groups.

The molecular signature dataset was analyzed using Java GSEA v.

4.2.2 and h. all.v7.5.1 symbols. gmt [Hallmarks] (threshold

criteria: |NES| > 1 and FDR < 0.05).

Assessing the clinical significance of the
prognostic signature

The “pRRophetic” package was used to determine the drug

sensitivity of each sample. The Cancer Genome Project database

(https://www.sanger.ac.uk/) was used to analyze the relationship

between risk score and drug sensitivity. The analysis was

conducted in R using the “pRRophetic” package (p-value < 0.

05). Simulation studies were conducted using the Tumor

Immune Dysfunction and Exclusion (TIDE) algorithm (http://

tide.dfci.harvard.edu/) to understand the key mechanisms

associated with tumor immune evasion and predict the

response potential of tumor immunotherapy. This algorithm

simulates the primary mechanisms of tumor immune escape:

T cell dysfunction in tumors, cytotoxic T lymphocyte (CTL)

invasion levels, and the exclusion properties of T cells in tumors

with low levels of CTL invasion (Jiang et al., 2018). The TIDE

score, T cell dysfunction, and T cell exclusion were used to

estimate immunotherapy efficacy in the TCGA cohort, and the

same evaluation was performed in the ICGC cohort for

validation. Before TIDE analysis, the gene expression data

were normalized.

Evaluation of genomic features and tumor
mutation burden

The single nucleotide variation in the Masked Somatic

Mutation type in TCGA-LIHC was downloaded and

converted to the mutation annotation format to build

waterfall diagrams to visualize gene mutation frequency using

the “maftools” package. The differences in TMB realized in the

low- and high-risk groups were also studied; p < 0.05 was used as

the significant difference threshold. The comprehensive survival

analysis was carried out based on the TMB level (high- and low-

TMB group) and risk score (high- and low-risk group; statistical

significance: p < 0.05).

Statistical analysis

The Pearson’s or Spearman’s rank coefficients of correlation

were used to investigate the relationship between variables. The

continuous variables and normal distributions recorded for the

two groups were compared using a t-test or Mann-Whitney U

test. The categorical variables were compared using Fisher’s exact

or Chi-squared tests. The Kaplan-Meier (K-M) method was used

to plot receiver operating characteristic (ROC) curves. The

statistical significance was determined using log-rank tests.

Using multivariate and univariate Cox regression analyses,

independent predictors of overall survival (OS) time were

identified. R versions 3.6.1 and 4.1.1 were used to conduct

statistical analyses (statistical significance: p < 0.05).

Results

Identification of prognostic immune
checkpoint genes based on differentially
expressed cuproptosis-related genes

Differential expression of 11 genes associated with

cuproptosis was observed in the TCGA cohort. Eight of

these genes were upregulated, and three were

downregulated (Supplementary Figure S1A). Thirty-nine

immune checkpoint genes were correlated with DECGs

(Supplementary Figure S1B). Seven genes related to

prognosis were screened out of the 39 genes using the

univariate Cox regression analysis method (Figure 2A). The

K-M analysis method was used to assess the prognostic

significance of the expression levels of these seven genes.

High levels of CD276, LGALS9, SIRPA, BTN2A1, and

TNFRSF4 genes and low levels of CD40LG and BTNL9

genes reflected poor patient prognosis (Figures 2B–H).
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Prognostic signature construction

The seven prognostic gene-based prognostic signature was

developed using LASSO-Cox regression analysis. The optimal λ
value was used to determine the prognostic signature of five

genes (BTNL9, SIRPA, TNFRSF4, CD40LG, and BTN2A1)

(Figures 3A,B). Each sample’s risk score was calculated using

the risk score equation (Risk Score = -0.233700910650553 *

BTNL9 + 0.137008446999748 * SIRPA + 0.278119160353374 *

TNFRSF4—0.656319252714311 * CD40LG +

0.217796049191113 * BTN2A1). Based on the median cut-off

value, the TCGA cohort was divided into two groups (low-risk:

n = 183; high-risk: n = 182). Figure 3C presents the significant

differences in overall survival (OS) between the two groups (p <
0.001). K-M analysis was conducted on patients belonging to

different subgroups (stages: I–II and III–IV; grades: 1–2 and

3–4; T stages: I–II and III–IV, age ≤ 60). The results indicated

that the signature could distinguish between high- and low-risk

groups in different subgroups (p < 0.05, Figures 3D–K). The

prognostic curve, risk plot, and heatmap show the relationship

between risk score, survival status, and signature gene

expression (Figure 4A). The heatmap presenting the

expression profiles of signature genes was scrutinized. The

results showed that the expression levels of TNFRSF4,

SIRPA, and BTN2A1 genes in the high-risk group were

higher than those in the low-risk group. It was also observed

that the expression levels of BTNL9 and CD40LG genes in the

low-risk group were higher than those in the high-risk

group. The t-SNE analysis and PCA methods yielded a two-

way distribution for patients in different risk groups (Figures

4B,C). The accuracy of the risk scores was determined by

analyzing the time-dependent ROC curves (Figure 4D). For

the TCGA cohort, the area under curves (AUC) associated with

the survival rates were calculated (1-year: 0.71; 3-year: 0.71; and

5-year: 0.77).

The correlation heatmap was constructed, and the

relationship between signature genes and DECGs was

examined. As shown in Figure 4E, all the signature genes

FIGURE 2
Screening of cuproptosis-related immune checkpoint genes (ICGs) related to the prognosis of hepatocellular carcinoma (HCC) patients. (A)
Univariate analysis shows that cuproptosis-related ICGs, including CD276, LGALS9, CD40LG, BTNL9, SIRPA, BTN2A1, and TNFRSF4 genes, were
associated with the prognosis of HCC patients. (B–H) Kaplan-Meier analysis of cuproptosis-related ICGs related to prognosis.
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had a significant correlation with LIPT1 gene expression (p <
0.05), and high levels of the LIPT1 gene were associated with a

poor prognosis (p < 0.05; Figure 4F).

Validating the 5-gene signature
prognostic value

The ICGC cohort samples were scored using the same

method as the TCGA cohort samples, and the high- and low-

risk samples were then categorized using the TCGA

cohort’s median cut-off value. The K-M analysis revealed a

significant difference in OS between low-risk and high-risk

groups (p < 0.001, Figure 5A). A significant difference in OS

was also observed when the K-M analysis method was used to

analyze the various subgroups of the ICGC cohort. Gender, age,

and tumor stage of the patients were investigated in the low- and

high-risk groups (p < 0.05, Supplementary Figures S2A–F). PCA

and t-SNE analysis for the ICGC cohort also showed a two-way

distribution of patients into two groups (Figures 5B,C). The

prognostic curve, risk plot, and heatmap analysis revealed that

the number of deaths in the high-risk group was significantly

higher, and the expression of signature genes observed in the two

groups was comparable to that obtained from the TCGA

database (Figure 5D). The AUC values for the ICGC cohort

were recorded (1-year: 0.78; 2-year: 0.69; and 3-year: 0.70)

(Figure 5E). In addition, the patient’s baseline characteristics

were determined and compared (Tables 2,3). Patients in the

high-risk group were more likely to be at an advanced stage

(p < 0.01).

Multivariate and univariate Cox regression analyses were

conducted to determine if our signature is independent of

FIGURE 3
Identifying a prognostic signature based on five cuproptosis-related immune checkpoint genes (ICGs) and their prognostic value. (A,B) LASSO
Cox regression with 10% discount cross-validation for developing a prognostic signature. (C) Kaplan-Meier (K–M) analysis of high- and low-risk
groups in the TCGA cohort. (D–K) K–M analysis of high- and low-risk groups in different subgroups of the TCGA cohort.
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other clinical parameters. The TCGA cohort was studied using

the univariate Cox regression analysis method. Correlation

between the OS and the risk score was recorded (p < 0.001;

hazard ratio (HR) = 3.933; 95% confidence interval (CI) =

2.399–6.450) (Figure 5F). The multivariate Cox regression

analysis method revealed that the signature was an

FIGURE 4
Evaluation of the prognostic signature in the TCGA cohort and the expression of cuproptosis-related genes. (A) The distribution of the patient’s
risk scores, survival status, and the expression of signature genes for high- and low-risk groups in the TCGA cohort. (B) and (C) The principal
component analysis and t-distributed stochastic neighbor embedding analysis of patients in different risk groups in the TCGA cohort. (D) The
receiver operating characteristic curves of the prognostic signature for predicting 1-, 3-, and 5-year survival rates of patients in the TCGA
cohort. (E) Heat map showing the co-expression relationship of differentially expressed cuproptosis-related genes and signature genes. (F) Kaplan-
Meier analysis of the prognostic value of the LIPT1 gene.
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FIGURE 5
Evaluation of the prognostic signature in the ICGC cohort and the prognostic value in two cohorts. (A) Kaplan-Meier analysis of high- and low-
risk groups in ICGC cohort. (B) and (C) The principal component analysis and t-distributed stochastic neighbor embedding analysis of patients in
different risk groups, in the ICGC cohort. (D) The distribution of the patient’s risk scores, survival status, and the expression of signature genes for
high- and low-risk groups in the ICGC cohort. (E) The receiver operating characteristic curves of the prognostic signature for predicting 1-, 2-,
and 3-year survival rates of patients in the ICGC cohort. Univariate and multivariate Cox regression analyses show the risk score as an independent
prognostic factor (F) and (H) in the TCGA cohort and (G) and (I) in the ICGC cohort.
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independent predictor of survival (p < 0.001; HR = 3.003; 95%

CI = 1.792–5.033) (Figure 5H). Similarly, the ICGC cohort

was studied. The univariate (p < 0.001; HR = 3.515; 95%; CI =

1.860–6.643) (Figure 5G) and multivariate Cox regression

analyses (p < 0.01; HR = 2.627; 95% CI = 1.272–5.425)

(Figure 5I) results were used to determine the nature of the

signature. Our signature was found to be an independent

predictor of OS. Further, ROC curves were generated using a

combination of the data on stage and the risk score to

determine sensitivity and specificity. The value of AUC was

increased in the TCGA and ICGC cohorts (Supplementary

Figures S3A,B). The construction of the nomogram also

confirmed the result, with the risk score having the most

weight in the nomogram that predicts the 1-, 3-, and 5-year

survival rates (Supplementary Figures S3C,D). The

concordance index further confirmed the signature’s

predictive ability (Supplementary Figure S3E).

Immune infiltrate analysis

Several algorithms were used to investigate the association

between immune cell infiltration level and the signature

(Figures 6A–H). The infiltration of Treg cells,

M0 macrophages, type 2 helper T cells (Th2 cells), and

follicular helper T cells were positively correlated with the

risk score (p < 0.05). A negative correlation was observed for

the infiltration levels of neutrophils, NK cells, memory resting

CD4+ T cells, and naive B cells (p < 0.05). The ICGC cohort’s

results were verified under the same algorithms (Figures

6I–P). The results of immune infiltration analysis obtained

by different algorithms are summarized in Supplementary

Figures S4A,B. Given the clinical significance of immune

checkpoint blockade-based immune therapy in HCC, the

correlation between the immune checkpoints and the risk

score was investigated further. In the TCGA cohort, the high-

TABLE 2 Clinical baseline characteristics of patients with different risk groups in the TCGA cohort.

Characteristics Low-risk (n = 183) High-risk (n = 182) Total (n = 365) p-value

Age 1

> 60 96 (26.30%) 96 (26.30%) 192 (52.60%)

≤ 60 87 (23.84%) 86 (23.56%) 173 (47.40%)

Gender 0.11

Female 52 (14.25%) 67 (18.36%) 119 (32.60%)

Male 131 (35.89%) 115 (31.51%) 246 (67.40%)

Grade < 0.01

Grade 1–2 133 (36.44%) 97 (26.58%) 230 (63.01%)

Grade 3–4 47 (12.88%) 83 (22.74%) 130 (35.62%)

NA 3 (0.82%) 2 (0.55%) 5 (1.37%)

Stage < 0.01

I–II 140 (38.36%) 114 (31.23%) 254 (69.59%)

III–IV 33 (9.04%) 54 (14.79%) 87 (23.84%)

NA 10 (2.74%) 14 (3.84%) 24 (6.58%)

TABLE 3 Clinical baseline characteristics of patients with different risk groups in the ICGC cohort.

Characteristics Low-risk (n = 143) High-risk (n = 88) Total (n = 231) p-value

Gender 0.59

Female 40 (17.32%) 21 (9.09%) 61 (26.41%)

Male 103 (44.59%) 67 (29.00%) 170 (73.59%)

Age 1

> 60 113 (48.92%) 69 (29.87%) 182 (78.79%)

≤60 30 (12.99%) 19 (8.23%) 49 (21.21%)

Stage < 0.001

I–II 106 (45.89%) 35 (15.15%) 141 (61.04%)

III–IV 37 (16.02%) 53 (22.94%) 90 (38.96%)
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FIGURE 6
Correlation between the signature and the immunemicroenvironment. The infiltration of (A) Tregs cells, (B)M0macrophages, (C) Th2 cells, and
(D) follicular helper T cells were positively related to risk scores in the TCGA and (I–L) ICGC cohorts, respectively. The infiltration of (E) neutrophils, (F)
NK cells, (G) memory resting CD4+ T cells, and (H) naive B cells were negatively related to risk scores in the TCGA and ICGC (M–P) cohorts,
respectively. The expression of immune checkpoints in high- and low-risk groups, in (Q) TCGA and (R) ICGC cohorts. The upper and lower ends
of the boxes indicate the interquartile range. Lines in the boxes indicate median values, and black dots show outliers. * p < 0.05; ** p < 0.01; *** p <
0.001; ns, no statistical significance.
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FIGURE 7
The correlation between the expression of signature genes and immune cell infiltration. The expression of (A) BTN2A1, (B) TNFRSF4, (C) SIRPA,
(D) CD40LG, and (F) LIPT1 genes was positively correlated with immune cell infiltration. The expression of the (E) BTNL9 gene was negatively
correlated with immune cell infiltration.
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risk group had significantly higher PDCD1 and CTLA4 gene

expression levels than the low-risk group (p < 0.05;

Figure 6Q). The ICGC cohort was analyzed, yielding

similar results (Figure 6R). The relationship between the

levels of expression of each signature gene and the level of

immune cell infiltration was analyzed further. Figure 7

presents a positive correlation between the levels of

expression of BTN2A1, TNFRSF4, SIRPA, CD40LG genes,

and immune cells infiltration levels, while the BTNL9 gene

expression level was negatively correlated (Figures 7A–E).

Furthermore, the expression levels of the LIPT1 gene were

positively correlated with immune cell infiltration (Figure 7F).

These findings demonstrated the prognostic signature’s

robustness and association with the tumor immune cell

infiltration level.

Function enrichment analysis based on
the prognostic signature

The GSEA analysis revealed that the hallmark tumor-related

pathways were primarily associated with the high-risk group, as

shown in Supplementary Figure S4C. The pathways studied were

PI3K-AKT-mTOR signaling, glycolysis, Wnt/beta-catenin

signaling, and unfolded protein response pathways (Figures

8A–D). Bile acid and xenobiotic metabolism influenced the

low-risk group (Supplementary Figure S4C).

A total of 637 DEGs were screened out. KEGG analysis

revealed that the DEGs associated with the two groups were

enriched in seventeen pathways (Supplementary Figure S4D,

Supplementary Table S1), including glycolysis, cell cycle,

tyrosine metabolism, and ECM-receptor interaction.

Therefore, the findings demonstrated the biological

significance of the prognostic gene signature.

Analysis of the sensitivity of systemic
therapy and immunotherapy

The half-maximal inhibitory concentration (IC50 value) of

the first- and second-line targeted therapy methods was

calculated using drug sensitivity analysis (Zhang et al., 2022).

The most commonly used chemotherapeutics for HCC were also

investigated. According to the findings, the IC50 value for

erlotinib was lower in the low-risk group (p < 0.05,

Figure 9H), whereas the IC50 values for sorafenib,

vinorelbine, sunitinib, 5-fluorouracil, XL-184 (cabozantinib),

mitomycin C, and doxorubicin were lower in the high-risk

group (Figures 9A–G; p < 0.05) in the TCGA cohort. The

ICGC cohort yielded comparable results (Supplementary

Figures S5A–H).

TIDE score is calculated by assessing the T cell dysfunction

and exclusion parameters, and it can predict tumor response to

immune checkpoint inhibitors (ICIs). The TIDE scores were

analyzed to determine the model’s accuracy in predicting the

efficacy of immunotherapy. Figure 9I shows the TIDE scores for

the groups, which indicated that high-risk group patients might

have a poor response to immunotherapy (p < 0.001), and the

results were confirmed for the ICGC cohort (p < 0.001,

Supplementary Figure S5I). Furthermore, the characteristics of

T cell exclusion and the myeloid-derived suppressor cells

(MDSC) were analyzed, and the results are presented (p <
0.001, Figure 9I, Supplementary Figure S5I). Both cohorts had

a positive correlation between the TIDE score, level of T cell

exclusion realized, MDSC, and risk score (p < 0.01, Figure 9J,

Supplementary Figure S5J).

Overall, the prognostic signature correlated with systemic

therapy and immunotherapy response. This can aid scientists

and clinicians in developing treatment methods based on

patients’ sensitivity to targeted therapy and immunotherapy.

FIGURE 8
Gene set enrichment analysis of the cuproptosis-related ICG signature. (A–D) Four remarkably enriched tumor-associated HALLMARK
pathways in the high-risk group.
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Evaluation of genomic features and tumor
mutation burden

The optimal cut-off value for classifying the samples into

low- and high-TMB groups was determined. TMB levels were

higher (p < 0.05) in the high-risk group than in the low-risk

group (Supplementary Figure S6A). The survival rate in the low-

TMB group was higher than in the high-TMB group (p < 0.05,

Supplementary Figure S6B). A comprehensive survival analysis

method was used for the risk score and TMB parameters

(Supplementary Figure S6C), and patients with low TMB in

the low-risk group had the best prognosis. The gene mutations

were visualized as waterfall diagrams. Supplementary Figures

S6D,E show that the low-risk group had a lower mutation rate

(the top 15 genes) than the high-risk group. Both groups carried

themissense mutation. The high-risk group had the highest TP53

gene mutation frequency, while the low-risk group had the

highest CTNNB1 gene mutation frequency.

Discussion

Most HCC patients are diagnosed at an advanced stage of the

disease and thus do not benefit from radical treatment methods.

Early diagnosis prolongs survival. Many patients go undiagnosed

when they develop atypical symptoms at an early stage (Gou

FIGURE 9
Predictive analysis of the prognostic signature for systemic therapy and immunotherapy in the TCGA cohort. (A–H) The half-maximal inhibitory
concentration (IC50) of drugs for targeted therapy and chemotherapy in high- and low-risk groups in the TCGA cohort. (I) The Tumor Immune
Dysfunction and Exclusion scores of high- and low-risk groups in the TCGA cohort. (J)Correlation analysis between risk score and TIDE score in the
TCGA cohort. The upper and lower ends of the boxes indicate the interquartile range. Lines in the boxes indicate median values, and black dots
show outliers. *p < 0.05; **p < 0.01; ***p < 0.001; ns, no statistical significance.
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et al., 2019). Despite the promising results, only a few patients

benefit from ICI-based immunotherapy. Under normal

circumstances, the host immune system, mainly cytotoxic T

lymphocytes (CTLs) and NK cells, can target and eliminate

the malignantly transformed cells (Schumacher and Schreiber,

2015). However, the immune response is tightly regulated by a

variety of activating and inhibiting mechanisms to prevent

autoimmune events and maintain immune dynamic balance.

As the main pathway to regulate the immune response, the

immune checkpoints (ICs) signaling pathway will be activated,

when the IC receptors, which are expressed on CTL and NK cells,

interact with the IC ligands, which are expressed on tumor cells

or immunosuppressive cells. At this time, the cytotoxicity and

immune surveillance were suppressed, leading to tumor immune

evasion (Kim et al., 2016). In addition, tumors can also restrain

anti-tumor immunity by up-regulating the expression of ICs,

resulting in an immunosuppressive tumor microenvironment

(Wang et al., 2017). Cuproptosis-induced cell death has recently

received much attention, but few studies have investigated the

association between cuproptosis, prognosis, and anti-tumor

immunity in HCC. The findings show that ICGs co-express

with CRGs. A prognostic model based on five cuproptosis-

related ICGs was established to investigate the relationship

between gene expression signatures, prognosis, and anti-tumor

immunity in HCC. Furthermore, the related signaling pathways

were investigated, and the sensitivity to systematic therapy in

patients with different expression signatures was assessed to

better understand the differences in anti-tumor immunity in

patients. Finally, the genetic variations were evaluated, including

somatic mutations and their characteristics.

The TCGA-LIHC cohort was divided into two groups. The

groups were established based on the expression levels of the five

cuproptosis-related ICGs (CD40LG, TNFRSF4, SIRPA, BTN2A1,

and BTNL9). We recorded poor prognoses for high-risk patients.

The findings were confirmed for the ICGC cohort. Lower levels

of expression of CD40LG, which is expressed on the CD4+ helper

T cells as a co-stimulatory molecule, are observed in cancer

patients, indicating an impaired immune response (Cai et al.,

2021). Researchers have reported that CD40LG has a potent anti-

tumor effect, which can be attributed to the CD40L–CD40LG

interactions and can induce anti-tumor immunity by eliminating

tumor-specific CD4+ and CD8+ tolerance (Sotomayor et al., 1999;

Schmitz et al., 2001). TNFRSF4, a co-stimulatory receptor

expressed by Tregs, can bind to OX40L and activate the NF-

kB pathway (Song et al., 2008). Increased TNRSF4 expression

levels in HCC patients were associated with vascular invasion,

high serum alpha-fetoprotein levels, and a poor prognosis (Xie

et al., 2018). Pan et al. (Pan et al., 2013) indicated that SIRPA, an

inhibitory molecule expressed by myeloid cells, is a crucial

modulator in tumor-polarized macrophages. These could be

potential therapeutic targets for HCC. The Vγ9Vδ2+ T cells

are also promising anti-tumor therapy targets (Rigau et al.,

2021). Cano et al. (Cano et al., 2021) reported that the

BTN2A1 gene influences Vγ9Vδ2+ T cells to mediate cytotoxic

attacks on cancer cells. The anti-BTN2A1 monoclonal antibodies

help tomitigate the cytotoxic effects of Vγ9Vδ2+ T cells on cancer

cells (Cano et al., 2021). This indicates that the BTN2A1 gene is a

potential therapeutic target. The findings show that LIPT1 and

the signature genes co-express in significant amounts. HCC

patients with high levels of LIPT1 gene expression had a poor

prognosis. LIPTI gene was also linked to immune cell infiltration.

LIPT1 gene encodes for liopyltransferase-1, which activates 2-

ketoacid dehydrogenases involved in the tricarboxylic acid cycle

(TCA cycle) (Ni et al., 2019; Solmonson et al., 2022).

Liopyltransferase-1 transports the lipoic acid cofactor,

including PD-ketoglutarate dehydrogenase, to the

mitochondrial 2-ketoacid dehydrogenases involved in the TCA

cycle (Solmonson et al., 2022). LIPT1 gene is also involved in

copper ionophore-induced cell death (Tsvetkov et al., 2022).

LIPT1 deficiency can cause developmental delays, epilepsy, and

broadmetabolic abnormalities (Ni et al., 2019). However, the role

of the LIPT1 gene in cancer onset and progression remains

unknown. The findings presented here shed light on the

potential role of the LIPT1 gene in cancer onset and

progression. The findings may aid in developing novel ideas

for future research.

The GSEA method investigated gene signatures, prognosis,

and anti-tumor immunity mechanisms. Cancer cells experience

an energy crisis as the extent of cell proliferation increases,

forcing them to undergo metabolic reprogramming. (Dimri

et al., 2020). Glycolysis is a critical metabolic pathway. It

regulates proliferation, immune evasion, cell invasion,

metastasis, angiogenesis, and drug resistance (Feng et al.,

2020). Promoting the PI3K/AKT/mTOR pathway improves

glucose transporter levels, increasing the rate of glycolysis,

which promotes cancer progression (Dimri et al., 2020).

Stress from the abnormal accumulation of unfolded or

misfolded proteins inside the endoplasmic reticulum (ER)

significantly affects the progression of diseases such as cancer

and diabetes. The unfolded protein response (UPR) pathway

monitors the processes involved in endoplasmic reticulum

protein homeostasis (Hetz et al., 2020). Oncogenic factors

trigger ER stress and activate UPR, which can induce the

process of oncogenic transformation and promote tumor

growth, angiogenesis, and immune evasion (Hetz et al., 2020).

UPR signaling can also control immune cell functions and

differentiation. This method can also aid in establishing

crosstalk with both adaptive and innate immune responses

(Bettigole and Glimcher, 2015; Hetz et al., 2020). The

activation of the Wnt/beta-catenin signaling pathway

downregulates CCL5 expression and inhibits the DC

recruitment process, resulting in increased resistance to ICIs

and immune response escape in HCC patients (Ruiz de Galarreta

et al., 2019). In addition, Wnt/beta-catenin signaling reduces the

expression of the NKG2D ligand in HCC cells, hindering the

generation of MHC-independent immune responses initiated by
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NK cells (Cadoux et al., 2021). These findings are consistent with

our predicted results.

Complex molecular mechanisms drive anti-tumor immunity

in HCC. The interaction of tumor cells with immune cells, and

other immunomodulators in the tumor microenvironment

determines the response to ICIs (Sia et al., 2017). The level of

LIPT1 gene expression correlated positively with the level of

immune cell infiltration. This suggests a potential association

between cuproptosis and immune infiltration levels. Tregs,

Kupffer cells (which account for 90% of liver macrophages),

monocyte-, and myeloid-derived macrophages have previously

been identified as the key cells driving the immunosuppressive

effect. In HCC patients, the functions of these cells result in the

generation of evading immune responses. They also promote

carcinogenesis and immune evasion via multiple mechanisms.

The mechanisms include the secretion of various

immunosuppressive cytokines and interleukin (IL)-10 and the

recruitment of the Tregs cells and the CD4+ T helper 17 (Th17)

cells (Llovet et al., 2022). Th2 cells, which primarily secrete IL-2

and IL-10, have been shown to promote immunosuppression,

and tumor progression and metastasis. (Zhou et al., 2021). The

results show a positive correlation between M0, Tregs, Th2 cells,

follicular helper T cells, and the risk score, suggesting

immunosuppression in high-risk group patients. These

findings are also consistent with our prediction of the TIDE

score.

Notably, it is crucial to explore the co-regulatory relationship

between CRGs and ICGs at a deeper level, as this is the

foundation of our successful clinical transformation. The

advancement of single-cell multi-omics technologies is

promising. Recent research has proposed a novel algorithm,

the Single-cell Multi-omics Gene co-Regulatory algorithm

(SMGR), (Song et al., 2022), which is efficient for identifying

co-regulatory programs and is useful in determining molecular

mechanisms and providing accurate targets. The single-cell

multi-omics is the trend of molecular research in the future,

and we look forward to more brand-new technologies that can

inspire us.

There are a few limitations to the study. The findings

presented here are based on bioinformatics analysis and lack

experimental and clinical validation. Second, the reported direct

relationship between cuproptosis, prognosis, and anti-tumor

immunity in HCC patients need to be validated further.

Conclusion

In conclusion, a novel cuproptosis-related ICG signature

was developed for effective prognosis prediction beginning

with ICGs that are co-expressed with CRGs. The immune

response of HCC patients could also be predicted. Further

research was conducted to explore the signaling pathways

involved in the immune responses, cuproptosis, and level of

immune infiltration. The findings presented here could aid in

developing individualized treatment plans for HCC patients.

It also contributes to a better understanding of the role of

cuproptosis in patients’ prognosis and the development of

anti-tumor immunity in HCC patients.
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SUPPLEMENTARY FIGURE S1
(A) The heatmap shows the differentially expressed cuproptosis-related
genes (DECGs) between paracancerous and cancerous tissues in the
TCGA cohort. (B) The Cytoscape visualizes the co-expressive
relationship between DECGs and immune checkpoint genes.

SUPPLEMENTARY FIGURE S2
(A–F) Kaplan-Meier analysis of high- and low-risk groups in different
subgroups of the ICGC cohort.

SUPPLEMENTARY FIGURE S3
Evaluation of the prognostic value of the signature. The receiver
operating characteristic curves of the prognostic signature combined
with the stages for (A) Predicting 1-, 3-, and 5-year survival rates of
patients in the TCGA cohort and (B) predicting 1-, 2-, and 3-year survival
rates of patients in the ICGC cohort. (C) The nomogramwas constructed
using the combination of risk score, age, gender, grade and stages. (D)
The calibration curve of the nomogram. (E) The concordance index of
risk score and other clinical parameters.

SUPPLEMENTARY FIGURE S4
Immune infiltration analysis, gene set and functional enrichment analysis
of the prognostic signature. (A) and (B) Analysis of immune infiltration

under different algorithms for TCGA and ICGC respectively. (C) The
gene set enrichment analysis of high- and low-risk groups. (D) The Kyoto
Encyclopedia of Genes and Genomes enrichment analysis of the
signature.

SUPPLEMENTARY FIGURE S5
Predictive analysis of the prognostic signature for systemic therapy and
immunotherapy in the ICGC cohort. (A–H) The half-maximal inhibitory
concentration (IC50) of targeted therapy and chemotherapy drugs in
the ICGC cohort’s high- and low-risk groups in the ICGC cohort. (I) The
Tumor Immune Dysfunction and Exclusion (TIDE) score of the ICGC
cohort’s high- and low-risk groups. (J) Correlation analysis between
risk score and TIDE score in the ICGC cohort. The upper and lower ends
of the boxes indicate the interquartile range. Lines in the boxes indicate
median values, and black dots show outliers. *p < 0.05; **p < 0.01;
***p < 0.001; ns, no statistical significance.

SUPPLEMENTARY FIGURE S6
Evaluation of genomic features and tumor mutational burden (TMB). (A)
TMB levels in high- and low-risk groups. (B) and (C) Kaplan-Meier
analysis of patients with different TMB subgroups. The waterfall
diagrams show the situation of gene mutations in the (D) high-risk group
and (E) low-risk group.
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