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With the developments of nanobiotechnology and nanomedicine, non-invasive thermal
ablation with fewer side effects than traditional tumor treatment methods has received
extensive attention in tumor treatment. Non-invasive thermal ablation has the advantages
of non-invasiveness and fewer side effects compared with traditional treatment methods.
However, the clinical efficiency and biological safety are low, which limits their clinical
application. Transition-metal based nanomaterials as contrast agents have aroused
increasing interest due to its unique optical properties, low toxicity, and high potentials
in tumor diagnosis. Transition-metal based nanomaterials have high conversion efficiency
of converting light energy into heat energy, good near-infrared absorption characteristics,
which also can targetedly deliver those loaded drugs to tumor tissue, thereby improving
the therapeutic effect and reducing the damage to the surrounding normal tissues and
organs. This article mainly reviews the synthesis of transition-metal based nanomaterials in
recent years, and discussed their applications in tumor thermal ablation and diagnosis,
hopefully guiding the development of new transition metal-based nanomaterials in
enhancing thermal ablation.

Keywords: transition-metal based nanomaterials, non-invasive thermal ablation, nanomedicine, imaging diagnosis,
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INTRODUCTION

Population growth and aging have led to high mortality and morbidity rates of cancer, becoming one
of the main factors endangering physical and mental health (Bray et al., 2018). Tumors in humans
result from the accumulation of mutations in cells’ DNA genes, disrupting the mechanisms that
regulate cell division and cell death, resulting in the uncontrolled proliferation of dysfunctional cells
(Alexandrov et al., 2013). Despite significant success in anti-tumor research, traditional treatment
methods have limitations such as various adverse reactions, poor specificity and inducible drug
resistance. Therefore, it is imperative to find more effective tumor treatment and diagnosis methods
to reduce the economic burden of patients caused by cancer and improve their life quality. Recently,
nanobiotechnology in the field of treating and diagnosing tumors have raised concerns, which is
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equipped with higher efficacy and safety than traditional
treatment methods, holding great potentials in clinical
transition (Shi et al., 2017).

Transition metals belong to groups 3–12 in the periodic table
and are d-block elements with filled electron orbits, which can
combine with other elements to form complex structures.
Transition-metal based nanomaterials especially after
combining metal atoms with surrounding anions or molecules
(Xu M. et al., 2021) have received much attention due to their
high photothermal conversion efficiency, low cytotoxicity, good
photothermal stability, abundant elemental composition, and
good biocompatibility (Zhao et al., 2018). They are more
suitable as photo-thermal energy converters than molecular
optical absorbers due to their plasmonic properties and high
optical and thermal stabilities (Lapotko, 2009), making them
promising candidates for tumor therapy and diagnosis.

Traditional tumor treatments such as chemotherapy,
radiotherapy, and surgery still serve as the first-line treatment

methods. However, they cause significant trauma to the body and
fail to effectively prevent tumor recurrence and metastasis (Wang
et al., 2020). Non-invasive thermal tumor ablation can selectively
destroy multiple tumor foci, resulting in coagulative necrosis of
tumor tissues, which is regarded to be a more attractive and
logical treatment approach (Goldberg et al., 2000). In addition,
tumor tissues are more sensitive to temperature than normal
tissues (Chu and Dupuy, 2014). Currently, non-invasive thermal
ablation techniques include photothermal ablation (PTA) (Zhang
et al., 2019), radiofrequency ablation (RFA) (Zhang et al., 2016a;
Zhang et al., 2016b; Fang et al., 2019), magnetothermal ablation
(MHA), and high-intensity focused ultrasound (HIFU) (Zhang
et al., 2014; Zhang et al., 2021). Recent researches have
investigated the application of transition-metal based
nanomaterials in nanomedicine (Chimene et al., 2015).
Desirable characteristics such as high near-infrared (NIR)
absorption and good thermal conductivity enable transition-
metal based nanomaterials to be widely used in biosensors

FIGURE 1 | Schematic diagram of biomedical applications of transition-metal based nanomaterials.
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(Wang Y. H. et al., 2017), multimodal imaging, drug delivery
(Jahangirian et al., 2019), PTA (Liu Y. et al., 2019), and MHA
(Chang et al., 2021). These appealing properties adequately
guarantee the high efficacy of non-invasive thermal ablation
against tumors via increasing the ablation temperature and
destroying tumor cells (Urbanova and Pumera, 2019).

This article mainly reviewed recent progress of transition-
metal based nanomaterials in non-invasive thermal ablation of
tumors, such as HIFU, PTA, and MHA (Figure 1). Their
potential in improving energy conversion efficiency is
emphasized, and their applications in imaging diagnosis was
introduced. Finally, the prospects and development directions
of transition-metal based nanomaterials were discussed.

TRANSITION-METAL BASED
NANOMATERIALS AND THEIR
PROPERTIES
Despite the successful application of cisplatin and aurein in clinics,
transition-metal based nanomaterials have become a promising
vehicle to deliver these drugs and have attracted much attention
in the diagnosis and treatment of cancer (Luo et al., 2021). According
to the definition by the International Union of Pure and Applied
Chemistry, transition metals have atoms with incomplete d subshell,
common cation, or free atom (Figure 2).

Properties of Transition Metal
Dichalcogenides
Transition Metal Dichalcogenides (TMDCs), denoted as MX2,
are composed of transition metals; M denotes a group 4–7

element (such as Mo, W, Ta, Nb, and Mn), and X denotes
chalcogens (such as S and Se) (Yun et al., 2020). The different
structural compositions of TMDCs give them different
properties, such as metals (NbS2, VSe2), semiconductors
(MoS2, WS2), insulators (HfS), semi-metals (WTe2, TiSe2),
and even superconductors (NbSe2, TaS2) (Zhang et al., 2018),
for applications in different biological fields.

TMDCs have one layer of metal atoms sandwiched between
two layers of chalcogen atoms. The van der Waals forces
between the transition metals and sulfur atoms are weak.
targeted delivery (Li et al., 2017). The high photothermal
conversion efficiency (62.5%) of TMDC nanoparticles in the
NIR region (650–900 nm) with strong absorption is of great
significance for photoacoustic imaging (PA) and non-invasive
tumor thermal ablation (Murugan et al., 2019). TMDCs have
excellent optical and electrical properties, useful in various
biosensors for detecting environmental pollution and
bioactive molecules (Rohaizad et al., 2021). In addition, it
was found that TMDCs can directly act on the cell wall of
bacteria and destroy the vast majority of drug-resistant
bacteria, potentially replacing antibiotics in the future
(Debnath et al., 2021).

Characteristics of Transition Metal Oxides
Transition metal oxide (TMO) nanomaterials are used in cancer
treatment and diagnosis due to their unique composition,
structure, and physicochemical properties (Wen et al., 2020).
Transition metals are filled with electrons in the s orbital, while
the d orbital is vacant. Hence, TMO nanomaterials have high
dielectric constants, wide bandgaps, electronic transition, and
excellent electrical properties (Jia et al., 2020), which is
appropriate for engineering biosensors.

FIGURE 2 | Schematic diagram of the distribution of transition metal elements.
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In terms of composition, TMOs can serve as oxidants
because they contain oxygen. This allows TMOs to be
reduced and decomposed into transition metal ions in an
acidic, hypoxic tumor microenvironment with high levels of
glutathione (Yang G. et al., 2021). Therefore, transition metal
ions can be used for biological imaging, such as Mn ions-
mediated magnetic resonance imaging (MRI) (Zheng et al.,
2021). Oxygen in metal oxides can enhance the efficacy of
photodynamic therapy (Lin T. et al., 2018) and sonodynamic
therapy (SDT) (Xu Q. et al., 2021) of tumors.

Characteristics of MXenes
MXenes are expressed as Mn+1XnTx, where M is a transition
metal, and X is a carbon or nitrogen site; the maximum value of
n is 4. Tx represents a functional group (VahidMohammadi
et al., 2021). The functional group’s hydroxyl (OH), oxygen, or
fluorine hydrophilicity is different from that of other
transition-metal based nanomaterials. The advantages of
MXenes, such as good biodegradability and
biocompatibility, make it easier for use in nanomedicine
(Lin H. et al., 2018). In addition, MXenes nanomaterials
can be used as a delivery platform for anticancer drugs due
to their large surface area, low toxicity, and targeting (Shukla,
2020). Photoacoustic imaging can acquire the unique optical
properties of MXenes, and the excellent photothermal
conversion efficiency determine that they can be used as a
nanoreagent for PTT (Fu et al., 2021).

NON-INVASIVE THERMAL ABLATION
ASSISTED BY TRANSITION-METAL BASED
NANOMATERIALS
Recently, thermal ablation therapy has emerged as a novel non-
invasive treatment for localized solid malignancies by generating
high temperature at the injury site, leading to protein
denaturation, irreversible coagulative necrosis of tumor tissue,

and rapid cell death (Wang M. et al., 2019). Noninvasive thermal
tumor ablation modalities have been used clinically including
PTA, MHA, and HIFU (Figure 3).

There are many similarities between the various thermal
ablation methods. In a given lesion, the energy lost from heat
plus the energy deposition from local tissue interactions
equals the degree of coagulation necrosis (Goldberg et al.,
2000). In recent years, attention has been paid to treat tumors
using transition-metal based nanomaterials, and significant
achievements have been made in auxiliary imaging diagnosis
and cancer treatment. According to clinical demands, the
rational design of transition-metal based nanomaterials can
be endowed with special properties that increase the efficacy
of thermal ablation of tumors. Some typical transition-metal
based nanomaterials for non-invasive thermal ablation have
been summarized in Table 1.

FIGURE 3 | Schematic diagram of transition-metal based nanomaterials for noninvasive oncology thermal ablation.

TABLE 1 | Summary of transition-metal based nanomaterials for different thermal
ablation methods.

Nanomaterial Type Treatment method References

Gold nanomaterials PTA Krzysztof et al. (2019)
Anti-MG1 HNP PTA White et al. (2017)
Gold nanorods PTA Yang et al. (2020)
CuS PTA Li et al. (2010)
F-CuS PTA Jang et al. (2018)
Gold-silica nanoshells PTA Rastinehad et al. (2019)
Gold nanocages PTA Zhou et al. (2019a)
Gold nanostars PTA Yuan et al. (2012)
Prussian blue PTA Xue et al. (2017)
PdMo bimetallene PTA Bai et al. (2021)
SPIO MHA Sadhukha et al. (2013)
MgA MHA Yang et al. (2021b)
FeNPs MHA Chao et al. (2019)
MAPP HIFU Wang et al. (2013)
PLGA-coated Fe3O4 HIFU Sun et al. (2014)
Gold nanoparticle HIFU McLaughlan et al. (2017)
PFP-filled Fe-SiO2 nanoshells HIFU Liberman et al. (2014)
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Transition Metal-Based
Nanomaterials-Assisted Photothermal
Ablation
PTA treatment involves using optical absorbers, such as
copper sulfide nanoparticles, gold nanostructures, and
carbon nanomaterials, to generate heat under NIR laser
irradiation. The resulting local hyperthermia can destroy
diseased tissue cells, with little damage to natural tissues
(Goncalves et al., 2020). PTA has significant advantages
over traditional treatments, such as less invasiveness, strong
cancer cell specificity, and rapid recovery (Ban et al., 2017).
Transition-metal based nanomaterials as selective
photothermal absorbers can improve the efficiency of PTA
and reduce damage to surrounding tissues (Jaque et al., 2014).
The non-invasive performance can be further improved by
enhancing the photothermal conversion efficiency of
photothermal treatment agents (PTTAs) (Doughty et al.,
2019). PTTAs absorb light or energy and convert it into
heat, inducing local hyperthermia that promotes tumor
ablation (Yang et al., 2015). Compared with dye sensitizer
molecules, transition-metal based nanoparticles have larger
absorption cross-sections due to their strong surface plasmon
resonance effect and higher photothermal conversion
efficiency than other photothermal agents (Jain et al., 2006).

Gold nanomaterials (GNPs) are one of the widely used PTTAs
due to their excellent photothermal conversion and ability to
convert absorbed NIR light into heat to induce high local
hyperthermia, low toxicity, and biocompatibility (Cheng et al.,
2014; Xing et al., 2016; Gupta and Malviya, 2021). GNPs absorb
incident photons and convert them into heat energy to increase
the temperature locally, leading to cell death. GNPs can achieve
high light absorption efficiency at lower radiant energy, ensuring
high-efficient PTA (Krzysztof et al., 2019). White et al.
constructed anti-MG1 conjugated hybrid magnetic gold
nanoparticles. Their strong NIR absorption peak at 800 nm
make it possible to target NIR PTA of tumors and proved to
have a catalytic role in PTA, greatly improving tumor ablation
efficiency (White et al., 2017). Gold nanorods (GNRs) are
considered to be ideal photothermal sensors due to their
inherently high biocompatibility, tunable localized surface
plasmon resonance peaks, and versatile surface
functionalization (Song et al., 2015). Yang et al. (2020)
validated the excellent tumor ablation ability of GNRs under
980 nm illumination in a mouse xenograft model and
demonstrated their photothermal therapy potential for tumors
in the NIR window. CuS nanoparticles, nanobiomaterials for PTA
of cancer, have the advantages of unique optical properties, low
production cost and cytotoxicity, and small size (Goel et al.,
2014). Li et al. (2010) synthesized CuS nanoparticles that can
convert light into thermal energy and validated their strong
absorption ability in the NIR region. In addition, CuS in NIR
laser irradiation can greatly improve PTAs efficiency. Jang et al.
(2018) constructed Fucoidan-coated copper sulfide nanoparticles
to improve PTA rate effectively and verified their stable
photothermal efficiency by measuring the UV-Vis absorption
spectra before and after laser irradiation.

Transition Metal-Based
Nanomaterials-Assisted Magnetothermal
Ablation
As a non-invasive local treatment strategy, MHA has received
extensive attention in recent decades.

Because magnetic nanoparticles can absorb magnetic field
energy, MHA can prevent unnecessary heating of surrounding
healthy tissues, making it a promising tumor treatment
modality (Thiesen and Jordan, 2008; Wang F. et al., 2017).
The need for a magnetocaloric agent to induce heating effect,
and the absence of tissue penetration limit in the used
magnetic field, allows precise ablation of deep tumors (Yan
et al., 2005). When the resistivity of the conductor is small (as
in metals), the eddy currents induced by the alternating
magnetic field (AMF) will be strong, and the resulting heat
generated will be large. Therefore, transition-metal based
nanomaterials make a strong, promising magnetic material,
useful for magnetocaloric ablation (Muranaka et al., 2007).

The heat generated by iron peroxide nanoparticles (SPIO)
in an oscillating radio frequency field is due to the hysteresis
loss or Brownian rotation of the nanoparticles and depends on
the oscillating magnetic field frequency. Under an applied
electric field, the dipole interaction between adjacent
particles increases the anisotropy; the concentration of
nanoparticles can also lead to better heating performance
(Chandrasekharan et al., 2020). Sadhukha et al. (2013)
developed inhalable superparamagnetic iron oxide
nanoparticles that were chelated with target-specific
epidermal growth factor receptor for realizing targeted
SPIOs accumulation in tumor, increasing thermal energy
production and monitoring tumor ablation under MHT.

Many currently used magnetic nanoparticles, such as iron
oxide, require strong AMFs for effective heating, while safer and
more effective magnetocaloric formulations are required for
tumor ablation therapy (Albarqi et al., 2019). Magnesium alloy
(MgA) with excellent in vivo biocompatibility, biodegradability,
and low elastic modulus, was widely used in clinical practice (Lin
et al., 2019). Yang N. et al. (2021) verified that the MgA rods
under magnetorheological fluid showed a significant temperature
increase and MgA with a strong vortex thermal effect could
effectively improve tumor PTA under a low magnetic field. Chao
et al. (2019) found that pure iron nanoparticles (FeNPs) modified
with polymers such as polyethylene glycol (PEG), stable in
aqueous solution, can be used as an ultra-efficient magnetic
material with sufficient heating under low-power AMF to
achieve effective MHA. In addition, local injection of FeNPs-
based nanomaterials for MHA can generate immune memory
effect, inhibit tumor metastasis and prevent tumor recurrence.

Transition Metal-Based
Nanomaterial-Assisted High-Intensity
Focused Ultrasound Ablation
HIFU that has been widely used in clinical practice can
significantly reduce damages to the surrounding tissue with
precise transfer of heat energy to the tumor site (Bachu et al.,

Frontiers in Chemistry | www.frontiersin.org April 2022 | Volume 10 | Article 8993215

Peng et al. Transition-Metal Nanomaterials for Thermal Ablation

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


2021). This needle-free, non-ionizing and thermal ablation
tool has become a common method for non-invasive ablation
of various solid tumors, harvesting inspiring clinical results
(Wang M. et al., 2019). HIFU absorbs high acoustic energy and
focuses it on the selected area, which raises the temperature in
the tissue to above 60–65°C, resulting in protein denaturation
and irreversible tumor tissue coagulation and necrosis
(Diederich and Hynynen, 1999).

However, high-efficiency, high-power ultrasound treatment
can burn surrounding skin and healthy tissue, leading to adverse
effects. The application of ultrasound absorbers can enhance
HIFU therapy (Dibaji et al., 2014). The photothermal
conversion properties and high stability of Au nanomaterials
(AuNPs) make them suitable for HIFU (Qian et al., 2017). In
addition, AuNPs enhance the therapeutic effect of HIFU by
increasing the temperature and sound energy absorption rate
(Sadeghi-Goughari et al., 2019). Wang et al. (2013) synthesized
MSNC@Au-PFH-PEG, abb. as MAPP, using AuNPs as the
capping layer. They verified that the high thermal conductivity
and thermal efficiency of finely anchored AuNPs significantly
increase thermal energy accumulation to enhance the effect of
tumor thermal ablation. In addition, MAPP is used in enhanced
ultrasound imaging. Under the guidance, the ablation effect and
accuracy of high-frequency ultrasound can be significantly
improved.

The clinical use of HIFU is increasing, but damage to the skin
and adjacent healthy tissues cannot be ignored.
Superparamagnetic iron oxide nanoparticles (SPIONs) have
great prospects in the biomedical field, especially as ultrasound
absorbers, owing to their reliable sources and excellent
superparamagnetic properties (Wei et al., 2021). Devarakonda
et al. (as cited in Sun et al., 2014) improved the thermal ablation
effect of tumors by combining the advantages of SPIONs and
polymers to construct PLGA-coated Fe3O4 microcapsules to
enable energy deposition and enhance the absorption of
ultrasonic waves. In addition, PLGA-coated Fe3O4

microcapsules were used as MR-guided contrast agents for
improving the accuracy of tumor localization while
minimizing damage to surrounding normal tissues.

APPLICATION OF TRANSITION-METAL
BASED NANOMATERIALS IN IMAGING
DIAGNOSIS
Because some tumors have no special symptoms in the early
stages or are difficult to locate in the deep part of the body, most
tumors are advanced or have metastases when diagnosed, with a
low probability of cure. Therefore, early detection and diagnosis
of cancer can give patients a chance for early cure and long-term
survival. Currently used clinical imaging techniques, such as
photoluminescence imaging, MRI, computed tomography
(CT), positron emission tomography, ultrasound imaging, or
optical imaging, hold great promise in cancer diagnosis
(Huang et al., 2012). However, conventional contrast agents
suffer from numerous problems, such as rapid bleaching,
unsuitability for multicolor imaging, affected by the local

chemical environment, interference from their background
fluorescence, low brightness, and poor photostability (Sharma
et al., 2006), limiting successful diagnosis. Depending on their
good electrical conductivity, magnetic properties,
biocompatibility, and non-toxicity (Sundaram et al., 2020),
transition-metal-based nanomaterials can serve as contrast
agents to build a nanomedicine platform for multimodal
imaging-guided non-invasive thermal ablation such as
photoacoustic imaging (Huang et al., 2018). The birth of this
nanoplatform offers more opportunities for cancer patients to
survive. We summarized some bioimaging applications of
transition-metal based nanomaterials in Table 2.

Bioimaging Applications of Transition Metal
Dichalcogenides
We mainly introduce the latest TMDC composite nanomaterials
for bioimaging applications. Tungsten disulfide (WS2),
Molybdenum disulfide (MoS2), and titanium disulfide (TiS2)
received more attentions in bioimaging with the advantages of
catalytic performance, photoluminescence, light absorption, and
high wear resistance (Rohaizad et al., 2021). Liu L. et al. (2018)
synthesized a novel chitosan (CS)-controlled aluminum chloride
phthalocyanine (AlPc)-supported MoS2 nanocomposite
(AlPcMoS2@SiO2-CS) with high HU value of 12HU Lg−1. This
nanocomposite can solve the defects of short circulating half-life
and non-specific distribution of traditional CT contrast agents
and overcome poor tissue penetration and low sensitivity of PA
(Liu et al., 2015). With the 4T1 mouse tumor-bearing model, they
intravenously injected AlPcMoS2@SiO2-CS into mice and
recognized a strong PA signal at tumor. Therefore, AlPc-
MoS2@SiO2-CS can perform CT/PA dual-modal imaging,
which is a non-invasive method for tumors.

MRI is a non-invasive imaging technique that can
distinguish image contrast difference between normal and
diseased tissues (Iima and Bihan, 2016). Nowadays, people
use Prussian blue containing ferric ions as a T2-weighted MRI
agent to guide MHA (Zhu et al., 2015). Shao et al. (as cited in
Guan et al., 2022) synthesized a transition metal composite
nanosheet (CMPB-MoS2-PEG) composed of Cu/Mn ion-
doped Pb and MoS2 for MRI of tumors and can aggregate
at tumor sites for a long time (Figure 4A). Zhao et al. (2021)
used layered double hydroxide and bovine serum albumin
(BSA)-modified MoS2 to obtain a composite transition-metal
based nanomaterials for T1-weighted MRI. Utilizing the
characteristics of the tumor microenvironment, hypoxia,
weak acid, reducing (Watson et al., 2021), intravenous
injection of LMM@BSA clay sheets into H29 cell tumor-
bearing mice showed the significantly-enhanced in vivo MR
imaging brightness.

Multispectral photoacoustic tomography is an emerging
imaging technique that combines the advantages of optical
and ultrasound imaging with high resolution and sensitivity
(Ke et al., 2017). Wang et al. (2019c) synthesized mesoporous
dopamine (MPDA) and manganese dioxide (MnO2) onto WS2
to obtain MPDA-WS2@MnO2 nanoparticles. In 4T1 tumor-
bearing mice, CT signal increased significantly from 52 HU
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Lg−1 to 419 HU Lg−1, 30 min after administration, while the PA
signal and T1-weighted signal doubled after 12 h (Figure 4B).
This CT/MOST/MR multi-modal imaging makes transition-
metal based nanomaterials more accurate and reliable in
biological imaging (Figures 4C–E). Fu et al. (2020)
anchored iron oxide (IO) on titanium disulfide (TiS2)
nanosheets to obtain TISO nanoplatforms as T2-weighted
contrast agents for MRI, increasing the T2 relaxation rate
(R2) by 8.9 times. In addition, the NIR window (NIR-II)
irradiation increased the PA imaging amplitude by 1.58
times, and a clearer MR/PA image was obtained.

Transition Metal Oxides in Bioimaging
Applications
Compared with TMDCs, TMOs have redox and cation
exchange capabilities (Jia et al., 2020). Currently, their
research is still at a relatively nascent stage, so we will
elaborate on the application of MnO2 and TiO2 in
bioimaging, the hottest research in recent years. Fan et al.
(2021) successfully prepared Fe3O4@MnO2–Ce6/CSL
nanodiagnostic platform by loading terpenoid (CSL)/
photosensitizer Ce6 on the surface to grow Fe3O4 MnO2

nanoparticles. In Bel-7402 tumor-bearing nude mice, the
Mn and Fe ions released by the nanomaterials were found
to enhance the magnetic resonance T1 signal and weaken the

T2 signal. Moreover, the release of Ce6 can achieve
fluorescence imaging (FL) and a strong PA signal. Thus,
this triple imaging platform of MRI/FL/PA can clearly
locate the tumor. Gao et al. (2019) showed that the HU
value of WTO nanoparticles obtained by PEGylation of
W-doped TiO2 was 7.9 HU Lg−1 higher than the 6.3 HU
Lg−1 using the traditional contrast agent (iopromide), so the
CT signal become stronger. In addition, the strong absorption
in the NIR-II window makes it possible to use glycated WTO
for dual-mode imaging of CT/PA.

MXenes in Bioimaging Applications
MXenes are 2D carbides, nitrides, and carbonitrides
representing transition metals. The most distinctive feature
of MXenes is their ability to target tumor cells with minimal
cytotoxicity to nonmalignant cells (Szuplewska et al., 2020).
They are also highly conductive and magnetic, making them a
diagnostic tool for cancer (VahidMohammadi et al., 2021). Wu
et al. (2021) anchored ferrous ions on the Ti3C2 nanolayer to
obtain a multifunctional nanoplatform of Fe(II)-Ti3C2 (FTC).
They found that the MRI imaging time in MKN45 tumor-
bearing nude mice was as long as 24 h, creating a time window
for treating tumors. Liu et al. (2022) successfully synthesized
Fe3O4/MnOx–Nb2C-SP composite MXenes nanoplatform by
loading magnetic Fe3O4/MnOx on niobium carbide (Nb2C)
ultrathin nanosheets and modifying them with soybean

TABLE 2 | Summary of bioimaging applications of transition-metal based nanomaterials.

Transition-metal
based nanomaterials

Bioimaging modality References

AlPc-MoS2@SiO2-CS CT / PA/NIRF Liu et al. (2018a)
CMPB-MoS2-PEG MRI Guan et al. (2022)
LDH-MoS2 (LMM)@BSA MRI Zhao et al. (2021)
HA-MoS2 PA/FL Shin et al. (2019)
MoS2@ss-SiO2 FL/CT/MSOT Li et al. (2019)
MoS2-Au(MA)-PEG CT/PA Liu et al. (2019a)
MSNR@MoS2-HSA/Ce6 CT/FL/ MOST Yang et al. (2019)
MoS2–CuO@BSA/R837 (MCBR) CT/IR/MRI Jiang et al. (2021)
MoSe2(Gd3+)-PEG PA/MRI Pan et al. (2018)
Bi2Se3/MoSe2(Bi-M-3)@PEG-Dox CT/PT Wang et al. (2019d)
MPDA-WS2@MnO2 CT/MRI/MOST Wang et al. (2019c)
WLPD-Au25 CT/NIRF Zhou et al. (2019b)
WID@M-FA PA/NIRF Long et al. (2020)
WS2-IO/S@MO-PEG PA/MRI Yang et al. (2018)
ReS2 CT Wang et al. (2019b)
TSIO PA/MRI Fu et et al. (2020)
Cu2MnS2 MRI/MSOT Ke et al. (2017)
HPFeS2@C-TA-PEI-GOx-FA US/PA/MRI Wu et al. (2020)
CFMS-PVP PA Zhu et al. (2020)
Gd/CuS@PEI-FA-PS PA/MRI Zhang et al. (2020)
Fe3O4@MnO2–Ce6/CSL FL/PA/MRI Fan et al. (2021)
UCCM CT/MRI/UCL Ni et al. (2022)
MnO2/Ag3SbS3 PA/MRI Wang et al. (2022)
WTO-PEG PA/CT Gao et al. (2019)
B-TiO2@SiO2–HA PA Guo et al. (2021)
Fe(II)-Ti3C2 (FTC) MRI Wu et al. (2021)
Fe3O4/MnOx–Nb2C-SP MRI Liu et al. (2022)
Ti3C2Tx-Pt-PEG PA Zhu et al. (2022)
Ta4C3-IONP-SPs CT/MRI Liu et al. (2018b)
Ti3C2@Au PA/CT Tang et al. (2019)
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phospholipid. The platform injected 4T1 tumor-bearing mice
intravenously, and the results showed that the T1 signal
intensity increased by 43.21%, while the T2 signal intensity
decreased by 31.43%, achieving T1/T2 contrast-enhanced MRI
imaging.

CONCLUSION AND OUTLOOK

Nanotechnology is a new research field that has developed
rapidly in recent years. It has had a huge impact in multiple
research fields while simultaneously providing significant

FIGURE 4 | (A) T2-weighted MRI before and after injection of CMPB-MoS2-PEG. (B) T1-weighted MRI before and after injection of MPDA-WS2@MnO2. (C) The CT
value (Hounsfield units, Hu) increased linearly with the increase of the concentration. (D)CT imaging of tumor onmice before and after injection of MPDA-WS2@MnO2. (E)
MOST imaging of tumor on mice before and after injection of MPDA-WS2@MnO2. Reprinted (adapted) with permission from Guan et al. (2022).J Colloid Interface Sci.
2022, 608 (Pt 1),344–354. Copyright 2021 Elsevier Inc. Reprinted (adapted) with permission from Wang et al. (2019c). biomaterials. 2019,220,119405.Copyright
2019 Elsevier Ltd.
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challenges and opportunities. A large number of studies have
shown that transition-metal based nanomaterials can not only
effectively improve the tumor treatment effect of various
ablation techniques through various mechanisms, but also
provide the possibility for early diagnosis and treatment of
tumors, and more importantly, inhibit tumor metastasis and
prevent tumor recurrence. Transition-metal based
nanomaterials are important in medicine and pharmaceutical
sciences, mainly because of their combined catalytic and redox
properties and coordination abilities. In this paper, the
characteristics and properties of transition-metal based
nanomaterials are reviewed. Transition-metal based
nanomaterials provide accurate and efficient tumor thermal
ablation, while biological imaging can be used for early and
differential diagnosis of diseases.

Despite the attractive results of transition-metal based
nanomaterials, there are still some issues that need to be
addressed. First, the current research on transition-metal
based nanomaterials is limited, and the systematic biosafety
is not clear enough; secondly, these nanomaterials lack
sufficient targeting ability and may cause damages to
normal human tissues or cells. Although transition-metal
based nanomaterials have many problems to be solved, they
still provide unlimited potential and great chances for cancer
treatment and diagnosis, and their research progress opened
up new fields in diagnosing and treating many diseases.
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