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MOTIVATION The use of amplicon to profilemicrobial communities has generated tens of thousands of da-
tasets correlating bacterial perturbations to health and disease, but as research inches toward more com-
plex analyses using shotgunmetagenomics, it is not clear how comparable these new datasets are with the
amplicon-based findings. To answer this, we utilize a large cohort with available 16S rRNA, ITS1, and
shotgun metagenomics data and demonstrate that not only are the data generated comparable at genus
level, but they can in fact be pooled into hybrid sets capable of generating results that are indistinguishable
from those generated from using exclusively shotgun sequencing, opening the door to large meta- and
pooled analysis using the tremendous wealth of data available through 16S rRNA sequencing.
SUMMARY
In a large cohort of 1,772 participants from the Hispanic Community Health Study/Study of Latinos with over-
lapping 16SV4 rRNA gene (bacterial amplicon), ITS1 (fungal amplicon), and shotgun sequencing data, we
demonstrate that 16SV4 amplicon sequencing and shotgun metagenomics offer the same level of taxonomic
accuracy for bacteria at the genus level even at shallow sequencing depths. In contrast, for fungal taxa, we
did not observe meaningful agreements between shotgun and ITS1 amplicon results. Finally, we show that
amplicon and shotgun data can be harmonized and pooled to yield larger microbiome datasets with excellent
agreement (<1%effect sizevarianceacross three independent outcomes) usingpooledamplicon/shotgundata
compared topureshotgunmetagenomicanalysis.Thus, therearemultiple approaches tostudy themicrobiome
in epidemiological studies, and we provide a demonstration of a powerful pooling approach that will allow re-
searchers to leverage the massive amount of amplicon sequencing data generated over the last two decades.
INTRODUCTION

Utilization of the 16S rRNA gene as a target for bacterial taxo-

nomic profiling, combined with next-generation sequencing
This is an open access article under the CC BY-N
(NGS), caused a paradigm shift in the field of microbial epidemi-

ology.1 It did so by facilitating a truly scalable, high-throughput,

and culture-free approach for characterizing the human micro-

biome.2 This shift resulted in a multitude of studies being
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published on the topic of human health and the microbiome, and

nearly a billion dollars’ worth of National Institute of Health (NIH)

funding going directly toward such studies in the last decade.3

The impact of this effort resulted in the microbiome entering

mainstream medical and population-level science, with investi-

gators discovering possible links of the microbiome with

common conditions such as obesity,4 diabetes,5 brain function,

and neurological diseases,6 as well as links with cancer develop-

ment, progression, and treatment.7

Despite the ease and profound impact of 16S rRNA gene am-

plicon (16S) sequencing, as the field advances, more nuanced

information regarding the human microbiome should facilitate

new and sophisticated analyses. Amplicon sequencing builds

upon the conserved phylogenetic relationships of bacterial/

archaeal 16S ribosomal genes for taxonomic assignment at the

genus level, although in some cases, resolution to species can

be obtained.8 This is based on several approaches recently

developed to allow for single-nucleotide level resolution within

these regions.9,10 In addition, functional properties of the micro-

biome based on 16S sequencing have been developed using

algorithms such as PICRUSt11,12 that impute functional groups

based on overall properties of linked bacteria.

Shotgun metagenomic characterization of a microbial com-

munity is an alternative approach based on constructing a

random sample of the total DNA in a specimen and performing

deep sequencing. This allows for potentially detecting all DNA

genomes that are present in a sample based on depth of

sequencing. However, limitations of shotgun metagenomics

are cost and laboratory and bioinformatic technical require-

ments. Whereas a typical 16S amplicon sequencing study can

provide reproducible results with as few as a couple thousand

reads (sequenced fragments of DNA) per sample, shotgun

sequencing has traditionally necessitated millions to tens of mil-

lions of high-quality sequence reads.13–15 In addition to technical

aspects of DNA shearing, library construction, and bioinformat-

ics pipelines, there is a considerable per-sample sequencing

cost that limits the adaptation of this method. The recently

proposed approach of ‘‘shallow’’ shotgun metagenomics may

overcome the sequencing cost barrier, by allowing direct mea-

surement of the functional potential of the metagenome, as

well as species-level characterization of microbes, with

sequencing depths as low as 500,000 reads per sample.16

Nevertheless, given the large number of epidemiological studies

that have employed 16S amplicon sequencing and/or shotgun

metagenomics, it is critical to appraise the strengths, differ-

ences, and complementary nature of these methods to allow

comparison between studies and utilization of the most appro-

priate techniques.

Here, we utilize the large multi-center Hispanic Community

Health Study/Study of Latinos (HCHS/SOL) cohort, with overlap-

ping 16S V4 region (16SV4), ITS1 gene amplicon (ITS1) and

shotgun metagenomic sequence data on >1,500 participants,

to comprehensively evaluate the utility of these methods in

cohort studies. The SOL cohort is composed of approximately

13% US-born individuals, and the remainder having immigrated

to the US between adolescence (<18 years) and adulthood. We

analyze the consistency of taxonomic resolution of bacteria

and fungi between shotgun sequencing and amplicon-based
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approaches. Lastly, we show, using a release candidate Green-

genes2 database, that 16S and shotgun datasets can be pooled

within a common taxonomy and phylogeny for meta-analyses

and/or to conduct larger epidemiologic studies. This report

provides a framework for the use of amplicon and/or shotgun

metagenomic sequencing approaches for incorporation of

microbiome data into epidemiological studies.

RESULTS

Cohort and data overview
The overall plan for the processing and analysis of stool samples

from the Gut Origins of Latino Diabetes (GOLD) cohort study is

presented in Figure 1 (see STAR Methods for in-depth descrip-

tion). Amplicon (16SV4 and ITS1) and shotgun metagenomic

sequencing data were available for 1,772 baseline fecal samples

(study population described previously17). 16SV4 rRNA gene

analysis using the vsearch18 pipeline resulted in a median (SD)

of 24,980 (11,022) classified reads per sample (mean [SD] of

94.4% [2.9%] of all reads classified as bacterial); whereas,

ITS1 DADA2 pipeline yielded a median depth of 1,103 (42,680)

reads per sample (mean [SD] of 93.1% [14.6%] of all reads clas-

sified as fungal). Shotgun metagenomic recovery varied signifi-

cantly by the database used (i.e., RefSeq Rep20019–21 or the

Web of Life [WolR1]22 databases), but not by the bioinformatic

pipelines employed for the analyses (i.e., SHOGUN16 and

Woltka23 pipelines for taxonomic classification) (Figure 2A).

SHOGUN and Woltka pipelines were utilized because they are

optimized for use with shallow sequencing depths (�500,000

shotgun reads per sample).16 The Woltka-WolR1 pipeline-data-

base combination recovered the most reads, with a median (SD)

of 698,402 (489,738) reads per sample, while the SHOGUN-

Rep200 combination recovered the least reads, with a median

(SD) of 615,284 (483,037) reads per sample (p < 0.0001 for all

cross-database comparisons; p R 0.98 for cross-pipeline read

recovery comparisons, Figure 2A). The overall classification

rate for shotgun reads was comparable across all pipeline-data-

base combinations with a mean (SD) percentage for classified

(non-human) reads being 90.3% (15.4%).

Although theWolR1 database resulted in a greater recovery of

reads, it contains a narrower spectrum of microbial life, including

only genomes from bacterial and archaeal domains, whereas the

Rep200 database also includes eukaryote and viral genomes

(Figure 2B). In all pipeline-database combinations, the bacterial

component comprised >99.9% of the metagenomic sequencing

reads.

Bacterial taxonomic correlation between 16SV4 and
shotgun metagenomic sequencing
Amplicon 16SV4 rRNA gene sequencing was analyzed at

the genus level, as the information content is robust to this

taxonomic level and is less accurate when attempting to assign

species-level taxonomy.24Within the 16SV4 data, 9%of all iden-

tified operational taxonomic units (OTUs) could also be resolved

to the species level (Figure 2C), and these accounted for 34% of

the total sequencing depth (Figure 2C).

Although there were no significant differences in terms of read

recovery when using the same database with different shotgun



Figure 1. Schematic of the GOLD amplicon/shotgun analytic plan

Overview of the analyses employed in this study; also see STAR Methods section. A total of 3,297 fecal samples (from unique individuals) were available for

microbiome analyses. Of those, 1,772 were sequenced as part of the original GOLD set using 16S rRNA and ITS1 amplicon sequencing. The original 1,772

samples and an additional set of 1,525 samples were analyzed using shotgunmetagenomics in 2020. This batch was used for the pooled metagenomic analysis.
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pipelines (Figure 2A), there were variations in terms of identified

bacterial genera that emerge from each pipeline and database

(Figure 3A). Of all identified genera across the shotgun pipe-

line-database combinations, only 44% (898/2,057) were shared.

Nevertheless, these 898 shared genera accounted for �95.0%

and 99.9% of all sequencing reads when using the Rep200

database or the WolR1 database, respectively. Overall, these

analyses indicate that the taxa identified that were not in com-

mon among the shotgun metagenomic methods represent a

relatively minor proportion of the overall biomass. The shotgun

metagenomic pipelines thus largely identify the same microbial

genera, but the Woltka-Rep200 combination recovered the

most diverse set of bacterial genera (i.e., 1,797 total genera

identified).

Comparisons with the amplicon dataset revealed that 14%

(254/1,866) of the genera are shared across the 16SV4 amplicon

sequencing and the Rep200 database with either pipeline (Fig-
ure 3B). When we consider the abundance of these 254 genera

within the amplicon dataset, we found that 99.3% of the ampli-

con sequencing reads are accounted for by these genera.

Similarly, these 254 genera accounted for 91.2% and 89.2% of

the shotgun sequencing reads using the SHOGUN and Woltka

pipelines with the Rep200 database, respectively. Results were

similar when comparing the 252/1,478 shared genera between

the analyses using the 16SV4 data and theWolR1 pipeline-data-

base analyses (Figure 3C), and these genera accounted for

99.3% of the amplicon sequencing reads, and 83.9% and

82.1% of the SHOGUN-WolR1 and Woltka-WolR1 sequencing

reads, respectively. Thus, the vast majority of the biomass was

captured by all methods.

We next sought to quantify the extent of the correlation

between 16SV4 amplicon and shotgun sequencing analyses.

In order to avoid skewing the analysis due to fluctuations

inherent in rare taxa, we considered only genera that were
Cell Reports Methods 3, 100391, January 23, 2023 3
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Figure 2. Characteristics of shotgun metagenomics and amplicon sequencing analyses

(A) Figure shows the non-host metagenomic read recovery for each of the four pipeline-database combinations used to classify the shotgunmetagenomics reads.

Table below (A) indicates the mean, median, and SD of the read recovery with the indicated pipeline-database combinations. The overall classification rate for

shotgun reads was comparable across all pipeline-database combinations with a mean (SD) percentage for classified (non-human) reads being 90.3% (15.4%).

(B) Charts show the general taxonomic groups that are identified within each of the pipeline-database combinations, with the height of the bars corresponding to

the total read recovery across all samples (log-scaled). The percentages on the bars in (B) represent the percent of all reads corresponding to each group (e.g.,

99.94% of all sequencing data is bacterial in the Shogun-Rep200 analysis).

(C) Chart presents the resolution of 16SV4 rRNA OTUs at each bacterial/archaeal taxonomic rank. The light blue bars in (C) indicate the proportion of the OTUs

that are resolved at each taxonomic level, whereas the dark blue bars indicate the proportion of reads classified.
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present at a median relative abundance of 0.01% or more in all

datasets resulting in 27 genera. Although these constitute a rela-

tively small proportion of all identified OTUs (�10%), they

account for >96% of all sequencing reads of the amplicon data

and >75% of all reads from each of the shotgun metagenomic

analyses. To evaluate shotgun read depth in the analyses,

each genus correlation was quantified at different shotgun

subsampling thresholds ranging from 10,000 to 750,000 reads.

Figure 3D shows the correlation of genera between the amplicon

data and each shotgun pipeline-database combination at

the indicated subsampling thresholds. Increasing shotgun

sequencing depth had a positive effect on correlation with ampli-

con data. Sequencing to a depth of over 500,000 reads mini-

mized differences in shotgun analytic approaches compared

with the 16SV4 analyses (Figure 3D).
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To give physiological context to the different analytical

approaches, we focused on the ratio of Prevotella toBacteroides

based on 16S amplicon sequencing data, which we and others

have reported to be correlated with immigration timing to

the US.17,25,26 Correlation of the log(Prevotella/Bacteroides)

ratios between 16SV4 and the shotgun data revealed strong

concordance (was r > 0.93) across all shotgun approaches

(Figure 3E).

Gene panel vs. whole genome approaches
Recently a group of shotgun metagenomic pipelines were

compared and identified that MetaPhlAn 413 andmOTUs27 pipe-

line provided best-in-class performance for taxonomic resolution

of shotgun metagenomic data.28 These pipelines include their

own specific databases. Although these pipelines were not
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Figure 3. Taxonomic concordance of shotgun metagenomic sequencing and 16SV4 rRNA gene amplicon sequencing

(A) Figure shows comparison of the four pipeline-database combinations for the shotgun metagenomic data in terms of the overlapping genera with color scale

indicating the number of total genera that are shared (light blue being low overlap and green being high overlap). Of all identified genera across the shotgun

pipeline-database combinations, only 44% (898/2,057) were shared, but these 898 genera accounted for �95.0% and 99.9% of all sequencing reads (Rep200

database and WolR1 databases, respectively).

(B) Venn diagram shows the comparison of the two Rep200 database pipelines with the 16V4 rRNA data. The 254 genera that overlapped between amplicon and

shotgun sets accounted for 99.3% of the amplicon sequencing reads and 91.2% and 89.2% of the sequencing reads using the SHOGUN and Woltka pipelines,

respectively.

(C) Venn diagram shows the comparison between WolR1 database pipelines and 16SV4 rRNA data. The 252 overlapping genera accounted for 99.3% of all

amplicon reads and 83.9% and 82.1% of the SHOGUN-WolR1 and Woltka-WolR1 sequencing reads, respectively.

(D) Graph displays the Pearson correlation between the four shotgun metagenomic pipeline-database combinations at different read depths and 16SV4 rRNA

analyses based on taxa that are present at a median sequence depth of R0.01% total reads.

(E) Graphs show the pairwise correlation of the log (Prevotella/Bacteroides) as observed between 16SV4 rRNA sequencing on the x axis and each of the four

shotgun pipeline-database combinations on the y axis.
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optimized for shallow shotgun sequencing, we wanted to eval-

uate the extent to which these commonly used approaches

correspond to 16S amplicon sequencing in a real-world setting.

Figure S1A shows that both MetaPhlAn 4 and mOTUs utilized a

relatively small fraction of the total sequencing depth; an average

(SD) of 3.39% (3.87%) of reads were retained for analysis by

MetaPhlAn 4, and 0.059% (0.11%) of total shotgun reads were

retained by the mOTUs pipeline. The overall correlation between

the genera detected by MetaPhlAn 4 was 0.61 vs. 0.27 using the

mOTUs pipeline (Figure S1B). Considering the ratio of Prevotella

and Bacteroides, which represent the two dominant taxa in
our cohort, we observed a strong correlation in MetaPhlAn 4

(correlation = 0.92) but a weak correlation in the mOTUs pipeline

(correlation = 0.41) (Figures S1C and S1D, respectively). It

therefore appears that these approachesmay be able to recapit-

ulate amplicon sequence observations in epidemiological

studies (particularly for MetaPhlAn 4), but they require deep

sequencing for accurate characterization of low-abundance

taxa. This is expected as both pipelines utilize gene panels to es-

timate theabundanceof bacteria in contrast to thewholegenome

alignment approach used by both Woltka and SHOGUN

pipelines.
Cell Reports Methods 3, 100391, January 23, 2023 5
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Limitations of fungal assessment with shotgun
metagenomic analyses
In addition to bacteria, the human metagenome contains other

organisms including fungi. For fungal analysis of shotgun

sequencing data, we utilized the Rep200 database (as the

WolR1 database does not contain fungal genome sequences)

and performed the analysis at the species level.29,30

The ITS1 amplicon analyses indicated that the samples were

dominated by three species: Saccharomyces cerevisiae, Asper-

gillus proliferans, and Candida albicans (Figure 4). Comparing

fungal species detected by shotgun sequencing indicated that

Woltka was unable to identify any of the species present in the

ITS1 data, and SHOGUN identified only 6.4% (34/530) of all

ITS1-identified species. The identification of Eukaryota consti-

tuted <0.1% of the shotgun sequencing data corresponding to

a mean (SD) of 117 (1,210) reads/sample (coverage range [IQR]

was 0–38,292 reads/sample). Subsampling to 100 fungal reads

eliminated most of the samples and left only 261/1,772 samples

for analysis (Figure 2B). At this depth, the correlation of fungal

species abundance for the 34 overlapping species between

the ITS1 and SHOGUN was 0.29 (Figure S2A), which indicates

a poor correlation. Given the high variance in the data, we

performed an additional sensitivity analysis where we did not

subsample the data and found a similar lack of concordance

(correlation = 0.16, Figure S2B).

Since shotgun metagenomic approaches have been

optimized for bacterial assessment,16,31 we also analyzed the

metagenomic data using the FindFungi pipeline,32 a pipeline de-

signed to recover fungal species frommetagenomic sequencing

data. Using this approach, we were able to recover substantially

more sequencing reads with an average (SD) of 1,887 (3,123) per

sample. However, the identified species did not match our am-

plicon species distribution (Figure 4C vs. Figure 4A). FindFungi

identified most of the reads as belonging toMelampsora pinitor-

qua Mpini7 (Figure 4C), a probable contaminant that is

commonly found in public genome assemblies.33 We further

investigated this species by assembling the reads belonging to

this genome and performing a BLAST search of the largest con-

tigs. Surprisingly, the results identified most of the reads as bac-

terial, specifically those of the genus Bacteroides. Taken

together, the FindFungi output is likely a result of inaccurate

classification.

As a final attempt to retrieve fungal reads from the shotgun

sequencing data, we utilized MetaPhlAn 4,13 a non-alignment

based shotgun profiling tool relying on clade-specific marker

genes. The overall detection was moderately concordant with

the ITS1 results (Figure 4A), with Aspergillus and Candida being

detected within the top taxa (Figure 4D). However, MetaPhlAn 4

only identified fungi in 3.83% (68/1,772) of samples in contrast to

ITS1 amplicon sequencing that identified fungi in 89.6% (1,587/

1,772) of samples. Thus, the shotgun metagenomic sequencing

and analyses used in the current study did not achieve adequate

characterization of the fungal component in the gut microbiome.

Harmonizing amplicon and shotgun data
To determine the extent to which amplicon and shotgun data can

bemerged to achieve larger sample sizes, we evaluated an addi-

tional 1,525 samples from the HCHS/SOL cohort that had only
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shotgun metagenomic data. First, we classified all of the

amplicon and shotgun data using a pre-release version of the

Greengenes2 database and the Woltka pipeline. The Green-

genes2 database uses the Web of Life database for whole

genome phylogeny, with a topology refined using full-length,

high-quality 16S rRNA sequences from the Living Tree Project34

and extracted full-length 16S rRNA from bacterial operons,35

followed by placement of all public and private 16SV4 Deblur-

derived amplicon sequence variants ASVs from samples depos-

ited in Qiita as of March 2022.36 Taxonomy is based on the

GTDB37 and Living Tree Project.34 Figure 5A shows the principal

coordinate analysis (PCoA) plot generated using weighted

UniFrac38 distances based on the harmonized genome/ASV

tree labels from Greengenes2 among the 1,772 samples with

both 16S and shotgun data. The analysis indicates that the differ-

ence in sequencing approaches accounts for a small fraction of

overall microbial variance (platformR2 = 0.0511, p value < 0.001),

while the between-subject differences account for >60% of the

overall variance (subject R2 = 0.620, p value < 0.001). This indi-

cates that each participant’s unique microbiome profile is

captured regardless of whether by amplicon or shotgunmetage-

nomic approaches. Presence-absence analysis using un-

weighted UniFrac distances, however, showed that platform

choice accounted for as much variance as the between-subject

differences (R2 = 0.512, p value < 0.001 vs. R2 = 0.510,

p value < 0.001, respectively, Figure 5B). The significant influ-

ence of platform in the unweighted analysis is consistent with

the greater proportion of novel and rare taxa present in shotgun

sequencing and may also be explained in part by the mutually

exclusive feature spaces between Web of Life identifiers and

amplicon sequence variants.

We then used the harmonized data to evaluate pooling ampli-

con and shotgun data. We performed this by utilizing three out-

comes available within the GOLD cohort: sex (men vs. women),

obesity (BMI 18.5–25 vs. >30) and age of relocation (US-born vs.

recent immigrants, i.e., those that immigrated after 55 years of

age). For each of the outcomes, we utilized the ratio of the top

bacterial biomarkers identified with ANCOM.39 For gender, we

identified a total of 117 differentially abundant genera (Fig-

ure S3A) with Prevotella being the top elevated genus in men

and Akkermensia being the top elevated genus in women; for

the obesity analysis, we identified 107 differential genera with

Catenibacterium being elevated in obese individuals (BMI >30)

and Ruminiclostridium being elevated in individuals within

normal BMI ranges (BMI 18.5–25) (Figure S3B); and for the age

of relocation analysis, there were 118 differential genera with

Acidaminococcus being elevated in US-born individuals and

Haemophilus being elevated in individuals that immigrated to

the US after 55 years of age or greater (Figure S3C).

We then identified the effect modeled using the amplicon only

dataset (total n = 1,772 individuals), the full shotgun set (total

n = 3,297 individuals), and a ‘‘hybrid set’’ that contained the orig-

inal amplicon only set with the additional 1,525 individuals

unique to shotgun sequencing (total n = 3,297 individuals). Fig-

ure 5C shows a forest plot with the three-modeled outcomes us-

ing the described datasets. Remarkably each of the effect sizes

detected using any of the datasets (including the reduced ampli-

con only set) were within 1% of each other. For example, when
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Figure 4. Fungal recovery using ITS1 amplicon sequencing and shotgun metagenomics

(A) Boxplot shows the top 20 fungal species (based on total read recovery across all samples) determined using ITS1 amplicon sequencing and the DADA2

pipeline with the UNITE database.

(B) Venn diagram showing the concordance of the fungal species detected using the ITS1 data and the Rep200 pipelines (only this database detects fungus in the

Qiita platform).

(C) Boxplot showing the read recovery for all samples across fungal species (x axis) as detected in the metagenomic sequences using FindFungi (log scale on the

y axis).

(D) Boxplots for the relative abundance of the identified fungal species using Metaphlan2 (showing data from 15/1,772 samples had fungal reads identified, log

scale on the y axis).
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modeling the effect of the log(Akkermansia/Prevotella) in the

case of the sex outcome, the amplicon only analysis revealed

an odds ratio (OR) = 0.95 (95% confidence interval [CI]: 0.92–

0.98), with the full shotgun set showing an OR = 0.94 (0.93–
0.96), and the hybrid set had an OR = 0.95 (0.93–0.96). Similarly,

analysis of the obesity outcome with log(Ruminiclostridium/Cat-

enibacterium) showed ORs = 0.94 (0.90–0.99), 0.95 (0.93–0.97),

and 0.95 (0.93–0.97) using the amplicon only, shotgun only, and
Cell Reports Methods 3, 100391, January 23, 2023 7
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Figure 5. Harmonizing amplicon and

shotgun metagenomic data

(A) The principal coordinate analysis (PCoA)

Emperor plot of the harmonized ASV/genome

Greengenes 2 weighted UniFrac distances with

both the amplicon and shotgun data analyzed

using the Greengenes 2 database (n = 1,772

subjects; 3,544 data points) is shown.

(B) An Emperor plot using unweighted UniFrac,

which only assesses for presence-absence of

taxa, is shown. For both Emperor plots, the

PERMANOVA results for the platform and subject

are shown in the lower right-hand corner.

(C) A logistic regression forest plot is shown that

considers three participant characteristics within

the GOLD cohort: sex (men vs. women), obesity

(BMI 18.5–25 vs. >30), and relocation (US-born vs.

recent immigrants, i.e. those that immigrated after

55 years of age). Each of the three main outcomes

is modeled using the ratio of the two top bacterial

predictors based on ANCOM W-stat (see Fig-

ure S2). Each of the models is adjusted for age,

collection center, Hispanic background, and

healthy eating index (AHEI2010). Each point and

associated bar represent the exponentiated beta

coefficient (i.e., OR) and the associated 95% and

90% confidence intervals (thinner and thicker lines,

respectively). Color of bars indicates the dataset

used to model the outcomes: green represents the

original 16S sequencing set; blue indicates the full

shotgun set (samples overlapping with 16S and

those unique to shotgun analysis); and yellow rep-

resents a combination between the original 16S

amplicon set and the newly sequenced shotgun set

(i.e., shotgun samples that do not overlap with16S).

Numbers to the right of the forest plot show the

numerical values of the exponentiated beta co-

efficients, confidence intervals, and associated p

values.
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hybrid datasets, respectively. For the age of immigration

outcome, the amplicon only, shotgun only, and hybrid datasets

had ORs using the log(Haemophilus/Acidaminococcus) of 1.06

(1.01–1.12), 1.08 (1.05–1.12), and 1.07 (1.04–1.10), respectively.

The amplicon dataset showed larger confidence intervals, which

are likely due to the smaller sample size of 1,772 individuals

compared with the 3,297 used for both the full shotgun and

hybrid analyses. Thus, pooling amplicon and shotgun samples

recapitulates the associations that would be obtained using

purely shotgun metagenomics data at the genus level.

DISCUSSION

To comprehensively evaluate the utility of different strategies for

microbiome analyses in epidemiological studies, we utilized

stool microbiome data from the large HCHS/SOL cohort with

overlapping 16SV4 rRNA, ITS1, and shotgun metagenomic

sequencing. We evaluated 16SV4 amplicon sequencing with

shotgun metagenomic sequencing processed with four different

pipeline-database approaches and found that overlapping bac-

terial genera accounted for 99% of all 16SV4 reads and�90% of

all of the shotgun reads. Furthermore, for the shared set of bac-

terial genera, we observed Pearson correlations >0.86 between
8 Cell Reports Methods 3, 100391, January 23, 2023
16SV4 and shotgun data, using as few as 100,000 reads across

all of the shotgun pipeline-database approaches. Use of the

WolR1 database for the shotgun analyses provided the best

concordance with the 16SV4 data at sequencing depths

<500,000 reads, whereas either WolR1 or Rep200 database

use was equivalent to the 16SV4 analyses when sequencing

depth was >500,000 reads. Exploring the Prevotella/Bacteroides

ratio previously associated with immigration status17 revealed

that all the shotgun pipeline-database combinations showed

correlations >0.94 with the 16SV4 data. Finally, using a release

candidate of the Greengenes2 database (http://ftp.microbio.

me/greengenes_release/2022.7-rc1/), which harmonizes a 16S

and genome-based taxonomy and phylogeny, we show that

16S and shotgun data can be pooled to yield valid epidemiologic

results comparable to a full shotgun dataset using three inde-

pendent outcomes. In the pooled analyses, the measured

effects differed by <1% in all examples, with improved precision

compared with the amplicon-only analyses. These results have

important implications for scaling up epidemiologic studies of

the microbiome utilizing available 16S and shotgun data from

multiple studies and datasets.

While the bacterial and archaeal data demonstrated strong

concordance between shotgun and amplicon approaches, there

http://ftp.microbio.me/greengenes_release/2022.7-rc1/
http://ftp.microbio.me/greengenes_release/2022.7-rc1/
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was little concordance for fungal data. Unlike the 16SV4 rRNA

gene, the ITS1 fragment has been proposed to be used to resolve

fungi to species levelwithin the humanmycobiome.30 It should be

noted however that the current results may not translate to non-

human studies, as the ITS1 amplicon has been shown to be inad-

equate for species-level resolution of environmental samples.29

In terms of the current study, when considering the identified

fungal species, there were pronounced differences between

shotgun pipelines (database choice was limited to the Rep200,

as the WolR1 database did not include fungi). Specifically, only

the SHOGUN pipeline was able to identify any overlapping spe-

cieswith the ITS1 data, albeit with poor correlation. The poor per-

formance of the Woltka pipeline for identifying fungi may be

related to its designated goal of resolving differences between

bacteria and archaea.31 However even when we attempted to

recover fungi using a fungal-specific pipeline for metagenomic

datasets (FindFungi32), we did not recover any of the species

present in our cohort by the ITS1 amplicon analyses. The only

analysis that recovered comparable profiles found within ITS1

data was MetaPhlAn 4, but due to its requirement for deep

sequencing,13 we only recovered fungal reads for 68/1,772 sam-

ples (3.84%). Shotgun metagenomics is thus inadequate for

fungal assessment using stool samples except perhaps at very

high readdepths. The reason for this is likely 2-fold. First, the stool

metagenome is dominated by bacteria, whichmake fungi a small

fraction of all DNA available for sequencing. Secondly, fungi are

eukaryotic organismswith genomes that are orders ofmagnitude

larger than bacteria and often contain non-coding redundant

components that do not facilitate taxonomic classification. We

therefore conclude that shotgun metagenomics sequencing is

not optimal for characterizing the fungal community, wherea-

sITS1 amplicon sequencing30 provides amore sensitive platform

for these taxa.

This report also demonstrated that amplicon and shotgun da-

tasets can be pooled together to perform larger scale analyses

of the microbiome for epidemiological studies. This approach

builds on previous reports including those by Stewart et al.40 in

the TEDDY study that highlighted the overall similarity in trends

between amplicon and shotgun data. In our analysis, we formally

defined the extent of this similarity at the genus level and pro-

vided an analytical framework with three independent outcomes

(i.e., sex, obesity, and age of relocation to the US) in which am-

plicon and shotgun data were pooled together and compared

with purely shotgun datasets. This analysis is of consequence

because it opens the door for cross-platform analyses that can

take full advantage of the large amount of amplicon data

produced over the last 20 years in the context of future meta-

and pooled analyses. As our results demonstrate, this would

allow for precision in the observed effects afforded by increased

sample sizes.

In summary, we used a large cohort to demonstrate that

99% of all bacterial taxa detected using 16SV4 rRNA gene

sequencing can be recovered using shotgun metagenomics,

with comparable genus-level relative abundance and with as

few as 100,000 shotgun reads independent of the pipeline and

database. This does not extend to fungal taxa, where targeted

ITS1 primers are ideal due to the low biomass and relatively com-

plex genomes of these organisms. By providing species-level
resolution,16 shotgun sequencing provides complementary

data to 16S rRNA amplicon sequencing for stool samples in

large-cohort studies. Moving forward, harmonized databases

for both 16S and shotgun sequence classification (e.g., Green-

genes2) can facilitate pooling available microbiome data into

larger epidemiologic studies to answer pressing questions about

microbiome-disease relationships in a robust and efficient

manner.

Limitations of the study
This study has limitations. Only stool samples were evaluated in

the current report. Additional work is needed to determine the

effectiveness of different depths of shotgun sequencing for sam-

ples derived from other anatomical sites. This is particularly

important since stool is effectively the only human sample type

that is nearly completely composed of bacterial DNA.41 Samples

derived from other sites such as the cervicovaginal region

contain <10% bacterial DNA as determined from shotgun

sequencing.42 The reliability of shallow shotgun metagenomics

therefore needs to also be evaluated in cohorts with samples

from other anatomical sites, to determine whether this approach

can serve as a general-purpose tool like 16SV4 rRNA gene am-

plicon sequencing. Additionally, bacterial analysis provided in

the present study is strongly concordant up to genus level, which

is a limitation of using the 16S gene.24 Furthermore, our analysis

utilized a limited set of pipelines and databases that were avail-

able within Qiita. Given the strength of observed associations, a

more comprehensive study that optimizes amplicon/shotgun

data harmonization is warranted.
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MetaPhlAn 4.0 Huttenhower Lab https://huttenhower.sph.harvard.edu/metaphlan/

DADA2 https://benjjneb.github.io/dada2/
RESOURCE AVAILABILITY

Lead contact
d Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Robert D. Burk

(robert.burk@einsteinmed.edu).

Materials availability
d This study did not generate new unique reagents.

Data and code availability
d All original data, including the raw sequencing fastqs, the processed biom file and associated analyses code is available for

download via Qiita under the project study ID 11666. Raw sequence data is additionally available at the European Nucleotide

Archive database (project accession: ERP117287). The release candidate of theGreengenes2 database is available at its asso-

ciated server (http://ftp.microbio.me/greengenes_release/2022.7-rc1/).

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) is a prospective, population-based cohort study of 16,415

Hispanic/Latino adults (ages 18–74 years at the time of recruitment during 2008–2011) who were selected using a multi-stage

probability sampling design from randomly sampled census block areas within four U.S. communities (Chicago, IL; Miami, FL; Bronx,

NY; San Diego, CA).43,44 The first (2008–2011) and second (2014–2017) HCHS/SOL clinic visits entailed a comprehensive battery of
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interviews and a clinical assessment with fasting blood draw, conducted in-person by trained, certified, and bilingual staff. The

current analysis is nested in the HCHS/SOL Gut Origins of Latino Diabetes (GOLD) ancillary study,17 which was conducted to

examine the role of gut microbiome composition on diabetes and other outcomes, enrolling �3,000 participants from the HCHS/

SOL concurrent with the second in-person HCHS/SOL visit cycle. For this analysis, we utilized participants with overlapping

16SV4 rRNA and ITS1 sequencing data previously reported17 as well as newly reported shotgun sequencing data from an

additional 1,525 subjects. The study was conducted with the approval of the Institutional Review Boards (IRBs) of Albert Einstein

College of Medicine, University of Illinois-Chicago College of Medicine, Miller School of Medicine at the University of Miami, San

Diego State University, and University of North Carolina at Chapel Hill. Written informed consent was provided by all study

participants.

METHOD DETAILS

Stool sample collection and microbiome sequencing
Stool samples were collected by participants at home using stool collection kits provided at or around the second HCHS/SOL clinic

visit, as described previously.17 16SV4 rRNA and ITS1 amplicon sequencing methods have been previously described for this

study.17 Shotgun sequencing was conducted in the Knight laboratory at the University of California San Diego (UCSD).16 Briefly,

DNA was extracted from fecal samples following the Earth Microbiome Project protocol.45 Input DNA was quantified using a

PicoGreen fluorescence assay (ThermoFisher, Inc), and normalized to 1 ng using an Echo 550 acoustic liquid-handling robot

(Labcyte, Inc). Enzyme mixes for fragmentation, end repair and A-tailing, ligation, and PCR were added using a Mosquito HV micro-

pipetting robot (TTP Labtech). Fragmentation was performed at 37 �C for 20 min, followed by end-repair and A-tailing at 65 �C for

30 min. Sequencing adapters and barcode indices were added in two steps, following the iTru adapter protocol.46 Universal

‘‘stub’’ adapter molecules and ligase mix were first added to the end-repaired DNA using the Mosquito HV robot and ligation

performed at 20 �C for 1 h. Unligated adapters and adapter dimers were removed using AMPure XP magnetic beads and a

BlueCat purification robot (BlueCat Bio). Next, individual i7 and i5 were added to the adapter-ligated samples using the Echo 550

robot. Then, eluted bead-washed ligated samples were added to PCR master mix and PCR-amplified for 15 cycles. The amplified

and indexed libraries were purified again using magnetic beads and the BlueCat robot, re-suspended in water, and transferred to a

384-well plate using theMosquito HTS liquid-handling robot for library quantitation, sequencing, and storage. Samples were normal-

ized based on a PicoGreen fluorescence assay for sequencing on an Illumina NovaSeq.

QUANTIFICATION AND STATISTICAL ANALYSIS

Microbial taxonomic profiling
For all data types (shotgun, 16SV4, and ITS1), FASTQ sequence readswere demultiplexed, sequence adapters were trimmed, and (in

the case of shotgun data) reads mapping to the human genome identified using Bowtie247 were removed. For shotgun sequencing,

the quality controlled paired-end sequences were then processed using the four available combinations available in Qiita36 using the

SHOGUN36 and Woltka31 pipelines and the Rep20019 and WolR1 databases. Qiita is a web-based open-source microbial study

management platform that allows data to be remotely processed using a high capacity cluster and allows all analytical steps and

associated datasets to be made publically available. Reads mapping to a single reference genome are labeled with NCBI taxonomy

at species level, while reads mapping to multiple genomes are labeled with the lowest common ancestor (LCA).16 Species tables

were subset to bacterial species only (making up >99.5% of reads). For fungal analysis of shotgun data, reads were additionally pro-

cessed using FindFungi32 and MetaPhlAn 413 using default settings. In the FindFungi analysis we additionally used only those fungal

hits where reads also had agreeing similar BLAST hit, and where reads hit to at least 10% of pseudochromosomes for that taxon

(pseudochromosomes represent arbitrary bins of a genome), and with bin hits filtered to exclude those representing less than

0.0001%of total reads per-sample. For amplicon sequencing of the 16SV4 rRNA gene, vsearch18 with default settings was run within

Qiita36 and taxonomy was assigned using the Greengenes database version 13_8.48,49 For amplicon sequencing of the ITS1 gene,

sequence reads were resolved to amplicon sequence variants analyzed using DADA29 and taxonomy was assigned using the UNITE

database version 8.3.50 For Greengenes2, the Woltka and 16SV4 ASV feature tables were merged, and features were filtered to the

set represented by the release candidate. The release candidate of theGreengenes2 database is available at: http://ftp.microbio.me/

greengenes_release/2022.7-rc1/. The tips of the Greengenes2 phylogeny contain both Web of Life identifiers and ASVs. The taxon-

omy of the Greengenes2 database is derived using tax2tree49 using the common phylogeny.

Statistical analysis
Sequence read recovery was compared between the four shotgun pipeline-database combinations (SHOGUN-Rep200,

SHOGUN-WolR1, Woltka-Rep200, Woltka-WolR1) using the Kruskal-Wallis test. Pairwise differences in classified read depth

were assessed using the non-parametric Wilcox rank-sum test, with adjustment for multiple testing using the qvalue package

version 2.16.0. Pearson correlations were used to correlate relative abundance after subsampling for taxa detected across am-

plicon sequencing and the four shotgun pipeline-database combinations. Differential abundance analysis by sex (men vs. women),

obesity (BMI 18.5–25 vs. >30), and age of relocation (US-born vs. recent immigrants, >55 years), was determined using
Cell Reports Methods 3, 100391, January 23, 2023 e2
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ANCOM251 with adjustment for participant age, reported Hispanic/Latino background, field center, and sex (not including the anal-

ysis for sex). For pooling analyses, three datasets were used: an amplicon only dataset (1,772 samples), a shotgun dataset (3,297

samples that contained 1,772 samples that overlapped with amplicon data and 1,525 that had shotgun data only) and a pooled

dataset (1,772 samples using amplicon data and 1,525 samples that used shotgun data and did not overlap with amplicon

samples). In each of the datasets the top ratio for each of the demographic analysis was used for modeling. Data analysis and

visualization was achieved using R version 3.6.1.52
e3 Cell Reports Methods 3, 100391, January 23, 2023
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