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Dynamic Encoding of Acoustic Features in Neural Responses
to Continuous Speech

Bahar Khalighinejad, Guilherme Cruzatto da Silva, and Nima Mesgarani
Department of Electrical Engineering, Columbia University, New York, New York 10027

Humans are unique in their ability to communicate using spoken language. However, it remains unclear how the speech signal is
transformed and represented in the brain at different stages of the auditory pathway. In this study, we characterized electroencephalog-
raphy responses to continuous speech by obtaining the time-locked responses to phoneme instances (phoneme-related potential). We
showed that responses to different phoneme categories are organized by phonetic features. We found that each instance of a phoneme in
continuous speech produces multiple distinguishable neural responses occurring as early as 50 ms and as late as 400 ms after the
phoneme onset. Comparing the patterns of phoneme similarity in the neural responses and the acoustic signals confirms a repetitive
appearance of acoustic distinctions of phonemes in the neural data. Analysis of the phonetic and speaker information in neural activa-
tions revealed that different time intervals jointly encode the acoustic similarity of both phonetic and speaker categories. These findings
provide evidence for a dynamic neural transformation of low-level speech features as they propagate along the auditory pathway, and

form an empirical framework to study the representational changes in learning, attention, and speech disorders.
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ignificance Statement

We characterized the properties of evoked neural responses to phoneme instances in continuous speech. We show that each
instance of a phoneme in continuous speech produces several observable neural responses at different times occurring as early as
50 ms and as late as 400 ms after the phoneme onset. Each temporal event explicitly encodes the acoustic similarity of phonemes,
and linguistic and nonlinguistic information are best represented at different time intervals. Finally, we show a joint encoding of
phonetic and speaker information, where the neural representation of speakers is dependent on phoneme category. These find-
ings provide compelling new evidence for dynamic processing of speech sounds in the auditory pathway.
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Introduction

When listening to speech, we have the ability to simultaneously
extract information about both the content of the speech and the
identity of the speaker. We automatically accomplish these par-
allel processes by decoding a multitude of cues encoded in the
acoustic signal, including distinctive features of phonemic cate-
gories that carry meaning as well as identifiable features of the
speaker, such as pitch, prosody, and accent (Stevens, 2000; Lade-
foged and Johnson, 2010). Despite the extensive research to
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model and describe these processes, we still have no comprehen-
sive and accurate framework for the transformation and repre-
sentation of speech in the human brain (Poeppel, 2014). Recent
invasive human neurophysiology studies have demonstrated the
encoding of phonetic features in higher-level auditory cortices
(Chan et al., 2014; Mesgarani et al., 2014). However, invasive
recordings are limited to confined brain regions and are therefore
impractical for studying the neural representation of acoustic
features over time as speech sounds propagate through the audi-
tory cortex (Hickok and Poeppel, 2007; Formisano et al., 2008).
Electroencephalography (EEG) has been used extensively in
speech and language studies because it can measure the activity of
the whole brain with high temporal resolution (Kaan, 2007). EEG
studies of speech perception are primarily based on event-related
potentials (ERPs; Osterhout et al., 1997). For example, ERPs have
been used to study the encoding of acoustic features in response
to isolated consonant—vowel pairs, showing a discriminant en-
coding at multiple time points (e.g., P1I-N1-P2 complex) and
locations (i.e., frontocentral and temporal electrodes; Picton et
al., 1977; Phillips et al., 2000; Néitidnen, 2001; Ceponiene et al.,
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2002; Tremblay et al., 2003; Martin et al., 2008). In addition,
ERPs have been used in studies of higher-level speech units, such
as word segmentation (Sanders and Neville, 2003) and multiscale
hierarchical speech processing (Friederici et al., 1993; Kaan et al.,
2000; Patel, 2003).

Nonetheless, ERP approaches suffer from unnatural experi-
mental constraints (for example, requiring isolated, nonoverlap-
ping events; Luck, 2014), which may result in only partial
engagement of the underlying cortical circuits (Overath et al.,
2015). As a result, these findings are not definitive enough to be
useful in making generalizations applicable to more naturalistic
settings. Several recent studies have examined EEG responses to
continuous speech by correlating the responses with the speech
envelope (Luo and Poeppel, 2007; Aiken and Picton, 2008; Kerlin
et al., 2010; Kong et al., 2015) and by regressing the neural re-
sponses against the speech envelope (Lalor et al., 2009) or against
the phonetic features and phonemes (Di Liberto et al., 2015). To
study the precise temporal properties of neural responses to
acoustic features, we propose an ERP method, where the events
are the instances of phonemes in continuous speech. Specifically,
we calculated the time-locked responses to phoneme instances
and examined the representational properties of phonetic and
speaker information in EEG signals. Moreover, we compared the
similarity patterns of phonemes in acoustic and neural space over
time. Finally, we examined the joint encoding of phonetic and
speaker information and probed the phoneme-dependent repre-
sentation of speaker features.

Materials and Methods

Participants. Participants were 22 native speakers of American English
with self-reported normal hearing. Twenty were right-handed. Twelve
were males. Ten were females.

Stimuli and procedure. EEG data were collected in a sound-proof, elec-
trically shielded booth. Participants listened to short stories with alter-
nating sentences spoken by a male and a female speaker; we alternated
sentences to normalize time-varying effects such as direct current (DC)
drift on speaker-dependent EEG responses. The stimuli were presented
monophonically at a comfortable and constant volume from a loud-
speaker in front of the subject. Five experimental blocks (12 min each)
were presented to the subject with short breaks between each block.
Subjects were asked to attend to the speech material. To assess attention,
subjects were asked three questions about the content of the story after
each block. All subjects were attentive and could correctly answer >60%
of the questions. Participants were asked to refrain from movement and
to maintain visual fixation on the center of a crosshair placed in front of
them. All subjects provided written informed consent. The Institutional
Review Board of Columbia University at Morningside Campus approved
all procedures.

Recording. EEG recordings were performed using a g.HIamp biosignal
amplifier (Guger Technologies) with 62 active electrodes mounted on an
elastic cap (10-20 enhanced montage). EEG data were recorded at a
sampling rate of 2 kHz. A separate frontal electrode (AFz) was used as
ground and the average of two earlobe electrodes were used as reference.
The choice of earlobe as reference in studies of auditory-evoked poten-
tials (AEPs) is motivated by the highly correlated activity across elec-
trodes, which makes common reference averaging unsuitable (Rahne et
al., 2007). EEG data were filtered online using a 0.01 Hz fourth-order
high-pass Butterworth filter to remove DC drift. Channel impedances
were kept below 20 k() throughout the recording.

Estimation of the acoustic spectrogram. The time—frequency auditory
representation of the speech stimuli was calculated using a model of the
peripheral auditory system (Chi et al., 2005). The model consists of three
stages: (1) a cochlear filter bank consisting of 128 asymmetric filters
equally spaced on a logarithmic axis, (2) a hair cell stage consisting of a
low-pass filter and a nonlinear compression function, and (3) a lateral
inhibitory network consisting of a first-order derivative along the spec-
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tral axis. Finally, the envelope of each frequency band was calculated to
obtain a two-dimensional time—frequency representation that simulates
the pattern of activity on the auditory nerve (Wang and Shamma, 1994).

Preprocessing. EEG data were filtered using a zero-lag, finite-impulse
response bandpass filter with cutoff frequencies of 2 and 15 Hz (Delorme
and Makeig, 2004). The frequency range was determined by measuring
the average power of the phoneme-related potential (PRP) at different
frequencies. This measurement showed that the PRP peaks at 8 Hz (the
syllabic rate of speech). For each subject, we normalized the neural re-
sponse of each EEG channel to ensure zero mean and unit variance.

PRP. To obtain a time-locked neural response to each phone, the
stimuli were first segmented into time-aligned sequences of phonemes
using the Penn Phonetics Lab Forced Aligner Toolkit (Yuan and Liber-
man, 2008). The EEG data were then segmented and aligned according to
phoneme onset (Fig. 1A). Response segments where the magnitude ex-
ceeded =10 units were rejected to reduce the effect of biological artifacts,
such as eye blinking. On average, 8% of data was removed for each
subject. Neural responses within the first 500 ms after the onset of each
utterance were not included in the analysis to minimize the effect of onset
responses.

PRPs and average auditory spectrograms of phonemes were calculated
by averaging the time-aligned data over each phoneme category. Defin-
ing s( f,t) as the acoustic spectrogram at frequency fand time ¢, and (e, t)
as the EEG response of electrode e at time ¢, the average spectrograms and
PRP for phoneme k, which occurs N, times and starts at time points of
Tip Ty - - T, are expressed as follows (Eq. 1):

- 1 @
Stk f 1) = Diis(f Ty, + 1),

1 i
PRP(k, e, T) = N ZT:J(& Ty, + 1)
k

Where S(k, f, 7) is the average auditory spectrogram of phoneme k, at
frequency f, and time 7, and PRP(k, e, 7) is the average response of
phoneme category k, at electrode e and time 7 relative to the onset of the
phoneme (Mesgarani et al., 2008). As shown in Equation 1, PRP is a
function of time relative to the onset of phonemes.

To group the PRPs based on their similarity, we performed unsuper-
vised hierarchical clustering based on the unweighted pair group method
with arithmetic mean algorithm (Euclidean distance; Jain and Dubes,
1988). To study the separability of different manners of articulation in
neural and acoustic space, we used the F statistic at each time point to
measure the ratio of the distance between and within different manner of
articulation groups.

Neural representation of acoustic phonetic categories. Pairwise phoneme
distances were estimated using a Euclidean metric (Deza and Deza, 2009)
to measure the distance of each phoneme relative to all other phonemes.
This analysis results in a two-dimensional symmetric matrix reflecting a
pattern of phoneme similarity that can be directly compared with the
distance patterns estimated at different time points.

We compared neural versus acoustic organization of phonemes by
finding the covariance value between distance matrices in the acoustic
and neural signals. The covariance was calculated from only the lower
triangular part of the distance matrices to prevent bias caused by the
symmetric shape of the matrix. Calculating the covariance values at all
time lags in acoustic and neural spaces results in a two-dimensional
neural-acoustic similarity measure at all time lags.

In addition to the neural-acoustic covariance matrix, we calculated a
neural-neural similarity matrix by comparing the pairwise phoneme dis-
tances at different time lags in PRPs.

To visualize the relational organization of PRPs at different time lags,
we applied one-dimensional unsupervised multidimensional scaling
(MDS) using Kruskal’s normalized criterion to minimize stress for one
dimension. The MDS was set to zero when no electrode showed a signif-
icant response [multiple-comparison corrected via false discovery rate
(FDR), g < 0.001].

Speaker-dependent pairwise phoneme distances. We calculated the pair-
wise Euclidean distance of PRPs for each speaker, resulting in a pairwise
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to all phonemes averaged over all electrodes. Individual subjects are shown in gray; grand average PRP is shown in red. Time points where PRP shows a significant response are shaded in yellow
(central electrode (z, t test, multiple-comparison corrected via FDR, g << 0.01). The average acoustic spectrogram of all phonemes is shown on the left side. The scalp topographies of three significant
time points based on Figure 1Bincluding 70, 130, and 200 ms are shown at the bottom. C, Grand average PRPs for 30 American English phonemes. PRPs of a frontocentral electrode FCz are plotted
from —100 ms before phoneme onset to 600 ms after phoneme onset. D, Hierarchical clustering of PRPs using all electrodes shows encoding of phonetic information largely driven by manner of

articulation, highlighted by different colors.

phoneme distance matrix with four quadrants, where diagonal quad-
rants represent within-speaker distances and off-diagonal quadrants rep-
resent the between-speaker distances. We measured a speaker index by
subtracting between-group distances from within-group distances, both
in the PRP and spectrogram data. We calculated the correlation between
speaker-dependent patterns in neural and acoustic spaces for each time
point that yielded a speaker-dependent neural-acoustic correlation ma-
trix (see Fig. 5A).

The speaker-dependent encoding (SE) of phoneme category i (see Fig.
6A) is defined as follows, where the distance matrices can be estimated
from either the neural or acoustic representations (Eq. 2):

N
1
SE(i) = 2 Z(dwm(i; 7 + dwsa(is §) — dgsi (i, j) — dpsa(is 1))
i
where d, (7, ) and d,,, (4, j) are the distances between phonemes i and j
of each speaker (within speaker distances), and dyg, (7, j) and dyg, (i, j) are

the distances between phoneme i and j of different speakers (between
speaker distances).

Results

We recorded EEG data from 22 native speakers of American Eng-
lish. Participants listened to simple stories comprising alternating
sentences uttered by two speakers (one male, one female). To
investigate whether phonemes in continuous speech elicit dis-
tinct and detectable responses in the EEG data, we used phonetic
transcription of speech data (Yuan and Liberman, 2008) to seg-
ment and align the neural responses to all phoneme instances

(Fig. LA). We refer to the resulting time-locked evoked responses
to phonemes as PRPs. By averaging over all phonemes, we found
a robust PRP response at most electrodes. The response of a
representative electrode (central electrode Cz) is shown in Figure
1B. We applied two-tailed paired ¢ test (corrected for FDR; Ben-
jamini and Hochberg, 1995; Benjamini and Yekutieli, 2001;
q <0.01) to compare the PRP response with baseline activity. We
observed three statistically significant time intervals of 50-90 ms
[response (R) 1, positive deflection], 100—160 ms (R2, negative
deflection), and 190-210 ms (R3, positive deflection; Fig. 1B).
The distribution of the PRP across electrodes shows a broadly
distributed response strongest in frontocentral electrodes (Fig.
1B), a finding consistent with the topographical map of the stan-
dard AEP on frontocentral electrodes (Hillyard et al., 1971; Lalor
etal., 2009), even though the individual phonemes in continuous
speech are not isolated events.

Encoding of phonetic categories in PRPs

To study whether different phonemic categories elicit distinct
neural responses, we averaged the PRP responses over all in-
stances of each phoneme and across all subjects, excluding pho-
neme categories that contained <0.01% of all phones. Visual
inspection of PRPs elicited by each phoneme suggests that they
vary in their magnitude and latency, with a varied degree of sim-
ilarity relative to each other. For example, PRPs for vowels show
similar patterns of activation, which differ from that of conso-
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nants [Fig. 1C, frontocentral electrode (FCz), averaged over all
subjects].

To determine whether PRPs can be characterized by phonetic
feature hierarchy (Halle and Stevens, 1991; Stevens, 2000), we
used an unsupervised clustering method based on the Euclidean
distance between PRPs of different phoneme categories. Hierar-
chical clustering was performed on neural responses over an in-
terval of 0—400 ms after phone onset. This window was chosen to
ensure the inclusion of significant components of the average
PRP as determined by the statistical analysis shown in Figure 1B.
The hierarchical clustering reveals different tiers of grouping cor-
responding to different phonetic features (Fig. 1D): the first tier
distinguishes obstruent from sonorant phonemes (Ladefoged and
Johnson, 2010). Within the obstruent tier, a second tier further
differentiates categories based on manner of articulation, where plo-
sives (blue) formed a separate group from the fricative (red) pho-
neme group. Place of articulation appears in the lower tiers of the
hierarchy, separating high vowels from low vowels (Fig. 1D, light
green for high vowels vs dark green for low vowels). Overall, the
clustering analysis of PRPs shows that manner of articulation is the
dominant feature expressed in the responses, followed by place of
articulation, particularly for vowels. This finding is consistent with
neural representation of speech on the lateral surface of the superior
temporal gyrus (Chan et al., 2014; Mesgarani et al., 2014), the acous-
tic correlates of manner and place of articulation features (Stevens,
2000), and psychoacoustic studies showing more confusions among
phonemes with the same manner of articulation (Miller and Nicely,
1955; Allen, 1994).

Time course of phonetic feature encoding in the PRP
To study the temporal characteristics of PRPs, we grouped the
PRPs according to the top clusters identified in Figure 1D, which
also corresponds to the manner of articulation categories of plo-
sives, fricatives, nasals, and vowels (Ladefoged and Johnson,
2010). Each of these phonemic categories have distinctive spec-
trotemporal properties. For example, plosives have a sudden and
spectrally broad onset, fricatives have an energy peak in higher
frequencies, and vowels have relatively centered activity at low to
medium frequencies. As the vowels become more “front”-ed, the
single peak broadens and splits. Compared with vowels, nasals
are spectrally suppressed (Ladefoged and Johnson, 2010). The
time course of manner-specific PRPs (Fig. 2A) shows discrimina-
tion between different manners of articulation as early as 10 ms
after phoneme onset to as delayed as 400 ms after phoneme onset.
As shown in the next section, this early response (R1, 10-50 ms)
is mainly due to the structure of the speech stimulus that influ-
ences the preceding phonemes. We used the F statistic (Patel et
al., 1976) to measure the ratio of variance within and between
different manners to systematically study the temporal separa-
bility of PRPs for different manners of articulation. F-statistic
analysis reveals significant separability between manners of
articulation (Fig. 2B; multiple-comparison corrected via FDR,
q < 0.05) with F-statistic peaks observed at four distinct time
points (components) centered around 50, 120, 230, and 400 ms.
Repeating the same analysis using the acoustic spectrograms (Fig.
2B, purple) instead of EEG data (Fig. 2B, black) does not show the
late response components, validating their neural origin as op-
posed to possible contextual stimulus effects. Distinct temporal
components were also observed in the average PRP with R1 at
70 ms, R2 at 130 ms, and R3 at 200 ms (Fig. 1B).

Comparing the F statistic and average PRP reveals the unique
characteristics of each temporal component. For example, al-
though the first component of PRP (R1) elicits the response with
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Figure 2.  Time course of phonetic feature representation in the PRP. A, The average re-
sponses of phonemes that share the same manner of articulation show the time course of
manner-specific PRPs (electrode FCz). B, F statistic for manner of articulation groups reveals
three distinct intervals with significantly separable responses to different manners of articula-
tion (shown in blue, FDR corrected, g << 0.05). Neural F statistic (black; response) is based on
PRP responses recorded from electrode FCz. Acoustic F statistic (purple; stimulus) is based on
acoustic spectrograms of phonemes. €, Scalp topographies of the F statistic calculated by each
electrode for the four response events, R1,R2, R3, and R4. The two temporal electrodes of 7 and
T8 are marked on the first topographical map. D, Similarity of confusion patterns for manners of
articulation for acoustic and neural signals (r = 0.59, p = 0.016). , Effect size accumulated
over subjects and stimulus duration (F-statistic measure for electrode F(z).

the largest magnitude, it is comparatively less dependent on pho-
neme category compared with R2 and R3, as evidenced by a
smaller F statistic. The peak of the F statistic indicates that the
most phonetically selective PRP response appears at 120 ms (R2).
Additionally, the PRP component occurring at 400 ms (R4) in the
F statistic (Fig. 2B) was not apparent in the average PRP (Fig. 1B)
because the opposite signs of deflection at this time point for
different manners (Fig. 2A) cancel each other out.

Calculating the F statistic between manners of articulation for
individual electrodes (Fig. 2C) show different scalp maps for early
and late PRP components with a varying degree of asymmetry.
For example, two temporal electrodes of T7 and T8 show signif-
icant discriminability at R2 and R3 but not at R4. It has been
shown that cortical sources of ERP responses recorded at T7 and
T8, known as the T complex (McCallum and Curry, 1980), are
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independent from frontocentral activities (Ponton et al., 2002).
This suggests that various cortical regions may contribute differ-
ently to the response components of R1-R4 in phoneme-related
potentials.

To examine both the separation and overlap of different man-
ners of articulation, we trained a regularized least square classifier
(Rifkin et al., 2003) to predict the manner of articulation for
individual instances of PRPs (10% of data used for cross-
validation). The classification accuracy is observed to be signifi-
cantly above chance for all categories. To compare the confusion
patterns (Fig. 2D) of manners of articulation in neural and acous-
tic spaces, we also tested the classification of manners using spec-
trograms of phones. Figure 2D shows that the confusion patterns
in neural and acoustic spaces are highly correlated (r = 0.59,
p = 0.016, ¢ test), suggesting that the acoustic overlap between
various phones is also encoded in the neural responses.

Finally, to determine the variability of PRPs across subjects,
we estimated F statistics for manners of articulation accumulated
over subjects and recording time (Fig. 2E). This analysis is par-
ticularly informative because it specifies the minimum number of
subjects needed to obtain a statistically significant PRP response
for a given experimental duration.

Recurrent appearance of acoustic similarity of phonemes

in PRPs

The previous analysis illustrates how phonetic feature categories
shape PRPs and their distinct temporal components. However, it
does not explicitly examine the relationships between the EEG
responses and the acoustic properties of speech sounds. Because
speech is a time-varying signal with substantial contextual and

duration variability, it is therefore crucial to compare the neural
and acoustic patterns over time to control for the temporal
variability of phonemes. We therefore used pairwise phoneme
similarities calculated at each time point relative to the onset of
phonemes, and compared the similarity patterns in neural and
acoustic data at each time. As a result, this direct comparison can
separate the intrinsic dynamic properties of neural encoding
from the temporal dependencies that exist in natural speech.
Moreover, this analysis focuses on the encoding of similarities
and distinctions between categories rather than the encoding of
individual items, and has been widely used in the studies of the
visual system to examine representational geometries and to
compare models and stages of object processing (Kriegeskorte
and Kievit, 2013; Cichy et al., 2014).

We start by calculating the Euclidean distance between the
PRPs for each phoneme pair and at every time lag, yielding a
time-varying pairwise phoneme distance matrix. We use m — D
as a measure of similarity, where D is the distance matrix, and m
is the mean value of elements of matrix D. Figure 3A shows the
phoneme neural similarity matrices calculated at time points R1,
R2, R3, and R4, where red values indicate more similar phoneme
pairs (Fig. 3A).

To illustrate the temporal progression of relative distances
between the PRPs, we used MDS analysis (Borg and Groenen,
2005) and projected the PRP distance matrices at each time lag to
a single dimension, where the MDS values are derived from the
responsive electrodes at each time point. The MDS result shows
the phoneme separability is largest at R2 (Fig. 3B; Movie 1). Fig-
ure 3B also shows the difference in timing of responses to differ-
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ent manners of articulation is most apparent at PRP component
R3 compared with R1, R2, and R4 components.

To compare phoneme similarity patterns in acoustic and neu-
ral data over time, we calculated the acoustic similarity matrix
using the acoustic spectrogram of phones (Yang et al., 1992) and
found the covariance between the corresponding similarity ma-
trices. The covariance values (Fig. 4A, neural-acoustic matrix)
demonstrate distinct time intervals when the organization of
phonemes in PRP mirrors the acoustic organization of phonemes
(significance was assessed using bootstrapping, n = 20, multiple-
comparison corrected via FDR, g < 0.0001). In particular, the
acoustic distance matrix at time interval 10— 60 ms is significantly
similar to the neural data at three time intervals, approximately
centered at 120 (R2), 230 (R3), and 400 ms (R4) after the
phoneme onset. R1 (40 ms) in neural data, on the other hand, is
similar to acoustic patterns at ~—30 ms, showing that the ob-
served distinctions between phonemes at R1 are mainly caused by
the acoustic structure of the preceding phonemes. We also calcu-
lated the covariance between PRP distance matrices at different
time lags (Fig. 4B; neural-neural matrix, bootstrapping, n = 20,
multiple-comparison corrected via FDR, g < 0.0001). Figure 4B
shows that the PRP similarity matrix at R3 is significantly similar
to the similarity matrices at R2 and R4. The main diagonal of
neural-neural covariance matrix demonstrates the start and end-
ing of the significant PRP responses, as well as the strength of
phoneme distinction at each duration. In summary, Figure 4
shows that the organization of neural responses at time intervals
R2, R3, and R4 mirrors the acoustic similarities of different pho-
nemes, and provides compelling evidence for a repetitive appear-
ance of acoustic phonetic distinctions in the neural data.

Encoding of speaker characteristics in PRPs

The previous analysis showed that the encoding of phonetic
distinctions in the PRPs can be directly related to the acoustic
characteristics of phonetic categories. However, in addition to
deciphering the semantic message encoded in the speech signal, a
listener also attends to acoustic cues that specify speaker identity.
To study whether the variations in acoustic cues of different

speakers is encoded in the PRP, we modified the pairwise pho-
neme similarity analysis (Fig. 5A) by estimating the pairwise
distances between phonemes of each speaker and between pho-
nemes of different speakers. To measure speaker dependency of
EEG responses, we subtracted the sum of the pairwise phoneme
distances for each speaker and across speakers, an approach that
highlights the PRP components that show a differential response
between the two speakers. The correlations between the speaker
distance matrices in acoustics and the speaker distance matrices
in PRPs are shown in Figure 5A, where the most significant re-
semblance between speaker-dependent matrices occurs at R3
(200 ms, r = 0.46, p < 0.01). This observation differs from the
timing of the largest phonetic distinctions in the PRP observed at
R2 (compare Figs. 44, 5A), showing significant time differences
in the encoding of different acoustic features. The scalp location
of speaker feature encoding is shown in Figure 5B.

We used a multidimensional scaling analysis to visualize
the relative distance of the PRPs estimated separately for each
speaker. As shown in Figure 5C, speaker-dependent characteris-
tics (indicated by white and black fonts) are secondary to pho-
netic features (indicated by colored bubbles), meaning that the
phonetic feature distinctions in the PRP are greater than speaker-
dependent differences. We quantified this preferential encoding
using a silhouette index (Rousseeuw, 1987), and found a silhou-
ette index significantly greater for the PRP clusters corresponding
to manner of articulation compared with the PRP clusters that
represent speaker differences (silhouette index, 0.18 vs 0.001).

Next, we wanted to examine the encoding of the variable de-
gree of acoustic similarity between different phonemes of the two
speakers. This varied acoustic similarity is caused by the interac-
tions between the physical properties of the speakers’ vocal tracts
and the articulatory gestures made for each phoneme. To test the
dependence of speaker representation in neural responses on dif-
ferent phonemes, we defined an index (SE) that measures the
response similarity between the phonemes of the two speakers.
Therefore, this index would be zero if the responses to the same
phonemes of two speakers were identical. We compared speaker-
dependent phoneme distances in acoustic and neural signals (Fig.
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6A, = 0.46, p < 0.014), where the high correlation value implies
a joint encoding of speaker—phoneme pairs. Our analysis shows
that the separation between the two speakers is higher in the
group of vowels. To more explicitly study speaker representation
of vowels, we found the average PRPs for vowels for each of the
two speakers. The average vowel PRPs of the two speakers show a
significant separation at ~200 ms after the phoneme onset (cor-

responding to R3; Fig. 6B). To visualize vowel separation at this
time interval, we used a three-dimensional MDS diagram (Fig.
6C), where the separation between the two speakers is readily
observable. We quantified the separation of speakers within the
group of vowels using the silhouette index (Rousseeuw, 1987; Fig.
6C, S3), which revealed greater separation within the group of
vowels compared with the separation of speakers in all PRPs.
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Finally, Figure 6D summarizes the scalp location and timing
for the three main analyses in our study: (1) the average PRP of all
phonemes (Fig. 1B), (2) response components corresponding to
acoustic phoneme similarity patterns (Fig. 44), and (3) response
components correlated with speaker differences (Fig. 5A). The
largest average PRP component appears at R1, maximum pho-
netic distinctions are encoded at R2, and speaker dependency was
best represented at R3.

Discussion

We observed that EEG responses to continuous speech reliably
encode phonetic and speaker distinctions at multiple time inter-
vals relative to the onset of the phonemes. The responses are
primarily organized by phonetic feature, while subtler speaker
variations appear within manner of articulation groups, consis-
tent with previous studies showing a larger role for phonetic
over speaker characteristics in shaping the acoustic properties of
phones (Syrdal and Gopal, 1986; Johnson, 2008).

Our finding of repetitive appearance of phonetic distinction
in the neural response is consistent with AEP studies of isolated
consonant—vowel pairs (Picton etal., 1977; Néitinen and Picton,
1987; Ceponiene et al., 2002; Tremblay et al., 2003; Martin et al.,
2008). However, relating the PRP components (R1-R4) to spe-
cific AEP events, such as the P1-N1-P2 or N2-P3-N4 complex,
requires further investigation. Making this comparison is chal-
lenging because of the differences in the shape of PRP and AEP
responses, including the sign of the deflection. For example, the
sign of PRP deflection for different manner groups is not always
positive—negative—positive, as is the case in AEP. In particular, R2
deflection is positive for plosive phonemes and negative for the
vowels. Possible reasons for the observed differences between
AEP and PRP is the dominance of onset response in AEP, in
addition to contextual effects that may influence the average re-
sponses to a particular phoneme. In addition, continuous speech
is likely to engage higher-level, speech-specific regions that may
not be activated when a person hears isolated consonant—vowel
tokens (Honey et al., 2012; Overath et al., 2015).

While our observation of scalp distributions at each time
point suggests a different underlying pattern of neural activity for
each component, the neural sources contributing to R1-R4 re-
main unclear. Studies have shown that AEPs can be subdivided
into three categories: (1) responses with latency <10 ms are as-
sociated with brainstem; (2) response latencies between 10 and 50
ms are associated with thalamic regions; and (3) response laten-
cies beyond 50 ms are mostly generated by cortical regions
(Liégeois-Chauvel etal., 1994; Picton et al., 2000). Within cortical
responses, comparison of high-gamma and AEP (Steinschneider
etal.,2011a,2011b), as well as attention and development studies
(Picton and Hillyard, 1974; Pang and Taylor, 2000; Crowley and
Colrain, 2004; Kutas and Federmeier, 2011), has shown that dif-
ferent cortical regions are responsible for generating P1, N1, P2,
N2, and N4. Based on these findings, it is possible that the diverse
timing of the observed components of PRP could be the com-
bined effect of the activity of several cortical regions. The pairing
of source connectivity analysis along with complementary neu-
roimaging techniques should allow for more detailed character-
izations of neural processes in future studies (Schoffelen and
Gross, 2009). Additionally, the systematic manipulation of the
stimulus, task, and behavior may yield better characterization
of the sensory and perceptual processes contributing to the
representation of the acoustic features we observed at different
time intervals (Friederici et al., 1993; Kaan et al., 2000; Patel,
2003).
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One major difference between our study and previous work is
the direct comparison between the organization of neural re-
sponses and acoustic properties of speech sounds. Therefore, the
neural encoding of acoustic features can be investigated at each
time point that may represent the underlying stages of cortical
processing. In contrast with regression-based approaches (Di Li-
berto etal., 2015), which average neural responses over the dura-
tion of phonemes, our approach maintains the precise temporal
features of the neural response. Our results lay the groundwork
for several research directions, for example, where explicit
changes in the representational properties of speech can be ex-
amined in speech development (Dehaene-Lambertz et al., 2002),
in phonotactic probabilities in speech (Vitevitch and Luce, 1999),
in contexts where a listener learns new acoustic distinctions (Lo-
gan et al., 1991; Polka and Werker, 1994), in second-language
acquisition (Ojima et al., 2005; Rossi et al., 2006), and in changes
in the representational properties of speech through varying task
demands (Mesgarani and Chang, 2012). Given that the N1 and
P1 sequences in AEP are not fully matured in children and teen-
agers, it remains to be seen how this can change the PRP compo-
nents we report in this paper (Pang and Taylor, 2000; Ceponiene
etal., 2002; Wunderlich and Cone-Wesson, 2006). The ability to
directly examine the representational properties of the spoken
language stimulus in neural responses is a powerful tool for dis-
tinguishing among the many factors involved in sensory process-
ing (Luck, 1995; Thierry et al., 2007). For example, speech and
communication disorders can stem from a loss of linguistic
knowledge or from a degraded representation of relevant acous-
tic cues, such as in disorders of the peripheral and central audi-
tory pathways. The source of the problem is unclear for speech
disorders, such as aphasia (Kolk, 1998; Swaab et al., 1998; ter
Keurs et al., 2002). Since phoneme-related potentials can track
the representational properties of speech as it is processed
throughout the auditory pathway, these potentials could be in-
strumental in comparing healthy and disordered brains and
identifying possible problem sources.

Notes

Supplemental material for this article is available at http://naplab.ee.
columbia.edu/prp.html. This material has not been peer reviewed.
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