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Approximately 15%-20% of patients infected with SARS-CoV-2 coronavirus (COVID-
19) progress beyond mild and self-limited disease to require supplemental oxygen
for severe pneumonia; 5% of COVID-19-infected patients further develop acute
respiratory distress syndrome (ARDS) and multiorgan failure. Despite mortality rates
surpassing 40%, key insights into COVID-19-induced ARDS pathology have not
been fully elucidated and multiple unmet needs remain. This review focuses on the
unmet need for effective therapies that target unchecked innate immunity-driven
inflammation which drives unchecked vascular permeability, multiorgan dysfunc-
tion and ARDS mortality. Additional unmet needs including the lack of insights into
factors predicting pathogenic hyperinflammatory viral host responses, limited
approaches to address the vast disease heterogeneity in ARDS, and the absence of
clinically-useful ARDS biomarkers. We review unmet needs persisting in COVID-19-
induced ARDS in the context of the potential role for damage-associated molecular
pattern proteins in lung and systemic hyperinflammatory host responses to SARS-
CoV-2 infection that ultimately drive multiorgan dysfunction and ARDS mortality.
Insights into promising stratification-enhancing, biomarker-based strategies in
COVID-19 and non-COVID ARDS may enable the design of successful clinical trials
of promising therapies. (Translational Research 2021; 232:37�48)
Abbreviations: ACE2 = angiotensin converting enzyme 2; ANG-2 = angiopoietin-2 ; ARDS =
acute respiratory distress syndrome; COVID-19 = coronavirus disease 19 infection; CRP = C-
reactive protein; DAMPs = damage-associated molecular pattern proteins; eNAMPT = extra-
cellular nicotinamide phosphoribosyl-transferase; IFNg = interferon gamma; IL-1RA = interleukin
1 receptor antagonist; IL-6 = interleukin 6; IP-10 = interferon gamma-induced protein 10; IRF7 =
interferon regulatory factor 7; MCP1 = monocyte chemoattractant protein 1; MIF = macro-
phage migration inhibition factor; HMGB1 = the high mobility group box 1 protein; NO = Nitric
oxide; PAMPs = pathogen-associated molecular pattern proteins; RIPK1 = Receptor-interacting
serine/threonine-protein kinase; ROS = reactive oxygen species ; SARS-CoV-2 = Severe Acute
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Respiratory Syndrome-related Coronavirus 2; SMI = small molecule inhibitor; TLRs = Toll-like family
of receptors; TNFa = tumor necrosis factor alpha; VILI = ventilator-induced lung injury;
OVERVIEW: SERIOUS UNMET NEEDS IN THE COVID-19
PANDEMIC LANDSCAPE

Within the 10 months following notification by the

World Health Organization’s (WHO) China Country

Office of a pneumonia of unknown cause detected in the

city of Wuhan (Hubei province, China) (January 2020),

the COVID-19 pandemic, now known to be caused by

Severe Acute Respiratory Syndrome-related Coronavi-

rus 2 (SARS-CoV-2), has fundamentally altered global

health and economies and changed our country, commu-

nity and families.1 To date (November 2020), the pan-

demic has resulted in more than 55 million infected

individuals worldwide and »1.3 million deaths.2

Whereas the majority (80%) of patients with confirmed

SARS-CoV-2 infection exhibit mildly symptomatic,

self-limited coronavirus disease (COVID-19), approxi-

mately 15% of infected subjects progress to severe

pneumonia requiring supplemental oxygen and 5% fur-

ther progress to develop acute respiratory distress syn-

drome (ARDS), and/or multiorgan failure (MOF)3

(Fig 1) which drives mortality rates that surpass 40%.

The unprecedented nature of the SARS-CoV-2/

COVID-19 pandemic has highlighted multiple unmet

medical needs including the glaring absence of effec-

tive FDA�approved targeted pharmacotherapies.5 This

has created urgency within basic science, translational,

and clinical research communities, particularly as

immunity-derived protection against the novel corona-

viruses such as SARS (severe acute respiratory syn-

drome, 2002-2004), and MERS (Middle East

respiratory syndrome, 2012-2015) proved to be ineffi-

cient and unpredictable.6,7 The availability of effective
illness severity following SARS-CoV-2 in

ited disease in Stage I. Approximately 15

ing supplemental oxygen (Stage II) with 5

nd/or multiorgan failure (Stage III). Stage

ammation which are essential contributors
SARS-CoV-2 vaccines and anti-SARS-CoV-2 drugs

are imminent and of obvious utility, however, neither

therapeutic strategy addresses the pathobiology of

COVID-19-ARDS, that is, the unremitting activation

of innate immunity inflammatory pathways with

unchecked lung and systemic inflammation. The acti-

vation of evolutionarily-conserved inflammatory cas-

cades by SARS-CoV-2, as well as significant

amplification of these pathways by exposure to exces-

sive levels of ventilator-induced mechanical stress,8

results in massive increases in circulating levels of

inflammatory cytokines producing vascular leak,

edema of multiple critical organ (lung, kidneys, heart,

brain, liver, gastrointestinal tract), and dysregulated

activation of the coagulation cascade, ultimately lead-

ing to multiorgan dysfunction and death.9-11

Studies of past coronavirus outbreaks, involving

SARS-CoV-112,13 and MERS-CoV,14 have increased

our understanding of the inflammation-induced patho-

biology in SARS-CoV-2 revealing such commonalities

as the cytokine-release syndrome. Other immune

responses to SARS-CoV-2, however, remain distinc-

tive15,16 including the unique expanded tropism of

SARS-CoV-2 for vascular endothelial cells, likely rele-

vant to the hypercoagulability observed in severe

COVID-19.16,17 In addition, SARS-CoV-2 infectivity

peaks before the onset of symptoms, a stark contrast to

SARS-CoV-1,3,18 reflecting current understanding of

longer SARS-CoV-2 incubation periods and higher

rates of transmission compared to other coronaviruses.5

Potential mechanisms for the significant differences in

the host immune response to SARS-CoV-2 infection
fection. Over 80% of COVID-19-infected patients

% of infected subjects, however, progress to severe

% further developing acute respiratory distress syn-

s II and III are characterized by dysregulated lung

to COVID-19 disease severity. Adapted from Sid-
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include viral escape from innate sensing, hyperinflam-

matory responsiveness referable to inflammatory mye-

loid subpopulations, and lymphopenia marked by

T cell and Natural Killer cell dysfunction among other

alterations such as hypercoagulability.4,19,20 Clearly,

additional studies are needed to more fully define

immune responses to specific coronavirus infections,

including SARS-CoV-2, that dictate disease severity.

In this report, we summarize potential mechanisms of

COVID-19 pathobiology regarding increases in vascular

leakage, hypercoagulation initiation, and the promotion

of lung and systemic inflammation. In addition, we

examine the underpinnings of the multiple unmet needs

in COVID-19 ARDS which includes the absence of

effective therapies that target unchecked activation of

lung and systemic inflammatory cascades by damage-

associated molecular pattern proteins which ultimately

drives ARDS multiorgan dysfunction and mortality.

Acknowledging the difficulty in identifying specific

ARDS subphenotypes, due to heterogeneity in host

responses to SARS-CoV-2 infection, we also highlight

the unmet need for biomarkers predictive of a pathologic

hyperinflammatory viral host response vs a physiologic

host response.21-23 Insights into promising stratification-

enhancing, biomarker-based strategies in COVID-19

and non-COVID ARDS may enable the design of suc-

cessful clinical trials of promising therapies.
SARS-COV-2 PATHOBIOLOGY: VIRAL INVASION
AND CLINICAL PRESENTATION

An important first step to addressing the multiple and

critical unmet needs in severe COVID-19 infection is

to understand the pathogen-activated innate immunity

pathways designed to contain the infection but which

produce unremitting inflammation in a subset of

infected patients. Both SARS-CoV and SARS-CoV-2

consist of 4 main structural glycoproteins; the spike (S)

protein responsible for viral binding and entry into host

cell, and membrane (M), envelope (E), and nucleocap-

sid (N) proteins which play an important role in viral

particle assembly and release.24 Human angiotensin

converting enzyme 2 (ACE2) has been identified as an

entry receptor for SARS-CoV25 and SARS-CoV-2.24

Membrane fusion after host cell binding is facilitated

by S-protein cleavage by host cell proteases, specifi-

cally, the transmembrane serine protease 2.26 The

dependence on ACE2 for viral entry contributes to the

tropism for nasal ciliated epithelium and alveolar type

II pneumocytes.5 Increased infectivity and novel clini-

cal features of SARs-CoV-2 have been associated with

the tropism for other ACE2-expressing cells such as

endothelial cells which is conferred by acquisition of a

furin cleavage site on the S-protein.24
SARS-COV-2 PATHOBIOLOGY: VASCULAR LEAKAGE
IN SEVERE COVID-19 ARDS

Key homeostatic functions of the vascular endothe-

lium include presenting a non- thrombotic surface to cir-

culating components and serving as a semi-permeable

barrier to the extravasation of blood proteins, fluid, and

infiltrating leukocytes.27 The hallmark of COVID-19-

and non-COVID-19 ARDS is the loss of endothelial cell

barrier integrity resulting in vascular leakage and

increased tissue edema in multiple vital organs, most

prominently the lung (Fig 2). The pathobiological mech-

anisms that potentially cause increased vascular perme-

ability in severe SARS-Co-V-2 infection may include a

direct viral infection of endothelial cells,17 activation of

the kallikrein-bradykinin pathway, and the activation of

permeability-inducing signaling pathways by adherent

platelets, activated neutrophils28 and circulating cyto-

kines and vasoactive molecules.20 The increased

mechanical stress produced by mechanical ventilation as

well as impaired endothelial cell ACE2 activity may

also contribute to increases in vascular permeability.26

Multiple studies, including our own, have underscored

the critical role of the endothelial cell cytoskeleton in

vascular barrier regulation and repair that is central to

the pathobiology of ARDS and ventilator-induced lung

injury (VILI).27,29 Inflammatory cell mediator-induced

activation of vascular barrier-disruptive signaling path-

ways, in combination with increases in reactive oxygen

species (ROS), result in enhanced endothelial cells con-

tractility, loosening of interendothelial junctions, forma-

tion of paracellular gaps, and development of profound

vascular leakage and organ edema (Fig 2).27 In the lung,

endothelial cell cytoskeletal target proteins are clearly

involved in: (1) Unchecked inflammation-induced vas-

cular permeability and injury; (2) vascular responses to

excessive mechanical stress in VILI, and (3) regulation

of leukocyte transmigration to the alveolar space. In

addition, several cytoskeletal target genes harbor var-

iants which contribute to the genetic basis for observed

ARDS health disparities in Americans of African

descent.30-34 Despite the identification of unchecked vas-

cular permeability as a critical feature of progression to

ARDS mortality, to date, there are no FDA-approved

therapies that directly address the severe vascular leak

that is critical to COVID- and non-COVID ARDS patho-

biology and outcomes.
SARS-COV-2 PATHOBIOLOGY: DYSREGULATED
COAGULATION AND HYPERCOAGULABLE
RESPONSES

After the initial phase of SARS-CoV-2 infection, 20%

of patients develop severe or critical illness based on the

https://doi.org/10.1016/j.trsl.2020.12.008


Fig 2. SARS-CoV-2 infection- and mechanical ventilation (VILI)-induced inflammation and vascular injury/

dysfunction. Critical sequence of coronaviral- and mechanical stress-mediated activation of evolutionarily-con-

served inflammatory cascades resulting in dysregulated cytokine release, hypercoagulation, and leukocyte-endo-

thelial cell interactions and diapedesis. In combination with excessive levels of reactive oxygen species (ROS)

generated in target endothelial cells, these combined effects result in vascular injury and triggering of the cyto-

skeletal contractile apparatus to increase permeability leading to organ edema, multiorgan failure and COVID-

19 ARDS mortality.
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severity of lung inflammation, hypoxemia, respiratory

failure including ARDS, septic shock and/or multiorgan

dysfunction (Fig 1).19,20 The progressive lung damage is

a combination of a profound proinflammatory cytokine

storm as well as coagulation abnormalities with a high

incidence of thrombotic events observed in patients with

severe COVID-19-ARDS (Fig 2).35 As noted above,

although the nasal ciliated epithelium and alveolar type

II pneumocytes are the initial point of invasion by

SARS-CoV-2, activated endothelial cells play a critical

role in the pathogenesis of COVID-19 associated ARDS

and multiorgan dysfunction.20 Unique features of

SARS-CoV-2 include the ability of the virus to directly

affect endothelial cells, causing endothelialitis17 and

dysregulated coagulation pathways.15,16 Granulocyte-

containing microthrombi are a common feature of

severe COVID-19 disease,35 a phenomenon described

as immuno-thrombosis. This highly coagulative and

inflammatory state is the result of a complex interplay

between activated platelets, primed neutrophils and acti-

vated vascular endothelial cells.36 The formation of

platelet neutrophil complexes at the surface of endothe-

lial cells, leads to recruitment of highly cytotoxic neutro-

phils and inflammation-activated platelets that

translocate through the pulmonary microvasculature
into the alveolar and pulmonary interstitial spaces con-

tributing to endothelial cell injury (Fig 2).37 Sequestra-

tion of platelet/neutrophil complexes in the pulmonary

vasculature produces microthrombi and microemboli in

the alveolocapillary circulation. This highly inflamma-

tory and procoagulant state also leads to hyperactiva-

tion of the coagulation cascade and a relative

exhaustion of the fibrinolytic system.36,38 The regula-

tory mechanisms of these hyperinflammatory and

hypercoagulable responses in COVID-19 are still

under investigation, however, it merits stressing that

COVID-19-related coagulation disorders (arterial

thrombosis, pulmonary embolism, etc.) are closely

related to innate immune activation and inflammation,

with a strong influence of Toll-like receptors.39 Cur-

rently, the role of anticoagulant therapies in COVID

disease is speculative and under investigation although

patients with elevated D Dimer or confirmed clots

appear to benefit from systemic anticoagulation.

Despite the critical importance for risk of thrombotic

complications and the contribution to COVID-19 mor-

bidity and mortality, there are no FDA-approved ther-

apies that directly address endothelial cell

dysregulation associated with increased coagulation/

thrombosis in COVID and non-COVID ARDS.
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SARS-COV-2 PATHOBIOLOGY: DAMP-REGULATED
INFLAMMATORY CASCADE AMPLIFICATION

SARS-CoV-2 is a cytopathic virus which induces

cellular death and local release of various damage-

associated molecular pattern proteins (DAMPs) and

pathogen�associated molecular pattern proteins

(PAMPs).40 Pattern-recognition receptors such as Toll-

like family of receptors (TLRs) recognize PAMPs in

the extracellular space, triggering expression and acti-

vation of proinflammatory transcription factors such as

NF-kB.41,42 These interactions also trigger the activa-

tion of interferon-regulatory factors that mediate anti-

viral responses.41,42 Given their master regulatory role

in innate immunity, DAMPs are an attractive therapeu-

tic target in inflammatory injuries such as COVID and

non-COVID ARDS. For example, the high mobility

group box 1 protein (HMGB1), is a recognized DAMP

which is upstream of IL-6 release43-45 that like other

DAMPs activates the inflammasome via recognition by

the nucleotide-binding domain, leucine-rich containing

(NLR) protein family. This triggers inflammasome

activation resulting in secretion of cytokines such as

IL-1b (after conversion of proIL-1b to IL-1b)41,42 and
likely participates in the magnitude of inflammatory

responses occurring in the lungs of COVID-19

patients. Type I interferon responses also lead to the

cytokine storm characterized by marked elevations in

IL-6, IL-8, monocyte chemoattractant protein 1

(MCP1), type II interferon (IFNg), and interferon

gamma-induced protein 10 (IP-10). In the lung, these

factors result in subsequent pulmonary recruitment of

immune cells such as dendritic cells and macro-

phages.20 Cytokines and chemokines are further

released from virally-infected macrophages and den-

dritic cells with subsequent activation of late-phase

immune-cell recruitment of antigen-specific T cells to

destroy virally-infected alveolar cells.46 Antibody-

mediated viral neutralization potentially contributes

to successful viral clearance although the kinetics of

different immunoglobulins is continuing to be charac-

terized.47,48 The hyperinflammatory phenotype

observed in a portion of COVID subjects is in contrast

to the majority of COVID-19-infected patients who

exhibit a more regulated physiologic immune

response to infection remaining as Stage I subjects

who are asymptomatic or experience only mild to

moderate clinical illness with adequate oxygen satura-

tion (Fig 1).3 Interferon-related proteins are a complex

array of proteins that influence immune function and

may play a role in determining individual responses

to COVID-19 infection. Consistent with the notion

that interferons can contribute to inflammatory injury,

mutations in interferon regulatory factor 7 (IRF7), a
member of the interferon regulatory factor family of

transcription factors, was associated with life-threat-

ening COVID-19 disease.49 However, the complexity

of interferon responses is exemplified by studies

showing interferon beta to exhibit antiviral effects

against coronaviruses, including SARS-CoV and

MERS-CoV. Autoantibodies against type I IFN were

more common among patients with more severe life-

threatening COVID-1950 and inhaled interferon beta-

1a has been proposed as a potential treatment against

COVID-19. The efficacy of such an approach is

unclear, however, as a Phase 3 ARDS clinical trial

(INTEREST, Faron Pharma), evaluating Traumakine,

an IV-delivered recombinant human interferon beta-

1a, was uniformly unsuccessful.51 Clearly, the genetic

and nongenetic predictors of disparate phenotypes of

the dysregulated inflammatory response in COVID-19

patients require further investigation. Strategies to

identify the “at risk” hyperinflammatory subgroup are

critical in guiding innovative clinical trial designs of

novel anti-inflammatory therapeutics.
ANTI-INFLAMMATORY THERAPEUTIC STRATEGIES IN
COVID-19

A key feature of patients who progress from Stage I

COVID-19 disease to increasingly severe Stage II and

Stage III disease is blood biomarker evidence of the

maladaptive DAMP-mediated loss of innate immunity

regulation with excessive levels of circulating proin-

flammatory cytokines and chemokines (IL-6, IL-2, IL-

7, IL-10, G-CSF, CXCL-10, MCP1, IFNg, MIP1a,

TNFa).5 Traditional biomarkers of acute systemic

inflammation include C-reactive protein (CRP) and fer-

ritin which positively correlate with severity of

COVID-19 disease,52,53 but are of limited utility as

they lack specificity and do not inform therapeutic

decisions. In addition to dysregulated cytokine release,

excessive secretion of proteases and generation of reac-

tive oxygen species (ROS) by infiltrating immune cells

contribute to the hyperinflammation characteristic of

severe COVID-19 disease (Fig 2). The role of circulat-

ing levels of these proteins as diagnostic or prognostic

biomarkers has been extensively investigated in non-

COVID-19 ARDS21,54,55 but to date have not yet been

utilized in clinical decision-making.55 In COVID-19

ARDS, the utility of plasma biomarkers as important

diagnostic or prognostic biomarkers and as targets for

therapeutics remains under investigation.

Discussion of relevant or promising ARDS bio-

markers is germane to addressing the previously

emphasized major unmet need for successful ARDS

therapies. The prominent role of DAMP-mediated

https://doi.org/10.1016/j.trsl.2020.12.008
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hyperinflammation in COVID-19 ARDS initially led to

rapid repurposing of anti-inflammatory drugs for

COVID-19 ARDS that were previously shown to be

effective for cancer and autoimmune disorders indica-

tions. Unfortunately, multiple clinical trials with anti-

inflammatory drugs have failed leading to speculation

that therapeutic targeting of the “cytokine storm” that

is emblematic of non-COVID ARDS may be of limited

utility in COVID-19-ARDS.56 The primary basis for

this line of reasoning has evolved from 2 observations

which center on the interleukin-6 (IL-6) pathway, a

well-recognized inflammatory pathway in ARDS

pathobiology.57,58 First, median circulating IL-6 levels

in 5 COVID-19 cohorts were observed to be lower

when compared to cohorts of non-COVID-19 ARDS.56

Secondly, several high-profile efforts targeting IL-6

and IL-6 receptor antagonism (Tocilizumab-Roche/

Sanofi, Sarilumab-Regeneron/Sanofi), in COVID

ARDS failed to improve COVID-19 ARDS mortality

in Phase 2/3 clinical trials of COVID-19 patients with

severe disease59 (“Cleanup on IL-6”). The accumulated

failure of targeting the interleukin-6 (IL-6) pathway

may reflect several factors that are of specific relevance

to IL-6, including the downstream nature of this cyto-

kine in the inflammatory cascade, as well as the com-

plex role of IL-6 in innate immunity, that is, IL-6

exhibits both context-dependent pro-and anti-inflam-

matory properties.57,58,60 IL-6 targeting may in fact

increase risk to other infections, a particular risk in

regions where drug-resistant bacteria are common.59

Despite the lack of success with anti-IL-6 strategies,

there are currently more than 300 active trials of thera-

peutic agents by the global academic and biopharma

communities which target SARS-CoV-2 and the compli-

cations of COVID-19-ARDS including anti-inflammatory

therapies (Table 1). For example, studies evaluating the

efficacy of GM-CSF, a pleiotropic growth factor and

proinflammatory cytokine, were recently halted and the

sponsor is seeking FDA approval, but details have not

been published. To date only 3 therapies are approved for

adult COVID-19 patients, the antiviral treatments Remde-

sivir (USA, Japan, Australia) and Favilavir (China, Italy,

Russia) and the steroid preparation Dexamethasone

(United Kingdom, Japan). The UK RECOVERY trial

found dexamethasone to reduce COVID-19 fatalities

when administered to severely hypoxemic patients or

those requiring mechanical ventilation.61 Dexamethasone

has not been shown to benefit patients with mild COVID-

19 (Stage I, Fig 1) who do not require oxygen support

and may carry the risk of reducing antivirus defenses.

Details on various antivirals, antibodies, cell-based thera-

pies, devices, RNA-based treatments, repurposed com-

pounds, convalescent serum62 and other therapeutic

modalities63-65 are constantly curated and cataloged.
BIOMARKERS OF SYSTEMIC INFLAMMATION
ASSOCIATED WITH COVID-19 SEVERITY

Although a hyperinflammatory response to SARS-

CoV-2 is a major cause for morbidity and mortality in

COVID-19, there are currently no biomarkers that are

predictive of pathogenic inflammatory responses, reli-

ably predict did ease severity/mortality, or that are able

to identify targetable immune pathways. General bio-

markers of inflammation such as C-reactive protein, fer-

ritin, and lactic dehydrogenase (LDH), and dysregulated

coagulation (D Dimer) are persistently elevated in

patients with severe SOVID-19 disease. Additionally,

cytokines such as IL-1b, IL-6, IL-8, IL-10 and TNFa

are significantly elevated in COVID-19 patients when

compared to controls.66,67 The levels of IL-1b, IL-6, IL-
8, and TNFa in patients with severe COVID-19 are

comparable to those of patients receiving Chimeric anti-

gen receptor T-cell (CAR) therapy.66 These biomarkers

reflect general systemic inflammation and currently

COVID-19 specific biomarkers are not known.
EXTRACELLULARLY-SECRETED NICOTINAMIDE
PHOSPHORIBOSYL-TRANSFERASE (ENAMPT) IS A
DAMP AND NOVEL COVID-19 ARDS TARGET

The absence of successful ARDS clinical trials that

target inflammatory pathway components poses a vex-

ing problem that potentially implicates several issues

including: (1) poor target selection, that is, targeting

cytokines downstream in the inflammatory cascade,

and (2) delayed administration of the anti-inflamma-

tory therapeutic ,that is, at a point where influencing

the DAMP-mediated inflammatory cascade activation

is minimal.68,69 We have previously utilized

genomic�intensive approaches70-72 and cellular and

preclinical studies10,73,74 of bacterial pneumonia and

excessive mechanical stress/ventilator-induced lung

injury (VILI) to identify eNAMPT as a novel DAMP

and essential participant in ARDS/VILI pathobiology.

Circulating eNAMPT functions as a master regulator

of evolutionarily-conserved inflammatory cascades via

ligation of Toll�like receptor 4 (TLR4)73 eliciting pro-

found NFkB-driven inflammatory processes involved

in ARDS/VILI pathobiology, including the loss of lung

vascular barrier integrity (Fig 3). 10,73,74 We and others

have demonstrated key NAMPT SNPs present at minor

allelic frequencies >5% in both non-Hispanic whites

and in Blacks, confer increased risk of developing sep-

sis/trauma-induced ARDS/VILI and confer increased

ARDS severity and mortality (reduced ventilator-free

days, increased ARDS mortality).72,75-77 Importantly,

leveraging preclinical murine, rat and porcine studies

of ARDS/VILI, we demonstrated that eNAMPT is a

https://doi.org/10.1016/j.trsl.2020.12.008


Table 1. Summary of anti-inflammatory therapeutics for COVID-19 pneumonia/ARDS*

Medication Class/Mechanism Trade name (generic name) Sponsor/Trial phase Status

Glucocorticoid Dexamethasone University of Oxford/Phase 2/3 Approved UK
IL-6 receptor mAb Actemra (Tocilizumab)

Kevzara (Sarilumab)
Roche/Phase 2/3
Sanofi; Regeneron/Phase 2/3

COVACTA
EMPACTA
CURIMUNO
NCT04327388

IL-6 mAb Siltuximab
Anakinra

Judit Pich Martinez/Phase 2
Fundacion Miguel Servet/Phase 2/3

NCT04329650
NCT04443881

TNF mAb Humira (Adalimumab)
Remicade
(Infliximab)
Remsima
(Infliximab)

University of Oxford/Phase 2
Janssen/Phase 2/3

CATALYST trial
NCT04593940

Celltrion/Phase 2 NCT04425538
CSF2/GM-CSF mAb Lenzilumab Humanigen; Catalent/Phase 3 NCT04351152

Bradykinin Antagonist Takhzyro
(Lanadelumab)

Takeda/Phase 1 NCT04460105

IL-1bmAb Ilaris
(Canakinumab)

Novartis/Phase 3 NCT04362813
NCT04365153

CCR5 co-receptor mAb Pro 140
(Leronlimab)

CytoDyn/Phase 2 NCT04343651
NCT04347239

GM-CSF Receptor mAb Mavrilimumab Kiniksa Pharmaceuticals/Phase 2/3 NCT04399980
NCT04447469

GM-CSF mAb Gimsilumab Roivant Sciences/Phase 2/3 NCT04351243
Otilimab
TJM2
Lenzilumab

MorphoSys; GSK/Phase 2
I-MAB Biopharma
Humanigen Inc./Catalent Biologics/
Phase 3

NCT04376684
NCT04341116
NCT04351152

Interferon gammamAb Gamifant
(Emapalumab)

Swedish Orphan Biovitrum/Phase 2/3 NCT04324021

Angiopoietin 2 (ANG2) mAb LY3127804 Eli Lilly/Phase 2 NCT04342897
C5 complement inhibitor mAb Ultomiris

(Ravulizumab)
Alexion/Phase 3 NCT04369469

Vasoactive intestinal peptide (VIP)
antagonist

RLF-100
(Aviptadil)

NeuroRx; Relief Therapeutics/Phase2/
3

NCT04360096
NCT04311697
NCT04453839

Tyrosine Kinase inhibitor STI-5656
(Abivertinib)

Sorrento Therapeutics/Phase 2 NCT04440007
NCT04528667

Recombinant Fusion Protein � binds
DAMPS

SACCOVID
(CD24Fc)

Oncoimmune/Phase 3 NCT04317040

VIP receptor agonist PB1046 PhaseBio/Phase 2 NCT04433546
Anti-gout agent Colchicine NHLBI/Phase 3 NCT04322682
Calpain SMI BLD-2660 Blade Therapeutics/Phase 2 NCT04334460
Recombinant human plasma Rhu-pGSN

(Gelsolin)
BioAegis Therapeutics/Phase 2 NCT04358406

Dihydroorotate dehydrogenase
(DHODH) inhibitor

PTC299 PTC/Phase2/3 NCT04439071

Angiotensin-(1-7) peptide agonist TXA127 Constant Therapeutics/Phase 2 NCT04401423
RIPK1 Inhibitor DNL758

(SAR44122)
Danofi; Denali Therapeutics/Phase 1b NCT04469621

p38a/bMAPK) inhibitor Losmapimod Fulcrum Therapeutics/Phase 3 NCT04511819
Bruton’s tyrosine kinase inhibitor Calquence

(Acalabrutinib)
AstraZeneca/Phase 2 NCT04380688

NCT04346199
Auto adipose-derived MSC AdMSCs Celtrex Therapeutics/Phase 2 NCT04428801

*Therapies directed at blocking viral entry or neutralizing the virus are not included. Abbreviation: DAMPs, damage-associated molecular pat-

tern proteins; RIPK1, receptor-interacting serine/threonine-protein kinase; SMI, small molecule inhibitor.
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highly druggable target10,73 with a humanized

eNAMPT-neutralizing mAb proven to be efficacious in

preclinical ARDS/ VILI models (Fig 3).74,78
In addition to ARDS- associated NAMPT SNPs and

genotypes, eNAMPT is tightly linked to human ARDS

by eNAMPT levels that are elevated in in plasma and

https://doi.org/10.1016/j.trsl.2020.12.008


Fig 3. eNAMPT is a novel DAMP in COVID-19 infection and in the

development of ARDS. In response to a variety of injurious ARDS-

relevant stimuli, including trauma, hypoxia, mechanical stress (gen-

erated by mechanical ventilation) and SARS-CoV2 infection, the

NAMPT gene is activated, primarily in epithelial cells, leukocytes

and vascular endothelial cells, to generate and secrete eNAMPT into

the blood.10,73 Circulating eNAMPT functions as a damage-associ-

ated molecular pattern protein or DAMP via ligation of pathogen-

recognition receptor, TLR4, eliciting NFkB-mediated gene expres-

sion and activation of systemic inflammatory cascades.73 The elabo-

rated cytokines, that is, the “cytokine storm,” produce systemic

inflammation with increases in vascular permeability, organ edema

and multiorgan failure, the main contributor to ARDS mortality.

ARDS, acute respiratory distress syndrome; DAMP, damage-associ-

ated molecular pattern protein; eNAMPT, extracellularly-secreted

nicotinamide phosphoribosyl-transferase.
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BAL in ARDS subjects and serve as a biomarker for

human ARDS severity.55,72,79,80 Blood levels of

secreted eNAMPT are linked to NAMPT transcriptional

regulation which is highly induced by ARDS-relevant

stimuli (hypoxia, trauma, infection, ventilator stress)

(Fig 3).77,81-83 Our preliminary evaluation of plasma

eNAMPT levels in hospitalized and non-hospitalized

COVID-19-positive patients (Fig 4) show significantly

elevated plasma eNAMPT levels in COVID-19-posi-

tive subjects compared to healthy controls, with higher

eNAMPT levels in hospitalized COVID-19-positive

subjects compared to non- hospitalized subjects. The

magnitude of plasma eNAMPT elevation in COVID-

19 subjects with ARDS was similar to our prior reports
in non-COVID ARDS due to sepsis and trauma.55

Although the sample size is small, with the exception

of MIF, significantly elevations in additional ARDS-

associated biomarkers (IL-6, IL-8, IL-1RA, ANG-2)

were also noted in the same COVID-19-positive sub-

jects (compared to controls) (Fig 4). With the availabil-

ity of an eNAMPT-neutralizing humanized mAb

effective in dampening VILI and inflammation,74,78

there appears substantial and compelling foundational

basis for eNAMPT as a viable therapeutic target in

ARDS/VILI to dampen inflammatory cascade amplifi-

cation and improve ARDS survival.
SUMMARY: UNANSWERED QUESTIONS AND FUTURE
DIRECTIONS

Multiple challenging issues including the heteroge-

neity of the ARDS phenotype (COVID-19 and non-

COVID-19), the complex interactions involving medi-

ators of dysregulated inflammation, and the absence of

clinically-useful biomarkers, all contribute to the lack

of progress in addressing unmet needs in COVID and

non-COVID ARDS. While the diagnostic and prognos-

tic value of biomarkers of dysregulated inflammation

in COVID-19 ARDS may be enhanced by combining

multiple candidates, these issues remain a critical chal-

lenge to the conduct of successful therapeutic clinical

trials by ARDS clinical trial networks in the United

States. and world-wide. We have summarized the cur-

rent understanding of key pathobiologic features of

dysregulated lung and systemic inflammation associ-

ated with SARS-Co-V-2 infection and the landscape

for anti-inflammatory pharmacotherapies. We highlight

SARS-CoV-2-induced local and systemic release of

various DAMPs and PAMPs to produce unremitting

activation of the inflammatory cascade, increased vas-

cular leakage, dysregulated coagulation, and multior-

gan dysfunction contributing to COVID-19 ARDS

mortality. There is an urgent need for national and

international cohort studies to obtain detailed clinical

data and biologic samples from hospitalized and non-

hospitalized COVID-19-infected individuals to identify

immune signatures/molecular biomarkers associated

with clinical disease course. Given the well-recognized

racial and ethnic disparities in ARDS mortality in the

United States with racial and ethnic minorities, espe-

cially Blacks, Hispanics and Native Americans at

increased risk of death from ARDS30,32,84,85 that has

been dramatically highlighted in the current COVID-

19 pandemic,86 the recruitment of ARDS cohorts with

substantial diversity is mandated. Such diverse cohorts

would improve our current understanding of ARDS

biomarkers, allow for discovery of novel biomarkers,
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Fig 4. Plasma biomarkers levels in COVID-19 positive subjects. Plasma was obtained from healthy controls

(n = 78), COVID-19 positive subjects (n = 168) including subjects that did not require hospitalization (n = 29)

and subjects that required hospitalization (n = 139). Measurements of plasma biomarkers were performed using

U-PLEX and R-PLEXMesoScale Discovery platform as we have previously reported74 and included assessment

of eNAMPT (A), IL-6 (B), IL-8 (C), IL1-RA (D), macrophage migration inhibition factor or MIF (E), and

angiopoietin-2 or ANG-2 (F). With the exception of MIF, multiple comparisons of the median values using anal-

ysis of variance for non-parametric Mann-Whitney and Kruskal-Wallis tests, revealed significant difference in

each marker in the 3 groups compared to controls (P value <0.0001). All analyses performed with Stata and

Graphpad Prism software. All subject recruitment was IRB-approved.
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improve our ability to stratify patients for enrollment

into clinical trials, and allow the prioritization of clini-

cal interventions. Studies conducted with diverse “at

risk” cohorts for ARDS mortality should focus on iden-

tification of high-risk ARDS subjects potentially incor-

porating an anti-inflammatory platform which

combines the availability of predictive biomarkers,

point of care ARDS genotype testing, and a highly effi-

cacious biologic or small molecule therapy. These

strategies may provide the best opportunity to deliver

personalized medicine in the current COVID-19
pandemic landscape and to directly address the unmet

need for strategies to improve ARDS outcomes.
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