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Myofascial trigger point (MTrP), an iconic characteristic of myofascial pain syndrome (MPS), can induce cerebral cortex changes
including altered cortical excitability and connectivity. The corresponding characteristically reactive cortex is still ambiguous.
Seventeen participants with latent MTrPs underwent functional near-infrared spectroscopy (fNIRS) to collect cerebral
oxygenation hemoglobin (Δ[oxy-Hb]) signals. The Δ[oxy-Hb] signals of the left/right prefrontal cortex (L/R PFC), left/right
motor cortex (L/R MC), and left/right occipital lobe (L/R OL) of the subjects were measured using functional near-infrared
spectroscopy (fNIRS) in the resting state, nonmyofascial trigger point (NMTrP), state and MTrP state. The data investigated
the latent MTrP-induced changes in brain activity and effective connectivity (EC) within the nonsensory cortex. The parameter
wavelet amplitude (WA) was used to describe cortical activation, EC to show brain network connectivity, and main coupling
direction (mCD) to exhibit the dominant connectivity direction in different frequency bands. An increasing trend of WA and a
decreasing trend of EC values were observed in the PFC. The interregional mCD was primarily shifted from a unidirectional to
bidirectional connection, especially from PFC to MC or OL, when responding to manual stimulation during the MTrP state
compared with resting state and NMTrP state in the intervals III, IV, and V. This study demonstrates that the nonsensory
cortex PFC, MC, and OL can participate in the cortical reactions induced by stimulation of a latent MTrP. Additionally, the
PFC shows nonnegligible higher activation and weakened regulation than other brain regions. Thus, the PFC may be
responsible for the central cortical regulation of a latent MTrP. This trial is registered with ChiCTR2100048433.

1. Introduction

Myofascial trigger points (MTrPs) are limited sensitive
points and can be found within almost any strained muscle,
thus leading to the most extensive neck, shoulder, waist, and

leg pain [1]. As the main obstacles to a better myofascial
pain syndrome (MPS) clinical outcome [2], MTrPs will
induce local pain, local convulsive response, and autonomic
nerve phenomena once provoked and can be active and
latent. Latent MTrPs commonly exist in healthy people
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and patients with musculoskeletal pain, leading to sensory-
motor dysfunction. Compared with the active MTrPs, latent
MTrPs can also play an essential role in characteristic neuro-
muscular excitability [3]. Mechanisms involved in MTrP
production, including the “integrated hypothesis” and
“energy crisis theory,” have been generally accepted [4, 5].
After cortical activation, central sensitization also contrib-
utes to the emergence of MTrPs [6]. Treatments focusing
on the local MTrP, such as dry needling, shock wave ther-
apy, and local block therapy, are the most common strate-
gies [7]. However, there is a lack of specific and effective
treatment, with pain easily recurring.

MTrPs can induce a complex multidimensional emo-
tional experience, which relies on the neuronal activity of
multiple regions of the cerebral cortex to complete the pro-
cess of sensory, emotional, and cognitive responses [8].
However, there is no specific central nervous system for pain
or nociception within the brain, and the cortical activation
patterns can vary with different clinical pain symptoms.
Although the somatosensory cortex can reflex pain signals,
it is mainly responsible for perceiving pain, especially for
identifying the location of pain in the body [9]. The compli-
cated cortical pain processing needs further investigation as
specific pain biomarkers and target treatments are lacking.

In recent years, the nonsensory cortex, particularly the
prefrontal cortex (PFC), motor cortex (MC), and occipital
lobe (OL), has been reported to play increasingly indispens-
able roles in pain processing. A series of brain imaging stud-
ies demonstrated that the PFC participates in neuropathic
and musculoskeletal pain production. The PFC is also where
pain information (painful and nociceptive stimuli) and
others (including memory, emotion, and space) are inte-
grated and processed [10]. Excitability changes in the MC
are related to the severity of pain intensity, hyperalgesia,
and allodynia [11]. Additionally, activation of the MC can
also have an analgesic effect on chronic pain [12]. Thus,
the MC has been a common target area for pain research,
due to its connection with the nociceptive system and the
effect of pain on motor function. Although the OL is not a
typical “pain matrix” or salient network member, it can also
be involved in the central processing of pain signals. The
excitability of the OL, demonstrated by the electrophysiologi-
cal images in patients with migraine and visual snow syn-
drome, has proved the loss of pain habituation and a lower
pain threshold [13]. One study of 114 subjects has further
illustrated that thermal pain stimuli can activate the pain
matrix, while OL neuronal activity was observed inhibited
[14]. Still, however, the cortical changes in the nonsensory cor-
tical associated with the latent MTrPs are not understood.

Several brain imaging techniques, such as functional
magnetic resonance imaging (fMRI) [15], positron emission
tomography (PET) [16], and magnetoencephalography
(MEG) [17], are the most available devices to collect pain-
related cortical neuronal activity data. However, they are
not suitable for the clinical rapid and patient-centric brain
assessment. In this decade, functional near-infrared spec-
troscopy (fNIRS), supported by portability, affordability,
and resistance to motion artifacts, has been suggested to
assess neuronal activity by recording oxygenated and deoxy-

genated hemoglobin changes in cerebral tissues. As a nonin-
vasive optical imaging technique, fNIRS can be applied in
the clinic to monitor the human brain function changes
[18]. This study was aimed at investigating the functionality
of fNIRS to explore pain-related cortical activity.

The nonsensory cortex can elicit a large amount of infor-
mation correlated to its role in the pain process. However,
this informative resource has not been characterized in
MTrP-related pain. This study stimulates the MTrP and
NMTrP of recruited participants and was aimed at exploring
the latent MTrP-induced changes of activation and network
connections within the nonsensory cerebral cortex by an
fNIRS.

2. Materials and Methods

2.1. Participants. This study is prospective and observa-
tional, involving a single-center, self-control, and single-
blinding clinical trial. This project uses right brachioradialis,
usually more frequently used and susceptible to lateral epi-
condylalgia than the left one, to study latent MTrPs [19].

The subjects are screened according to the following
inclusion criteria: (1) no mental health diagnoses have been
founded; (2) no medicine has been taken this 48 h; (3) age
ranged from 20 to 50 years for both genders; (4) minimum
primary school education; and (5) a latent MTrP is on the
right brachioradialis but absent from the left side (there is
no pain sensation in daily life, but pain could be stimulated
by pressing or other methods) [20, 21]. The exclusion cri-
teria are as follows: (1) pain resulting from other causes
(such as rheumatic diseases, malignant tumors, and other
infections); (2) disoriented subjects; (3) and subjects with
more severe health comorbidities (such as heart, liver, lung,
kidney, and other organs dysfunction). All participants
signed a written informed consent before inclusion.

From July to October 2021, 17 participants were identi-
fied according to our study protocol. The study cohort con-
sisted of 15 males and two females, with an average age of
25:41 ± 5:14 years. Other fundamental parameter indexes,
such as visual analogue scale (VAS), blood pressure (BP),
and heart rate (HR), also had been recorded when initially
enrolled.

2.2. Experimental Design. Firstly, the examiner pressed the
right brachioradialis with bare hands to determine the posi-
tion of the potential MTrP and then marked it with a marker
pen. The latent MTrP could be diagnosed manually if these
criteria were present: taut band, hypersensitive spot, and
local twitch response during pressing. Symmetrical to the
right side, the corresponding position on the left was marked
and defined as NMTrP. Figures 1(a) and 1(b) show the dis-
tribution of MTrP and NMTrP. A graphical diagram of the
experimental setup is shown in Figure 1(c). All participants
were asked to relax during the induction of stimulating pain
using 25 Newton pressure from the force gauge [22, 23] on
MTrPs and NMTrPs, respectively.

An initial resting state session of 8min was measured
using fNIRS for each subject for the whole experiment. Dur-
ing this session, the participants were required to remain as
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motionless as possible with their eyes closed and minds
relaxed. Secondly, pain stimulation was induced by a force
gauge on the position of NMTrP for 8min. This session was
defined as an NMTrP state, and fNIRS signals were collected
simultaneously. The subjects were then asked to stop (but
not sleep) and take off the fNIRS head cap for 2h, helping sub-
jects restore to their resting state. Lastly, pain stimulation was
induced on the position of the latent MTrP for 8min.

2.3. Data Acquisition. In this study, a continuous-wave
fNIRS system (Nirsmart, Danyang Huichuang Medical
Equipment Co., Ltd., China) was utilized, using light at 760
and 850nm wavelengths to measure the changes in the con-
centrations of oxygenated hemoglobin (Δ[oxy-Hb]) with a
sampling rate of 10Hz. A total of 52 channels, set up as 24
source optodes and 16 detector optodes, were symmetrically
positioned over the L/R PFC, L/R MC, and L/R OL regions.
The channel configuration and regions of interest areas are
illustrated in Figure 2. Using the calibration function of the
instrument and the corresponding template, the channels
were determined to precisely fill the corresponding of the
10/10 electrode positions with different head sizes of the par-
ticipants [24].

2.4. Data Preprocessing and Analysis. Firstly, we removed
the channel with invalid horizontal line signals of the col-
lected fNIRS signals by visual inspection for each subject.
Then, the fNIRS signals were filtered by a Butterworth fil-
ter with a cutoff frequency 0.005-2Hz. The motion arti-
facts in fNIRS signals were detected and removed by
moving the standard deviation and spline interpolation
[25]. Then, the fluctuation signals of Δ[oxy-Hb] were

deduced using the modified Beer-Lambert law [26]. Wave-
let transform was adopted to obtain the phase dynamic
information of the oscillation signals [27]. The phase
dynamic information identified the effective network
model among the 52 channels of the fNIRS measurement,
which was established based on the coupling function [28].
The parameters describing the coupling model were
inferred by dynamic Bayesian inference, which reveals
the functional rules of interaction in the brain dynamical
system [29]. The coupling relationships (including cou-
pling strength and direction) between every two channels
were described quantitatively by the model parameters.
The instantaneous phases and their possible relationships
with wavelet phase coherence were identified.

Collected fNIRS signals can be divided into evoked/none-
voked neurovascular coupling and systematic physiological
interference. Therefore, mechanisms such as endothelial-
derived nitric oxide, vascular myogenic response, and sympa-
thetic nervous system could overlap and affect wavelet signals.
The wavelet amplitude (WA), coupling strength (CS), and
main coupling direction (mCD) were calculated in five inter-
vals [30, 31]: I: cardiac activity (0.6–2Hz), II: respiratory
activity (0.145–0.6Hz), III: myogenic activity (0.052–
0.145Hz), IV: neurogenic activity (0.021–0.052Hz), and V:
endothelial cell metabolism (0.0095-0.021Hz), to describe
the frequency-specific cortical activities and EC network,
and intervals III, IV, and V were exhibited to reveal different
relationships [32, 33].

2.5. Statistical Analysis. The Kolmogorov-Smirnov and
Levene tests were applied to test the data’s variance, normal-
ity, and homogeneity at the group level. Statistical analyses
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Figure 1: Schematic diagram of the experimental setup. (a) The distribution of MTrP and NMTrP: the marked blue regions of the bilateral
brachioradialis muscle are the corresponding MTrP and NMTrP. (b) Experimental illustration. (c) Experimental schedule. NMTrP:
nonmyofascial trigger point; MTrP: myofascial trigger point. Abbreviations: min(s), minute(s).
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Figure 2: (a) Superior view 3D topography of optode positions in PFC-, MC-, and OL-related regions. (b) Configuration of 52 channels
corresponding to the 10/10 electrode positions. Ch: channel; L: left; R: right; PFC: prefrontal cortex; MC: motor cortex; OL: occipital lobe.
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for the wavelet amplitude (WA), effective connectivity (EC),
and main coupling direction (mCD) were evaluated using a
one-way ANOVA in IBM SPSS (V 26.0). An α level of 0.05
and 95% confidence intervals were assumed to be statisti-
cally significant for all analyses, except comparison of EC
among three states in three different intervals where the α
value was adjusted as 0.0167 (0.05/3).

3. Results

3.1. Basic Parameters’ Changes. The latent MTrP character-
istics of the subjects are presented in Table 1. There was
no statistical difference in BP and HR, but the participants’
pain degree changed apparently in VAS results before and
during stimuli of the latent MTrP.

3.2. Wavelet Amplitude Analysis. Wavelet amplitude (WA)
reflects the fluctuation magnitude of the original signal in a
specific frequency, so it serves as an index of power that
describes the activity intensity of the cortical region [34].
The following graphs depict the changes in WA for the III,
IV, and V intervals.

Figure 3 shows the WA in interval III (myogenic activity
(0.052–0.145Hz)). Within LPFC, there were five channels
(1, 2, 5, 6, and 9) with statistical differences between resting
state and MTrP state, two channels (5 and 6) between rest-
ing state and NMTrP state, and only one channel (9)
between the NMTrP state and MTrP state. Within RPFC,
significant differences have been found in six channels (3,
11, 13, 14, 15, and 16) between the resting state and MTrP
state, only one channel (15) between the resting state and
NMTrP state, and two channels (14 and 16) between
NMTrP state and MTrP state. Within LMC, two channels
(22 and 33) showed statistical differences between the resting
state and MTrP state; no statistical differences were found
between the resting state and NMTrP state or NMTrP state
and MTrP state. Within RMC, only one channel (32)
showed a significant difference between the resting state
and MTrP state; only one channel (32) illustrated a statisti-
cally significant difference between resting state and NMTrP
state and no statistical differences between NMTrP state and
MTrP state. Within LOL and ROL, no statistical differences
were ascertained.

Figure 4 illustrates data for WA in the interval IV (neu-
rogenic activity (0.021–0.052Hz)). Within LPFC, four chan-
nels (2, 5, 6, and 9) yielded statistical differences between the
resting state and MTrP state; no statistical differences were
observed for resting state vs. NMTrP state and NMTrP state
vs. MTrP state. Within RPFC, six channels (3, 11, 13, 14, 15,
and 16) yielded significant differences between resting state

and MTrP state. When comparing the resting state with
NMTrP state, no channel showed significant differences,
while two channels (14 and16) showed significant differ-
ences between the NMTrP state and MTrP state. Within
LMC, only one channel (22) exhibited a significant differ-
ence between the resting state and MTrP state. No statistical
difference was found comparing the resting state vs. NMTrP
state, or NMTrP state vs. MTrP state. Within RMC, only one
channel (32) exhibited significant differences between the
resting state and MTrP state. Only one channel (32) yielded
significant differences between the resting state vs. NMTrP
state, and no channel recorded a statistical difference
between the NMTrP state and MTrP state. Within LOL
and ROL, there were no statistical differences detected.

Figure 5 shows the WA in interval V (endothelial cell
metabolism (0.0095-0.021Hz)). Within LPFC, no existing
statistical differences were recorded. Within RPFC, no chan-
nel recorded a statistical difference between the resting state
vs. MTrP state, resting state vs. NMTrP state, and NMTrP
state vs. MTrP state. Within LMC, no channel yielded a sta-
tistical difference when comparing the resting state with the
MTrP state, resting state with the NMTrP state, and the
NMTrP state with MTrP state. Within RMC, only one chan-
nel (32) significantly differed between the resting state and
MTrP state. One channel (32) was significantly different
between the resting state and NMTrP state. No channel
was statistically different between the NMTrP and MTrP
states. Within LOL and ROL, no statistical differences were
found.

The results demonstrated that WA increased in the
LPFC, RPFC, LMC, and RMC channels in intervals III and
IV and only one RMC channel in the interval V
(Figures 3–5) in the MTrP state compared to that in the rest-
ing state. In the NMTrP state, the WA in the RMC channel
of interval III (Figure 3) was significantly higher than that in
the resting state. Although an increasing trend was observed
between the MTrP state and NMTrP state, it was not statis-
tically significant. Thus, there seems to be an increasing
trend of WA values in the MTrP and NMTrP states, com-
pared with the resting state in the intervals III, IV, and V.

3.3. Effective Connectivity Analysis. To further investigate the
neurovascular coupling interaction among these cortexes,
the effective connectivity (EC), which refers explicitly to
the influence that one neural system exerted over another
to help describe the causality of interactions among brain
regions, was adopted [35]. EC is assessed by coupling
strengths.

Figure 6 shows the significant changes in EC values
between two states in three different intervals, individually.

Table 1: Fundamental information of experimental subjects in the latent MTrP before and during stimuli.

Parameter VAS
BP (mmHg)

HR (times/min)
SBP DBP

Before stimuli 0 119:00 ± 15:95 70:88 ± 8:13 73:13 ± 7:95
During stimuli 7:53 ± 0:72∗∗∗ 120:00 ± 16:46 71:50 ± 8:16 72:38 ± 9:12
VAS: visual analogue scale; BP: blood pressure; SBP: systolic blood pressure; DBP: diastolic blood pressure: HR: heart rate; MTrP: myofascial trigger point;
min: minute. ∗∗∗: p ≤ 0:001. Error bars are mean ± s:e:m:
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Figure 3: Comparison of wavelet amplitude (WA) changes among three stages in the frequency interval III: PFC (a and b), MC (c and d),
and OL (e and f). Error bars are mean ± s:e:m:∗: p < 0:05; ∗∗: p < 0:01; ∗∗∗: p < 0:001. MTrP: myofascial trigger point; NMTrP:
nonmyofascial trigger point; L: left; R: right; PFC: prefrontal cortex; MC: motor cortex; OL: occipital lobe.
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Figure 4: Comparison of wavelet amplitude (WA) changes among three stages in the frequency interval IV: PFC (a and b), MC (c and d),
and OL (e and f). Error bars are mean ± s:e:m. ∗: p < 0:05; ∗∗: p < 0:01; ∗∗∗: p < 0:001. MTrP: myofascial trigger point; NMTrP:
nonmyofascial trigger point; L: left; R: right; PFC: prefrontal cortex; MC: motor cortex; OL: occipital lobe.
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Figure 5: Comparison of wavelet amplitude (WA) changes among three stages in frequency interval V: PFC (a and b), MC (c and d), and
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Figure 6: Continued.
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Figure 6: Continued.
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No significant differences were recorded in interval III
(Figures 6(a)–6(c)). In interval IV (Figures 6(d)–6(f)), com-
paring the MTrP and resting states, the connectivity of
RMC→LMC showed a statistical difference. Considering
NMTrP state vs. resting state, five significant differences in
LPFC→LOL, RPFC→LOL, LMC→LOL, RMC→LMC, and
RMC→LOL were found. Only the connectivity of LOL→-
ROL is statistically different when comparing the NMTrP
and MTrP states. In the frequency interval V (Figures 6(g)–
6(i)), significant differences were detected between the MTrP
state and the resting state in the two connections
(LPFC→ROL and LMC→RMC). Considering NMTrP state
vs. resting state also yielded statistical differences in the two
conditions (LPFC→LOL and LMC→RMC). A decreasing
trend of EC values in the MTrP and NMTrP states was
apparent, compared with the resting state in the intervals
III, IV, and V.

3.4. Main Coupling Direction Analysis. Main coupling direc-
tion (mCD) calculations were undertaken to investigate how
every significant interaction of all possible pair channels
between 2 brain regions can exhibit different dominant func-
tions. When the oscillator value of CSi→j exceeded CSj→i, it
would be defined i→j as the main coupling direction
(mCD) of the interaction between channel i and channel j,
for the coupling parameters of each channel pair. Significant
differences can demonstrate interregional mCD, suggesting
that a predominant coupling function between the two
regions is possible. Otherwise, it would be considered bidi-
rectional coupling [36]. The frequency-specific interregional
coupling directions among the six brain regions in the rest-
ing state, NMTrP state, and MTrP state, respectively, are dis-
played below (in Tables 2 and 3 and Figure 7).

In interval III, in the resting state, two mCDs were
detected, LPFC→LOL (p = 0:009) and RPFC→LOL (p =
0:004). In the MTrP state, two mCDs were detected, includ-
ing RPFC→LOL (p = 0:03) and RPFC→ROL (p = 0:037).
These mCDs are illustrated in Figure 7(a).
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Figure 6: Comparison of region-wise EC among three states in three different intervals: interval III (a–c), interval IV (d–f), and interval V
(g–i). Error bars are mean ± s:e:m: No significant difference (p > 0:0167); ∗: p < 0:0167. MTrP: myofascial trigger point; NMTrP:
nonmyofascial trigger point; L: left; R: right; PFC: prefrontal cortex; MC: motor cortex; OL: occipital lobe.

Table 2: Statistical results of mCDs among 6 brain regions in
Interval IV.

mCD Resting state NMTrP state MTrP state

LPFC→RPFC p = 0:869 p = 0:732 p = 0:165
LPFC→LMC p = 0:020∗ p = 0:013∗ p = 0:090
LPFC→RMC p = 0:035∗ p = 0:004∗∗ p = 0:297
LPFC→LOL p ≤ 0:001∗∗∗ p = 0:135 p = 0:021∗

LPFC→ROL p = 0:002∗∗ p = 0:005∗∗ p = 0:174
RPFC→LMC p = 0:003∗∗ p = 0:022∗ p = 0:005∗∗

RPFC→RMC p = 0:001∗∗ p =0.002∗∗ p =0.016∗

RPFC→LOL p ≤ 0:001∗∗∗ p = 0:079 p = 0:015∗

RPFC→ROL p = 0:001∗∗ p = 0:003∗∗ p = 0:016∗

LMC→RMC p = 0:788 p = 0:675 p = 0:823
LMC→LOL p = 0:052 p = 0:805 p = 0:138
LMC→ROL p = 0:227 p = 0:429 p = 0:563
RMC→LOL p = 0:05 p = 0:883 p = 0:146
RMC→ROL p = 0:201 p = 0:657 p = 0:486
LOL→ROL p = 0:526 p = 0:307 p = 0:133
mCD: main coupling direction; L: left; R: right; PFC: prefrontal cortex; MC:
motor cortex; OL: occipital lobe. p > 0:05, no statistic difference existed; ∗:
significant difference; ∗: p < 0:05; ∗∗: p < 0:01; ∗∗∗: p ≤ 0:001.

11Neural Plasticity



In interval IV, resting state yielded four mCDs dominant
in LPFC and RPFC and no mCD from either MC or OL. In
the NMTrP state, there were three mCDs from LPFC, three
mCDs from RPFC, and no mCD from either MC or OL. In
the MTrP state, only one mCDs from LPFC, four mCDs
from RPFC, and no mCD from either MC or OL were found
(Table 2 and Figure 7(b)).

In interval V, in the resting state, three mCDs were dom-
inant in LPFC, four mCDs in RPFC, and no mCD from
either MC or OL. In the NMTrP state, there were four
mCDs from LPFC, four mCDs from RPFC, and no mCD
from either MC or OL. In the MTrP state, two mCDs from
LPFC, three mCDs from RPFC, and no mCD from either
MC or OL were detected (Table 3 and Figure 7(c)).

In the NMTrP state, the interregional mCD was pri-
marily observed in intervals IV and V from LPFC to
LMC, RMC, and ROL; from RPFC to LMC, RMC, and
ROL; and from LPFC to LOL and RPFC to LOL in the
interval V. In the MTrP state, the interregional mCD was
primarily found in intervals IV and V from RPFC to
LMC and RMC, LPFC, to LOL, in the intervals III, IV,
and V from RPFC to LOL, in intervals III and IV from
RPFC to ROL, and in interval V from LPFC to RMC. Thus,
the interregional mCD tends to be from LPFC and RPFC in
intervals III, IV, and V.

4. Discussion

This study investigated the nonsensory cortical reactions,
including changes in cortex neuronal activity and brain
effective connectivity induced by a latent MTrP with

fNIRS. WA has been used to describe cortical activity
intensity, and EC refers to the interactional directional
connectivity among regions. We observed an increasing
trend of WA and a decreasing trend of EC values in the
MTrP and NMTrP states, compared with the resting state
in intervals III, IV, and V. Notably, the interregional mCD
preferred to be from LPFC and RPFC in intervals III, IV,
and V.

Previous studies have found that pain activates a wide
range of cortical and subcortical areas, not only from one
region. Except for the primary and secondary somatosensory
areas, it includes the motor-related cortex, anterior cingulate
cortex, and prefrontal cortex [37]. Moreover, this study fur-
ther found that the nonsensory cortex including PFC, MC,
and OL was activated when latent MTrPs were stimulated
in MPS patients, and during which processes, complex
mechanisms can be activated [30, 38, 39].

The present study shows that the MC can be activated
either for the MTrP or NMTrP state, but the PFC has been
activated only for the MTrP state (Figures 3–5). Previous
studies also show that the PFC experiences an abnormal
increase in activity during chronic pain [40, 41], contribut-
ing to the PFC’s role in the transition between resting and
task-processing states [29]. All these findings indicate that
activation of the MC occurs within the cerebral cortex when
various pain occurs, but PFC activation occurs specifically in
MTrP-related changes. In contrast to the NMTrP state,
some channels of LPFC and RPFC were significantly acti-
vated in the intervals III and IV in the MTrP state. Such acti-
vation may be related to the increased sensitivity, decrease of
the pain threshold, and possibly the increase of the receptive
field of the MTrP state correlated with peripheral and central
sensitization [32, 42].

In addition, the connectivity between coupling cortexes
also varied (Figure 6). The term connectivity can refer to
different and interrelated aspects of brain organization. A
fundamental distinction is between structural, functional,
and effective connectivity. Among them, functional and
effective connectivity refers to the functional connection
between brain regions, based on a particular cognitive pro-
cess [43]. The EC is a directional connectivity that
depends on interactions among regions. In this study, its
value in the connectivity of LOL→ROL in the MTrP state
decreased in interval IV compared with the NMTrP state,
suggesting that OL may play a role in the regulation of
MTrP and may relate to specialized cells or groups of cells
existing in the occipital cortex that can recognize the spa-
tial location of pain [44]. Notably, the interregional mCD
(Figure 7) was primarily shifted from unidirectional to
bidirectional connection in responding to the MTrP state
compared with the NMTrP state [36, 45]. These changes
suggest that the PFC regulation on other brain regions
was weakened, while the feedback regulation of other
brain regions on the PFC was enhanced during the MTrP
state rather than in the NMTrP state.

Previous studies also found that the PFC is an essential
node in brain connectivity, which can play a higher cogni-
tive role in pain processing, and regulates pain awareness
and pain response through the redistribution of attention

Table 3: Statistical results of mCDs among six brain regions in
Interval V.

mCD Resting state NMTrP state MTrP state

LPFC→RPFC p = 0:951 p = 0:394 p = 0:205
LPFC→LMC p = 0:005∗∗ p = 0:013∗ p = 0:095
LPFC→RMC p ≤ 0:001∗∗∗ p = 0:002∗∗ p = 0:035∗

LPFC→LOL p = 0:052 p = 0:002∗∗ p = 0:023∗

LPFC→ROL p ≤ 0:001∗∗∗ p ≤ 0:001∗∗∗ p = 0:057
RPFC→LMC p = 0:001∗∗ p = 0:022∗ p ≤ 0:001∗∗∗

RPFC→RMC p = 0:002∗∗ p ≤ 0:001∗∗∗ p = 0:039∗

RPFC→LOL p = 0:040∗ p = 0:004∗∗ p = 0:047∗

RPFC→ROL p = 0:007∗∗ p ≤ 0:001∗∗∗ p = 0:083
LMC→RMC p = 0:264 p = 0:471 p = 0:432
LMC→LOL p = 0:684 p = 0:532 p = 0:374
LMC→ROL p = 0:100 p = 0:835 p = 0:674
RMC→LOL p = 0:599 p = 0:284 p = 0:344
RMC→ROL p = 0:191 p = 0:983 p = 0:942
LOL→ROL p = 0:382 p = 0:428 p = 0:949
mCD: main coupling direction; L: left; R: right; PFC: prefrontal cortex; MC:
motor cortex; OL: occipital lobe. p > 0:05, no statistic difference existed; ∗:
significant difference. ∗: p < 0:05; ∗∗: p < 0:01; ∗∗∗: p ≤ 0:001.
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[46, 47]. The PFC was not only related to other parts of
the frontal lobe but also to other brain areas through such
structures as the frontooccipital tracts [48, 49], which may
be the basis of PFC regulation of network connections in
other brain areas.

Further evidence further suggests that chronic pain is
associated with structural and functional changes in M1
and affects the motor reflex arc (inputs and outputs) [50,

51]. Consequently, these changes may correlate with the
increased regulation of the prefrontal cortex by motor areas
that plan the avoidance response to pain. In a recent report,
it has been demonstrated that long-term noxious stimula-
tion can lead to changes in brain structure and function
and dysfunction of neurovascular coupling [52]. It can also
provide a possible explanation for cortical changes related
to the latent MTrP.
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Figure 7: Illustration of frequency-specific interregional main coupling directions (mCD) (resting state, NMTrP state, and MTrP state)
among the six brain regions in frequency intervals III (a), IV (b), and V (c), respectively. MTrP: myofascial trigger point; NMTrP:
nonmyofascial trigger point; L: left; R: right; PFC: prefrontal cortex; MC: motor cortex; OL: occipital lobe.
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5. Limitations

Firstly, the sample size is relatively small and needs to be
expanded in future studies. Secondly, longitudinal experi-
ments are needed to characterize further cortical changes
induced by the latent and active MTrPs.

6. Conclusions

This study suggests that the nonsensory cortex, including the
PFC, MC, and OL, can be involved in the reaction after stim-
ulation of the latent MTrP. Additionally, high activation of
the PFC and its weakened regulation in other brain regions
were also characterized. The PFC shows high relevance
and responsibility for regulating latent MTrP. However, fur-
ther studies are needed to understand the MPS clinical out-
comes regarding the findings of this study.
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