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Abstract: Cancer stromal cells play a role in promoting tumor relapse and therapeutic resistance.
Therefore, the current treatment paradigms for cancers are usually insufficient to eradicate cancer
cells, and anti-cancer therapeutic strategies targeting stromal cells have been developed. Cancer-
associated fibroblasts (CAFs) are perpetually activated fibroblasts in the tumor stroma. CAFs are
the most abundant and highly heterogeneous stromal cells, and they are critically involved in
cancer occurrence and progression. These effects are due to their various roles in the remodeling
of the extracellular matrix, maintenance of cancer stemness, modulation of tumor metabolism, and
promotion of therapy resistance. Recently, biomaterials and nanomaterials based on CAFs have
been increasingly developed to perform gene or protein expression analysis, three-dimensional (3D)
co-cultivation, and targeted drug delivery in cancer treatment. In this review, we systematically
summarize the current research to fully understand the relevant materials and their functional
diversity in CAFs, and we highlight the potential clinical applications of CAFs-oriented biomaterials
and nanomaterials in anti-cancer therapy.
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1. Introduction

Cancer-associated fibroblasts (CAFs), as a critical component of the tumor stroma, are
strong promoters of various tumor behaviors, including tumorigenesis, growth, invasion,
and/or metastasis, because they produce abundant extracellular matrices (ECMs) and
mediate the proliferation, apoptosis, migration, and stemness of tumor cells [1,2]. Clinically,
numerous studies have shown that CAFs can reduce the efficacy of a variety of anti-tumor
treatments, including chemotherapy, radiotherapy, biotherapy, and/or targeted therapy,
subsequently leading to therapeutic resistance or even failure [3]. For instance, CAFs can
prevent the penetration of chemotherapeutic drugs by synthesizing ECMs, promote the
growth and metabolism of tumor cells by paracrine signaling/exosome secretion, and
prevent the eradication of tumors by therapeutic agents [4,5]. Further, CAFs can reduce the
sensitivity of tumors to radiotherapy by promoting the epithelial–mesenchymal transition
(EMT) of tumor cells and the survival of cancer stem cells (CSCs) [6,7]. Thus, in the past
decades, the design, improvement, and application of biological materials targeting CAFs
have attracted much attention for their potential to optimize the therapeutic efficacy of
anti-cancer treatments.

At present, studies on biological materials targeting CAFs can generally be divided
into three aspects depending on their purpose: high-throughput screening and sequencing,
three-dimensional (3D) culture technologies, and nanomaterials for therapeutic appli-
cations. Recently, by using a variety of microarrays, differential expression/infiltration
patterns of CAFs were detected and analyzed at gene, protein, and tissue levels [8–10].

Int. J. Mol. Sci. 2021, 22, 11671. https://doi.org/10.3390/ijms222111671 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-4506-1387
https://doi.org/10.3390/ijms222111671
https://doi.org/10.3390/ijms222111671
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms222111671
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms222111671?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 11671 2 of 19

Differentially expressed genes and/or proteins may be targeted as therapeutic markers of
crosstalk between CAFs and tumor cells, or applied as indicators for evaluating different
functional therapeutic parameters, such as efficacy, complications, and survival rate. More-
over, by improving and optimizing cultivation technology or scaffold materials, 3D culture
models of in vivo tumors have been used to explore different effects of CAFs on tumor
cells [11]. Importantly, several metal nanoparticles and drug-carrying systems have been
developed to target and eliminate CAFs or inhibit their functions to improve anti-cancer
therapy [12].

Although the application trend of these biological materials targeting CAFs is promis-
ing for anti-tumor treatment, huge challenges must be overcome before they can be used in
clinical practice. Due to the fact that the spatial structures differ between existing scaffold
materials in co-culture models and the natural ECM, the cell composition of these models,
typically from cell lines, is relatively uniform [13], which greatly differs from the organiza-
tion of tumor tissues. Additionally, nanotherapy, when targeting CAFs, has encountered
therapeutic resistance and has even caused adverse reactions in bone marrow [14,15], thus
largely limiting its clinical applications. In this review, we systematically summarize recent
findings related to biological materials targeting CAFs, from basic research to the clinical
setting, to better understand their applications. We then offer new perspectives in this field
and propose potential treatment strategies.

2. Gene Chips and Protein Chips Targeting CAFs

To date, one of the most difficult aspects of targeting CAFs in anti-tumor treatment
design has been the difficultly in locating the “Achilles’ heel” among thousands of mutant
genes and proteins. Thus, biochips have been widely used to rapidly and accurately identify
potential candidates in CAFs for anti-tumor treatments (Figure 1). Typically, a biochip
consists of an array of molecular sensors placed on a small surface with a strong substrate
to analyze genes, proteins, and/or tissues, enabling the simultaneous execution of many
biological or chemical reactions in a relatively short time in a high-throughput process [16].
Different types of biochips, including gene and protein chips, are basically composed of
immobilized biomolecules and solid support materials to analyze CAFs [10,16–18]. In
general, the sample preparation and testing procedures for the biochip analysis of CAFs
are similar to those for other cells [19,20]; however, the analysis of CAFs with biochips still
exhibits some idiosyncrasies when compared to other types of cells.

2.1. Selection of Samples: From Clinical Specimens to Primary Culture

CAFs and normal fibroblasts (NFs) derived from primary culture are the main cellular
sources for biochip detection (Figure 1). The majority of CAFs are isolated from fresh tumor
specimens. To analyze differences in profiles, it is necessary to use NFs as controls (Table 1).
Since the tumor and its surrounding tissues are usually surgically removed together,
tumor-adjacent tissue located more than 2–5 cm away from the primary site is the most
common source of NFs [21–23]. Additionally, NFs can be obtained from the skin of the head
and neck, gingiva, buccal mucosa, or foreskin tissue after circumcision [24–26]. Further,
commercial cell lines of NFs can be used as controls. For instance, NFs purchased from
Jingkang (Shanghai, China) were used to study the miRNA differences in CAF-derived
exosomes in breast cancer [7]. The obtained expression profiles were very sensitive to the
controls; even in the same study, using NFs from different sources led to different biochip
results. In support of this finding, Enkelmann et al. found that miR-16 was up-regulated
in bladder CAFs when compared with foreskin fibroblasts, but not when compared with
fibroblasts from normal urothelial tissue [25]. Intriguingly, sequence analysis further
revealed that miR-16 was decreased in foreskin tissue compared with urothelial tissue,
which may explain this discrepancy [25]. These results suggest that miR-16 expression in
bladder CAFs may not be significantly changed, and the agents targeting miR-16 in bladder
CAFs might be off-target or less effective. Similarly, Nakagawa et al. used NFs from the
liver and skin as controls in separate analyses, and the results showed that reticulon 1
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(RTN1), dickkopf homolog 1 (DKK1), hypothetical protein PP1044 (PP1044), and cyclin-
dependent kinase inhibitor 2A (CDKN2A) were up-regulated in CAFs when compared with
liver NFs, whereas proteoglycan 1 (PRG1), ankyrin 3 (ANK3), and monocyte chemotactic
protein 1 (MCP1) were increased when compared with skin NFs [19]. Notably, vascular
cell adhesion molecule 1 (VCAM1) was up-regulated in CAFs compared with NFs from
both the liver and skin [19], indicating that VCAM1 was consistently increased in CAFs
and might be a candidate target for anti-tumor therapy in metastatic colon cancer. In
summary, these findings show that CAFs and NFs have a high cellular heterogeneity, and
the expression profiles of NFs are variable depending on their tissue source. Accurately
obtaining potential candidate targets in CAFs requires control NFs from at least two sources
during high-throughput screening, or the preliminary results from biochips need to be
re-validated by other methods before processing.
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Figure 1. The biochips targeting CAFs in cancers. Tumor tissues and normal tissues are derived from clinical samples. Based
on the difference in the adherence time of fibroblasts and tumor cells, CAFs or NFs are isolated and purified from tissue
blocks for primary culture. Generally, the 3–5 passages cells are used for subsequent research, and nucleic acid samples or
protein samples are extracted by commercial kits or centrifugation for subsequent testing. The large number of probes or
antibodies fixed on the surface of the gene chip or protein chips specifically bind to nucleic acids or proteins in the sample
to analyze differences in expression profiles.

2.2. Before Testing: Primary Culture and Identification of CAFs

Typically, tissues are rinsed with phosphate-buffered saline (PBS) containing penicillin
and streptomycin, after which, they are cut into 1–3 cm3 pieces and further digested by
protease for use in the primary culture. Cellular components and/or conditioned media are
used for hybridization with the biochip. Protease digestion is used to isolate CAFs, and the
most commonly used enzymes are trypsin and collagenase (type I or IV) [20,23]. Ethylene
diamine tetra-acetic acid (EDTA) can bind calcium ions and decrease cell adhesion, so it is
widely used in enzyme digestion [24]. Fibroblasts are easy to grow and adherent to plastic.
Pure CAFs can be obtained by exploiting differences in the adherence time between CAFs
and tumor cells. Specifically, fibroblasts can be obtained by removing the non-adherent
tumor cells after 30 min (because the adherence time is <30 min for fibroblasts but >1 h for
tumor cells) [17].
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Table 1. Biochips targeting cancer-associated fibroblasts in different human cancers.

Tumor Samples Controls Targets Extraction Method Platform (Probe) Array Results
(Up/Down-Regulated)

Validation Results
(Methods) Ref.

NSCLC 15 2 cm from primary mRNA RNase kit Affymetrix 22/24 14 mRNAs (RT-PCR) [27]

COAD 3 Skin and liver mRNA N/A Affymetrix 170/203 (vs. skin);
18/14 (vs. liver) 9 mRNAs (RT-PCR) [19]

HNSC 3 Skin/buccal mucosa mRNA RNA STAT-60 GEArray 1/0 MT1-MMP (WB) [26]
HNSC 3 2 cm from primary mRNA N/A Agilent 100/0 N/A [22]
STAD N/A 5 cm from primary mRNA Trizol Reagent Agilent 10/10 FGF9 (WB, IHC) [21]

BC 6 CAFs without treatment mRNA RNeasy kit HumanHT 12 v4 35/0 IL-8 (RT-PCR, WB) [28]
GBC 65 Adjacent normal tissues mRNA GeneChip Kit Affymetrix 466/596 RT-PCR: NOX1 (RT-PCR) [29]
BC N/A CAFs without treatment miRNA MirVana kit TaqMan 7/22 miR-338-3p (RT-PCR) [10]
BC N/A NFs cell line miRNA FlashTag Kit. Affymetrix 1/0 miR-3613-3p (RT-PCR) [7]

BLCA 5 Bladder/foreskin miRNA MirVana kit miRXplore 0/2 (vs. foreskin);
2/0 (vs. bladder) 5 miRNAs (RT-PCR) [25]

UCEC 5 Adjacent normal tissues miRNA Trizol Reagent Affymetrix 7/8 5 miRNAs (RT-PCR) [30]
AH 72 Normal breast tissue. miRNA MirVana Kit Agilent 9/5 miR-200b/c (RT-PCR) [18]

CHOL 2 Skin miRNA MirVana kit TaqMan 162/93 3 miRNAs (RT-PCR) [24]
HGSOC 67 Normal ovaries LncRNA N/A Affymetrix 17/22 N/A [31]
ESCA 49 CAFs without treatment Protein Centrifuged RayBio 5/0 PAI-1 (WB, ELISA) [17]
CRC 3 Colorectal mucosa Protein Filtered RayBio 34/3 4 proteins (IHC) [20]

AH: atypical hyperplasia, BC: breast cancer, BLCA: bladder urothelial carcinoma, CHOL: cholangiocarcinoma, COAD: colon adenocarcinoma, CRC: colorectal cancer, ELISA: enzyme-linked immunosorbent assay,
ESCA: esophageal carcinoma, FGF9: fibroblast growth factor 9, GBC: gallbladder cancers, HGSOC: high grade serous ovarian cancer, HNSC: head and neck squamous cell carcinoma, IHC: immunohistochemistry,
IL-8: interleukin-8, MT1-MMP: membrane type 1-matrix metalloproteinase, N/A: not available, NOX1: nicotinamide adenine dinucleotide phosphate oxidase 1, NSCLC: non-small-cell lung cancer, PAI-1:
plasminogen activator inhibitor-1, RT-PCR: reverse transcription polymerase chain reaction, STAD: stomach adenocarcinoma.
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To date, no special culture medium has been developed for CAFs. Dulbecco’s modified
Eagle’s medium (DMEM) (GIBCO, Grand Island, NY, USA) containing 10% fetal bovine
serum (FBS) and antibiotics (complete medium) is typically used to culture CAFs and
NFs [18,23]. Ham’s nutrient mixture F12 has been added to this medium to further support
fibroblast growth [32]. In addition, Roswell Park Memorial Institute (RPMI) (HyClone,
Logan, UT, USA) 1640 medium with 1% FBS has also been used for fibroblast culture [17].
Additionally, Eagle’s minimum essential medium (EMEM) with 15% FBS has been special-
ized to support fibroblast growth for the isolation and culture of CAFs, and Medium 199
and Ham’s F12 mixed in a 1:1 ratio have the same function [10,33]. To ensure the accuracy
of the analysis, it is necessary to identify CAFs before the high-throughput screening and
sequencing by biochips. Commonly used methods for CAF identification mainly include
morphological observation, immunohistochemistry, and immunofluorescence. CAFs have
a negative reaction to epithelial-derived markers and a positive reaction to mesenchymal
markers. We previously reported, that compared with NFs, CAFs highly express α-SMA,
fibroblast-activated protein (FAP), and/or PDGF receptor α/β (PDGFRα/β) [2].

In most studies, CAFs were passaged three to five times before analysis, while 10 pas-
sages were considered acceptable for primary cells [23]. The total RNA of the primary
cultured fibroblasts was extracted by Trizol Reagent (Invitrogen) or commercial kits, such
as the RNeasy Mini kit (Qiagen, Inc., Valencia, CA, USA) and miRVana Isolation Kit (Am-
bion, Life Technologies, Milan, Italy) [7,21,28]. For the protein arrays, the conditioned
medium was collected after 2000× g centrifugation and stored at –80 ◦C if hybridization
with biochips could not be performed immediately [17]. Recently, many studies have
tended to use arrays from Affymetrix (Thermo Fisher Scientific Inc., Santa Clara, CA,
USA) and Agilent (Agilent Technologies, Santa Clara, CA, USA) to explore mRNA and/or
miRNA expression [22,30], and, to date, the cytokine antibody chip from RayBio (RayBio,
AAH-BLG-493) has mainly been used to detect the level of protein secreted by CAFs [20,34].
In summary, CAF analysis using biochips depends on cell isolation, culture, and identifi-
cation. As a result of cellular heterogeneity, all or a combination of α-SMA, FAP, and/or
PDGFRα/β should be used for identification. Biochips from different manufacturers, such
as Affymetrix, Agilent, and RayBio, need to be chosen according to the type of expression
profile being analyzed (Table 1).

2.3. After the Array Analysis: Validating Gene or Protein Expression Levels

The differential expression obtained from biochips reflects relative changes and needs
to be validated by quantitative methods. For gene chips, quantitative polymerase chain
reaction (qPCR) is commonly used, and western blotting (WB) and/or enzyme-linked
immunosorbent assay (ELISA) are used in the detection of protein levels (Table 1). In most
cases, the qPCR or WB results have corresponded to the gene expression obtained in the
biochip analysis. Zhao et al. randomly chose miRNAs for further analysis by RT-qPCR, and
the data were highly similar to the biochip results [23]. Similarly, in another study, ELISA
and WB indicated that the concentration of plasminogen activator inhibitor-1(PAI-1) was
higher in the conditioned medium of CAFs, which was also observed in the cytokine array
results [17]. However, Enkelmann et al. provided evidence that, whereas biochip results
indicated that miR143 and miR145 were down-regulated in CAFs in bladder cancer, qPCR
showed no notable changes in the same miRNAs [25], indicating that foreskin fibroblasts
might not be suitable as a control in this study, or that the difference might be caused by a
sample size bias. Supporting this notion, Utaijaratrasmi et al. found that the expression of
miR-486 was different in two normal skin fibroblasts [24], suggesting that the sample size
needs to be expanded when discrepancies appear. Taken together, the expression profiles of
CAFs from biochips can strongly vary as a result of different factors, from the sample size
to controls; thus, further validation by other methods needs to be performed to confirm the
results obtained using biochips.
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3. Three-Dimensional Co-Cultivation Materials

The tumor microenvironment (TME) is complex in composition and structure, which
can affect tumor growth, metastasis, and the cellular phenotypes of tumor and stromal
cells [35]. Traditional co-cultivation techniques have been primarily carried out on a two-
dimensional (2D) plane, which is quite different from the growth mode of cells in vivo [36],
leading to deviations from the actual situation in terms of cell growth, differentiation, and
interaction. In recent years, with the development of materials research, the emergence
of multiple scaffold materials has made it possible to construct 3D co-culture models for
in vitro studies in cell, tissue, and/or organ cultures, and 3D co-cultivation appears to have
a promising future in facilitating the translation of basic research to the clinical setting.
At present, the types of 3D co-culture models related to CAFs can generally be divided
into scaffold-free co-culture systems, scaffold-based co-culture models, and microfluidic
platform co-cultivation technology (Figure 2).

3.1. Scaffold-Free Culture of CAFs

Due to buoyancy and gravity, suspended cells can aggregate into small spherical
cell clumps without the aid of foreign scaffold materials [37]; therefore, this method has
been widely used to explore the role of CAFs in tumor growth using hanging-drop and
low-adherence plates. For instance, due to the effect of surface tension, liquid can hang onto
the lid to form hanging drops, and the cells therein can gather into a spherical shape under
the action of gravity [36]. Similarly, by mixing and adding the same number of cancer cells
and CAFs from the primary culture into hanging-drop plates, Ma et al. transferred and
harvested a cell suspension containing spheroids after 72 h. After imaging by microscopy,
the authors found that CAFs could promote the growth of gastric cancer cells and increase
the diameter of the spheres [38]. Further, when a well plate is covered with an inert substrate
(usually polystyrene), cells are unable to adhere to the plate wall, and the suspended cells
aggregate into visible spheroids. Zhou et al. harvested similar spheroids consisting of
melanoma cells and CAFs of melanoma for 48 h by inoculating a mixture of cell suspension
into 96-well plates with low-cell-adhesion surfaces [39]. Although centrifugation will
accelerate the formation of spheroids, it is limited in the hanging drop, which increases the
experimental period. Taken together, in contrast to traditional direct or indirect co-culture,
the scaffold-free culture allows cell spheres to grow and form a spatial structure, which is
more similar to tumors in vivo and can be used to evaluate the promoting effect of CAFs
on tumor growth. Notably, when the cell spheroids are suspended in the medium, their
motility cannot be evaluated or controlled, which limits the further analysis of the role of
CAFs in tumor behaviors, such as invasion, metastasis, etc.

3.2. Scaffold-Based Culture in CAFs

The scaffold material with a complex 3D structure provides support to cells seeded
therein [40], suggesting that models with more complex scaffold and cell structures are
feasible. Recently, three types of materials have generally been applied in studies on
CAFs. Firstly, natural scaffold material, represented by Matrigel, which is extracted from
animal tumors, has the most similar structure to natural tumors [41], but its composition is
relatively fixed. Secondly, rat-tail collagen is a type of natural scaffold material, and, unlike
Matrigel, its concentration can be adjusted individually in different studies [42]. Thirdly,
artificially synthesized scaffold materials are also used for the establishment of CAFs co-
cultivation models. Unlike the two aforementioned natural materials, synthetic materials
provide good support with no potential immunogenicity [43]. Typically, CAFs derived
from the primary culture of tumor tissues are seeded into scaffold materials. Notably, the
ratio of tumor cells to CAFs needs to be maintained at 1:1 to 1:3 during tumor formation,
since the addition of excessive CAFs may cause fibrosis [44,45], subsequently leading to
the failure of the tumorigenesis experiment. (Table 2).
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Figure 2. Co-culture models of CAFs and tumor cells. Tumors in vivo have a complex structure, where the tumor cells and
CAFs crosstalk with each other in 3D structure. The tumor cells or CAFs in traditional co-cultured model grow in 2D space.
The usage of hanging drops aims to form tumor spheroids. Cell suspension flows out from the small holes of the upper
container and forms hanging drops under the action of surface tension, and then the cells inside gradually form spheres
under the action of the tumor. The liquid in the lower container is performed to compensate for the evaporation of water in
the hanging drops. Using the low-adhesion well plates, which make cells unable to adhere to the wall, the suspended cells
aggregate into visible spheroids. Various scaffold materials form complex 3D structures for cell culture by providing space.
The gel containing tumor cells/CAFs is poured into the channels etched on carrier, and combined with the perfusion system.
The cells in the channels can grow under the fluid pressure, thereby simulating the interstitial fluid flow of the tumor.

Since a scaffold material with a porous structure provides space and support for the
growth of cells, the growth patterns of cells in a scaffold-based culture differ from those in a
2D co-culture. For example, Phan-Lai et al. co-cultured mouse mammary carcinoma (MMC)
cells and mouse CAFs in both 2D plates and chitosan–alginate scaffold, and they observed
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that MMC cells formed tumor spheroids and had slower growth in the scaffold-based
culture than in the 2D co-culture [46]. Intriguingly, scaffold-based culture technology can
be combined with a scaffold-free culture to explore the role of CAFs in tumor cell invasion
and migration. For instance, Pankova et al. used the hanging-drop method to acquire
tumor spheroids, and then embedded them in rat-tail collagen gel pre-inoculated with
CAFs, which increased the protrusions of spheroids and enhanced the invasive activity
of cancer cells [47]. These findings suggest that the scaffold-based co-culture has multiple
advantages, including the rapid formation of spheroids, well-controlled cellular motility,
and the 3D structure and spatial organization, in order to study tumorigenesis, invasion,
and metastasis.

Table 2. 3D co-culture in the cancer-associated fibroblasts in cancers.

Tumor Source of CAFs Scaffold Scaffold
Concentration TCs: CAFs Effects on Biological Behaviors Ref.

ACC Primary culture BME N/A 1:1 Increase invasion [45]
AB Primary culture Rat-tail collagen N/A 1:3 Support proliferation, invasion [44]

BC

Primary
cultureFlow

cytometryCell
lines

CA
Matrigel

PCL/Scaffold-free

4% CA
1 mg/mL 2:1 to 1:5

Enhanced growth, survival,
invasive, migration, and

proinflammatory cytokines
[41,43,46,48,49]

CRC

Primary
cultureNFs

co-culture with
CRC

Matrigel
Rat-tail collagen 8–11 mg/mL 1:1

Enhanced metastasis and
adhesion.

Inhibit vascular-like network
formation

[50,51]

ESCA Primary culture Collagen-1 gels N/A N/A Promote invasion [52]
GC Primary culture Scaffold-free N/A 1:1 Enhance growth [38]

GBC Primary culture Matrigel
Rat-tail collagen N/A 1:1 Promote proliferation, invasion,

migration, and tube formation [53]

HNSCC Primary culture Hydrogel scaffold 2.55–5.11 mg/mL 1:1 Enhance invasion of CAL33 cells [54]
OSCC Primary culture Scaffold-free N/A 1:1 Promote stemness [55]

NSCLC Primary
cultureCell lines

Rat-tail collagen
Collagen gel

BME/Cultrex
matrix

2.0 mg/mL 1:1
Increase proliferation, migration,
invasion, chemoresistance, and

contraction
[47,56–59]

MEL Col1α2-CreER
fibroblasts Scaffold-free N/A 1:2 Enhanced growth [11,39]

PC Primary
cultureCell lines

ECM
Collagen lattice 1 mg/mL 5:1

Increase growth, invasion,
motility migration, and

contraction
[60,61]

PDAC Primary culture Matrigel 9.2 mg/mL 2:1 Induce therapeutic resistance [62]

ACC: adenoid cystic carcinoma, AB: ameloblatoma, BC: breast cancer, BME: basement membrane extract, TCs: tumor cells, CA: chitosan-
alginate, CAFs: cancer-associated fibroblasts, CRC: colorectal cancer, ECM: extracellular matrix, ESCA: esophageal carcinoma, GBC:
gallbladder cancer, HNSCC: head and neck squamous cell carcinoma, N/A: not available, NFs: normal fibroblasts, MEL: melanoma,
NSCLC: non-small-cell lung cancer, OSCC: oral squamous cell carcinoma, PCL: polyepsilon-caprolactone.

Furthermore, the scaffold material can not only serve as a supportive function but can
also form a more complex layered structure that is similar to the skin [36]. Most tumors,
especially cancers from the epithelium, are divided into epithelial and mesenchymal layers.
CAFs are mainly located in the mesenchyme and interact with tumor cells. Theoretically,
by mixing CAFs with a gel and allowing it to solidify, the surface layer of CAFs can be
inoculated with a layer of tumor cells, which results in a hierarchical structure similar
to that of epithelial tumors in vivo. To support this notion, Chantravekin et al. seeded
epithelial cells on the surface of a gel containing ameloblastoma-associated fibroblasts, and
the surface became white because of the multiplication of epithelial cells [44]. Similarly,
since cells in the top layer are usually exposed to the air and only receive growth support
from the gel containing CAFs below, which simulates the actual TME, Horie et al. exposed
the gels to the air by placing them on a mesh in new plates with a growth medium for 5 days.
Invasion and nodular epithelial structures were observed in the CAF layer [57], indicating
that CAFs enhanced the invasion of tumor cells and might induce the differentiation of
lung cancer cells into mucinous cells.
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As a type of fibroblasts, CAFs play roles in ECM synthesis and tissue contraction [63],
and 3D co-cultivation has made it possible to explore these functions. Fibroblasts can ingest
exosomes and be converted into CAFs [64]. However, tumor cells and CAFs in vivo are not
simply immersed in liquid and grow in a single layer; they are surrounded by rich ECM,
which will affect the delivery of exosomes. For instance, Jung et al. used type I collagen as a
scaffold to co-culture breast cancer cells with NFs and found that the radially arranged ECM
fibers of tumor spheres enhanced the spread of exosomes to promote the transformation
of NFs into CAFs, and that this process was inhibited by blocking the alignment of the
ECM [65]. In another study by Chantravekin et al., after 7 days of incubating fabricated
gel, the gel had shrunk to approximately half of its original size because of the action of
fibroblasts on the collagen [44]. These data suggest that using a 3D co-culture can replicate
the shrinkage of tumor tissue mediated by CAFs in vitro.

3.3. Microfluidic Platform Co-Cultivation Technology in CAFs

A microfluidic platform is a type of co-cultivation technology and is similar to the
scaffold-based culture [66]. Similar to the scaffold-based co-culture, the microfluidic
platform provides support for the growth and interaction of tumor cells and CAFs in
a 3D space [67]. However, the microfluidic platform has the advantages in the high-
throughput culture and simulation of mechanical stress. Etching technology can be used to
create multiple cell compartment structures and liquid channels on the surface of a carrier
(glass or silicon-based material). These dense channels provide a large space for the growth
of cells, thus being beneficial for high-throughput cell culture. For instance, Chen et al.
conducted a microfluidic sphere formation platform that generate 1024 uniform cancer
spheres within a 2 cm area, where the subsequent co-culture showed that the presence of
CAFs can reduce the sensitivity of multiple spheres to cisplatin, and that there was no
significant increase in photodynamic therapy (PDT) resistance [68]. Another advantage of
the microfluidic platform is that it can simulate the mechanical stress in TME. The liquid
channels on the surface of a carrier can be connected with a perfusion system to form an
environment with fluid pressure, addressing the insufficiency of the traditional scaffold-
based culture [69,70]. Using liquid channels in a microfluidic platform, Yeon et al. imitated
the interstitial fluid flow (IFF) in tumors and verified that exosomes from melanoma cells
were delivered to the stroma via IFF, and that the number of CAFs differentiated from
human umbilical vein endothelial cells increased [11]. In addition to simulating IFF, the
microfluidic platform can also be used to simulate the effect of tensile stress on CAFs and
tumor cells in TME. Ao et al. used a microfluidic platform to bring mechanical stretching
on the normal tissue-associated fibroblasts (NAFs). Similar to CAFs, the stretching NAFs
produced ECM with a more organized structure, and guided and increased the cancer cell
migration [71].

In summary, these different types of 3D co-culture models have been developed
to explore the different roles of CAFs in tumor progression. The scaffold-free culture
has made it possible to study tumor growth induced by CAFs in a 3D configuration.
Various scaffold materials imitate the complex layered structure and can be used to study
tumorigenesis and invasion, which is limited in the scaffold-free culture. In addition to
the inherent advantages of the scaffold co-culture, the microfluidic platform effectively
simulates the fluid pressure in tumor tissues; therefore, these systems can be used to study
the differentiation and function of CAFs under the influence of fluid pressure. Indeed, there
are abundant culture models that can be selected to study CAFs, and, thus, it is necessary
to select the appropriate model according to the purpose of the study.
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4. Nanomaterials Targeting CAFs

Accumulating evidence suggests that the response to anti-tumor therapies highly
depends on the features of the tumor cells and the TME [72]. As described above, CAFs,
as the major cells in the TME, can secrete a variety of soluble cytokines and/or exosomes
to support tumor survival, promote metastasis, and enable tumor cells to escape immune
attacks [73]. Therapies targeting CAFs might improve the efficacy of anti-tumor treatment
and reduce therapeutic resistance [74]. However, the ECM and fluid pressure formed by
CAFs create a physical barrier that restricts the entry of drugs [75,76]. Recently, a variety of
materials have been successfully prepared to target CAFs for anti-cancer treatment, and
have shown therapeutic effects [77,78] (Table 3). These data have shown that nanoparticles
or drug delivery systems designed to target the functions of CAFs exhibit promising
therapeutic effects. Although different nanosystems considerably vary in their composition
and mechanism, they mainly consist of three parts: targeting ligands, drug-carrying
systems, and cargo (Figure 3).

Table 3. Nanoparticle targeted cancer-associated fibroblasts in anti-cancer therapies.

Nanomaterials Payload Tumors Source of CAFs Target Effect on CAFs Ref

GNPs N/A OC Primary culture N/A Inhibit the activation [78]

GNPs N/A OSCC Primary culture N/A Inhibit the migration, activity,
and communication [79]

GNPs N/A PDAC Primary culture N/A Transform to quiescence [80]
CAP-NP DOX PC CAFs cell lines FAP Selective apoptosis [12]

rGO nanosheets DOX CC FAP + CAFs FAP Cell-killing [81]
HA@DSP-pep-DSP DOX PC CAFs cell lines FAP Cell-killing [82]

FH-NB-DOX DOX PC WPMY-1 cells Tenascin C Eradication [83]
GLPM Tel/DOX BC NIH/3T3 cells α-SMA Decrease CAF population [84]

Cellax-DTX polymer DTX PDAC Xenograft α-SMA Depletion of CAFs and
increase tumor perfusion [75]

HSA-PTX@CAP-ITSL HSA-PTX PDAC NIH/3T3 cells FAP Cell-killing [85]
Z@FRT ZnF16Pc BC Xenograft FAP Eradication of CAFs by PDT [86]

αFAP-Z@FRT ZnF16Pc BC Xenograft FAP Eradication and stimulates
anti-CAFs immunity [87]

FH-SSL-Nav Nav HCC LX-2 cells lines Tenascin C Selective apoptosis [77]

TR-PTX/HCQ-Lip PTX and HCQ PDAC Integrin αvβ3+
CAFs Integrin αvβ3+ Inhibit autophagy in CAFs [88]

LPD sTRAIL PDAC NIH/3T3 cells
MRC-5 cells N/A Revert CAFs to quiescent state [89]

PNP/siRNA/mAb
nanosystem siRNA PC CAFs cell lines FAP Downregulate CXCL12

expression in CAFs [90]

cRGD-miR-22-sponge
nanoparticles miR-22 sponge BC CD63 + CAFs N/A Inhibit therapeutic resistance

by CD63 + CAF miR-22 [73]

α-SMA: α-smooth muscle actin, BC: breast cancer, CAFs: cancer-associated fibroblasts, CAP: cleavable amphiphilic peptide, CC: colon cancer,
cRGD: cyclic RGD, CXCL12: C–X–C motif chemokine ligand 12, DOX: doxorubicin, DTX: docetaxel, DSP: doxorubicin-ss-polyamidoamine,
FAP: fibroblast-activated protein, FH: FHKHKSPALSPVGGG, FH-SSL-Nav: Nav-loaded nanoliposomes modified with peptide FH,
GLPM: glycolipid-based polymeric micelles, GNPs: gold nanoparticles, HA: hyaluronic acid, HCC: hepatocellular carcinoma, HCQ:
hydroxychloroquine, HSA: human serum albumin, Lip: liposomes, LPD: lipid-coated protamine DNA complexes, mAb: monoclonal
antibodies, N/A: not available, Nav: navitoclax, NB: nanobubble, NPs: nanoparticles, OSCC: oral squamous cell carcinoma, PC: prostatic
cancer, PDAC: pancreatic ductal adenocarcinoma, PDT: photodynamic therapy, PNP: peptide nanoparticles, PTX: paclitaxel, rGO: reduced
graphene oxide, Tel: telmisartan, TRAIL: TNF-related apoptosis-inducing ligand, TR: TH-RGD, ZnF16Pc: zinc hexafluorophthalocyanine,
Z@FRT: ZnF16Pc-loaded ferritins.
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Figure 3. The nanomaterials targeting CAFs. (A) Illustration of the basic structure of nanosystems targeting CAFs. The
nanosystems mainly consist of three parts: targeting ligands, drug-carrying systems, and cargo. Metal nanoparticles
are mainly composed of metal particles with tiny sizes. (B) Targeting ligands including cellax, cleavable amphiphilic
peptide (CAP), single-chain variable fragments (scFv), and FHKHKSPALPSVGGG (FH) in the nanoparticles specifically
bind to α-smooth muscle actin (α-SMA), fibroblast-activated protein (FAP), and tenascin C (TNC) on the surface of CAFs
to promote the entry of chemotherapeutic drugs, including doxorubicin (DOX) and docetaxel (DTX), photosensitizers
zinc hexafluorophthalocyanine (ZnF16Pc), or short peptides navitoclax (Nav) into cells, and target the killing of CAFs
or up-regulate the expression of BCL-2 and BCL-XL to increase the apoptosis of CAFs. (C) The sponge nanoparticles
(sponge-NPs) neutralize miR-22 in the exosomes of CAFs, which inhibit the expression of estrogen receptor-α (ER-α)
and reduce therapeutic resistance. The siRNA in CPP-NPs decrease the expression of C–X–C motif chemokine ligand
12 (CXCL12), subsequently reducing the cancer metastasis of tumor. Gold nanoparticles (GNPs) exhibit a suppressive
role in tumor invasion, inhibiting expression of osteopontin (Spp1), pleiotrophin (Ptn), thrombospondin-2 (Tnbs2), and
ADAM metallopeptidase with thrombospondin type 1 motif 5 (Adamts5). (D) GNPs inhibit the expression of α-SMA and
fibronectinb in CAFs by inhibiting the platelet-derived growth factor (PDGF) and transforming growth factor-β1 (TGF-β1)
expression in the cancer cells. It also induces the up-regulated expression of fatty acid synthesis genes in CAFs, including
fatty acid synthetase (FASN), sterol regulatory element-binding protein 2 (SREBP2), and fatty acid-binding protein 3 (FABP3)
genes, increases the lipid content, therefore inducing CAFs to stay in a quiescent state, and inhibits tumor-promoting
functions. Back arrows: promotion; red “T” arrows: inhibition.
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4.1. Targeting Ligands to Assist Nanosystems in Locating CAFs

In order to realize the therapeutic effects of nanosystems targeting CAFs, the first step
is to locate fibroblasts in the tumor tissue. To achieve this goal, many nanosystems have
ligands that specifically bind to CAFs biomarkers [87,90]. FAP-α is a marker specific to
CAFs, and the FAP monoclonal antibody (mAb) can specifically bind to it and be used as
a targeting ligand. For instance, Lang et al. loaded CXCL12 silencing siRNA (siCXCL12)
using a cell-penetrating peptide (CPP) that was adsorbed to an anti-FAP-α monoclonal
antibody on the surface. The constructed delivery system effectively reduced the CXCL2
expression in FAP+ CAFs, thereby reducing the migration and metastasis mediated by
CAFs [90]. Since most monoclonal antibodies have a high molecular weight, they preclude
the formation of nanoparticles with smaller sizes. Compared with monoclonal antibodies,
single-chain variable fragments (scFv) have a lower molecular weight and better penetra-
bility, and they are more widely used in nanosystems. Li et al. labeled scFv-Z@FRT and
confirmed that it had a high binding capacity with tumor tissue [86]. The authors found
that scFv-Z@FRT aggregated around CAFs and led to their clearance and the degradation
of ECM in the tumor [86]. In addition to the antigen–antibody reaction, some artificially
synthesized peptides can also be used as FAP-targeting ligands. For example, cleavable
amphiphilic peptide (CAP) can be specifically recognized and cleaved by FAP-α to release
an internal drug that exerts a therapeutic effect. Ji et al. used a CAP that self-assembled into
nanoparticles carrying doxorubicin to eradicate CAFs in prostate cancer [12], subsequently
promoting tumor cell apoptosis and inhibiting tumor growth in vivo. Tenascin C, a tumor-
specific protein mainly secreted by CAFs in most cancers, is another biomarker [91,92].
The short peptide FHKHKSPALPSVGGG (FH) is its ligand, and is widely used as the
targeting ligand for CAFs [91]. Chen et al. prepared nano-liposomes modified by FH
peptide, which specifically induced the apoptosis of CAFs [77]. Compared with control
nano-liposomes without FH peptide modification, those with FH were more absorbed by
CAFs and were highly cytotoxic [77]. In summary, the key step in realizing the therapeutic
role of nanosystems is the recognition of CAFs, and FAP has been the most commonly used
biomarker for this purpose. FAP monoclonal antibodies and small-molecule peptides, such
as scFv and CAP, can be used in nanosystems. To identify CAFs, the ligand of Tenascin C,
FH peptide, can also be used.

4.2. Carrying Systems Promoting Drug Penetration and Absorption in CAFs

Nanoparticles are frequently used in drug-carrying systems. Such nanoparticles de-
liver drugs to CAFs and then degrade, thereby releasing the drugs to eliminate CAFs or
regulate their function to exert therapeutic effects. Currently, commonly used materials
mainly include biocompatible polymers, liposomes, and ferritin [87]. Biocompatible poly-
mers usually include cellulose and chitosan, as well as artificially synthesized dendrimers
conjugated to drugs, and they degrade to release drugs that play a therapeutic role when
entering the CAFs [82,84]. Ernsting et al. prepared the Cellax-DTX polymer, which was
conjugated to docetaxel, polyethylene glycol (PEG), and acetylated carboxymethylcellulose,
and injected it into a mouse model of pancreatic cancer [75]. They found that the polymer
eliminated 90% of SMA+ CAFs and significantly decreased tumor proliferation and metas-
tasis [75]. Further, since liposomes have a high biocompatibility, low immunogenicity, and
relatively simple preparation, they have been used in CAF-targeted nanosystems [93]. In
combination with specific ligands, liposomes can target CAFs to deliver a variety of drugs,
including nucleic acids and short peptides, that regulate the functions of CAFs. For exam-
ple, Chen et al. prepared 90 nm liposomes by thin lipid film hydration, which effectively
entered the tumor tissue to eliminate CAFs and reduced the ECM and IFP in the stroma [94].
Additionally, ferritin is an iron storage protein whose self-assembled subunit structure can
form a cavity for encapsulating drugs [95]. Through special surface modification, it can be
used to target CAFs to deliver photosensitizers for subsequent photodynamic therapy. For
instance, ferritin loaded with the photosensitizer ZnF16Pc effectively eliminated CAFs in
allogeneic transplanted breast cancer, inhibited the growth and metastasis of A549 tumors
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in nude mice, and enhanced the anti-tumor immune response [87]. Together, different
drug-carrying systems, including biocompatible polymers, liposomes, and ferritin, can
promote the entry of drugs, and, when combined with special surface modification, they
can improve the action of drugs on CAFs to enhance their therapeutic effects.

4.3. Different Cargoes Eliminate or Regulate Functions of CAFs

A variety of drugs or small molecular agents can be carried by nanosystems and enter
CAFs to exert therapeutic effects. At present, nanosystems can carry a variety of cargo,
including chemotherapeutic drugs, nucleic acids, and short peptides, to directly kill CAFs
or regulate their functions [12,92,93]. Cytotoxic drugs are the most commonly carried
drugs [81,82]. Insoluble drugs carried by nanosystems can penetrate the barrier formed by
CAFs, which can then be eliminated to further promote the entry of drugs and exert anti-
tumor effects. For instance, Zhu et al. used glycolipid-based polymeric micelles (GLPMs)
to deliver telmisartan and doxorubicin to breast cancer cells, which significantly reduced
the α-SMA + CAF population, attenuated the solid stress in the tumor and the tumor vessel
pressure, and inhibited tumor growth in vivo [84]. However, chemotherapeutic drugs
can also have potential side effects. FAP is expressed not only on the surface of CAFs
but also in multipotent bone marrow stem cells, and some therapeutic approaches, such
as immunotherapy designed to bind FAP, lead to bone marrow suppression [15,96]. In
order to reduce the occurrence of adverse reactions, photodynamic therapy (PDT) can be
used for the targeted removal of CAFs. Zinc hexafluorophthalocyanine (ZnF16Pc) is one of
the most commonly used photosensitizers. It can enter CAFs to generate 1O2, which has
cell-killing effects [97]. In another study, Li et al. injected a nanosystem containing ZnF16Pc
into tumor-bearing mice and irradiated the tumor with a 671 nm laser, which significantly
reduced the positive staining of α-SMA and the synthesis of ECM [86].

However, the massive death or depletion of CAFs in the stroma does not always
result in the expected therapeutic effect. Interestingly, the extensive depletion of CAFs
caused an increase in molecules of the damage response program (DRP), such as Wnt
16, which increased the secretion of inflammatory factors and reduced the effectiveness
of chemotherapy [14]. Therefore, another strategy for CAF-oriented nanotherapy could
be based on regulating CAF-related functions or reducing their activity. Nucleic acids,
peptides, and other small-molecule drugs carried by nanosystems have exhibited potential
anti-tumor effects by regulating the function of CAFs. For instance, Gao et al. prepared
cyclic RGD (cRGD)-miR-22-sponge nanoparticles to neutralize miR-22 in the exosomes of
breast cancer CAFs, and they found that a decrease in miR-22 enhanced the therapeutic
effect of tamoxifen [73]. In addition, metal sodium nanoparticles, such as gold nanoparticles
(GNPs), can regulate the function of CAFs without relying on drugs, making it a potential
method of anti-tumor therapy (Figure 3). For instance, GNPs induced the up-regulated
expression of fatty acid synthesis genes in CAFs, including fatty acid synthetase (FASN),
sterol regulatory element-binding protein 2 (SREBP2), and fatty acid-binding protein 3
(FABP3) genes, and increased the lipid content in cells, thereby transforming CAFs into
cells with a static phenotype with a high fat content and low proliferation [80].

In summary, a variety of nanomaterials, including biocompatible polymers, liposomes,
and ferritin, can be used to deliver drugs and facilitate their entry into tumor tissues.
The modification of targeting ligands allows them to specifically bind to CAFs and exert
an anti-tumor effect (Table 3). In order to reduce the occurrence of adverse reactions or
treatment failures, the two main alternative treatment strategies are photodynamic therapy,
to locally eliminate CAFs, or the delivery of small-molecule targeted drugs, to regulate the
function of CAFs.

5. Conclusions

In this review, we summarize the use of CAF-targeted biomaterials and nanomaterials
in cancers, from basic research to clinical practice. A variety of materials, including
biochips, 3D culture models, and nanosystems, provide powerful tools for the identification
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of CAF expression profiles, the in vitro simulation of biological behaviors, and targeted
therapy research. However, research on these biological materials still needs to overcome
many obstacles.

Firstly, CAFs and fibroblasts are heterogeneous [2], where the results obtained from
biochips might be influenced by various factors, such as the controls used for the com-
parison and biochip selection. Therefore, it is necessary to re-verify these rapid results at
multiple levels and using multiple methods. At the same time, a variety of normal controls
should be used to prevent false-positive results.

Secondly, in current co-cultivation studies, cell lines are often used to construct tumor
models, and their cell composition is relatively simple, which makes it difficult to replicate
the actual in vivo conditions of tumors [98,99]. Recently, patient-derived tumor organoids
(PDOs), a technology that combines decellularization technology, 3D co-cultivation, and
microfluidic devices, have emerged. PDOs are believed to retain the inhibitory properties
of tumor cells and better simulate the physical and chemical properties of the natural
ECM [13], and they are increasingly being used to research different cancers [100–103].
Whether they will affect the treatment of tumors requires verification in future studies
on PDOs.

Thirdly, although nanomaterials or nanosystems have shown promise in killing or
inhibiting CAFs and tumor cells, studies have shown that solely removing tumor cells
or CAFs may lead to treatment resistance, necessitating new strategies to improve these
approaches. As explored in our previous research, the simultaneous targeting or sequential
target perturbation of cancer cells and CAFs can increase the anti-tumor effect [2,104].
However, whether this treatment strategy can be applied to nanotherapies remains to
be verified.
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