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Various forms of recombinant monoclonal antibodies are being
used increasingly, mainly for therapeutic purposes. The isolation
and engineering of the corresponding genes is becoming less
of a bottleneck in the process; however, the production of
recombinant antibodies is itself a limiting factor and a shortage
is expected in the coming years. Milk from transgenic animals
appears to be one of the most attractive sources of
recombinant antibodies. None of the production systems
presently implemented (CHO cells, insect cells infected by
baculovirus, or transgenic animals and plants) has yet been
optimized. This review describes the advantages of using milk
for antibody production in comparison with the other systems.
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Abbreviations
ADCC antibody-dependent cellular cytotoxicity
CHO Chinese hamster ovary
GlcNac N-acetylglucosamine
NANA N-acetylneuraminic acid
NGNA N-glycosylneuraminic acid

Introduction
Animals are the natural producers of the antibodies they
use for protection against diseases. Vaccination and passive
immunization exploit this property extensively. The great
variety of antibodies, as well as their high specificity and
affinity for antigens, makes it possible to use these mole-
cules for purposes other than passive protection against
diseases. Indeed, antibodies are one of the favourite tools
of biologists and are extensively used for various in vivo
and in vitro diagnostics. Antibodies may also have natural
enzymatic activities, which can be optimized by mutations
[1]. These antibodies, known as abzymes, might become a
new source of enzymes. Furthermore, antibodies could be
used to manage environmental pollution by neutralizing
toxic substances [2].

The major uses of monoclonal antibodies are expected to
be in the medical domain. For example, the administration
of recombinant antibodies can be used to protect patients
against respiratory syncytial virus infection [3]. Such an
approach is particularly attractive when no vaccines or
antibiotics are available or when the pathogens have
become resistant to antibiotics [4]. Interestingly, not only
IgG but complete recombinant chimaeric IgA can also be
used to inactivate pathogens in patients [5]. Antibodies can

also mediate protection against intracellular pathogens [6].
In this respect, they could provide a major line of defence
against biological attack by terrorists [4], particularly as
they can be kept as a powder and easily self-injected in
case of attack.

Antibodies neutralize pathogens via different mechanisms.
A simple binding of the antibody to a key molecule of the
pathogen may be sufficient to provide protection. In other
cases, antibody-dependent cellular cytotoxicity (ADCC) is
needed [7••]. Recent studies have shown that the simulta-
neous use of monoclonal antibodies directed against
several different conformational epitopes of the human
immunodeficiency virus envelope, which binds CD4 in
human lymphocytes, prevented infection by various
mutants of the virus [8]. Antibodies can specifically block
the action of natural factors in vivo, and are used to inhibit
some rejection mechanisms after organ transplantation.

Antibodies can also be used as vehicles to target active
molecules to specific cells. For example, radioactive ions
can be bound to antibodies that specifically recognize
tumour cells. This approach proved to destroy Hodgkin’s
[9] and non-Hodgkin’s lymphoma [10]. Toxins bound to
antibodies can have similar effects [11].

The versatility of antibodies is further demonstrated by
their use in transfection studies. Plasmids can be non-
covalently bound to antibodies and these complexes allow
for efficient and specific in vivo transfection. This method,
called antifection [12], was used to destroy human tumours
grafted to severe combined immunodeficiency disease
(SCID) mice: genes that induce cell death by apoptosis
were used for this purpose. Other ‘killer’ genes can also be
used (F Hirsch et al., personal communication). The same
approach may be extended to tumour cell genes coding for
enzymes capable of locally transforming a prodrug into an
active antitumour molecule. This versatile method could
also provide cells with genes coding for growth factors,
leading to tissue regeneration. 

As can be seen, antibodies have a vast range of uses both
in vivo and in vitro, all of which require different forms of
these molecules. Methods for efficient antibody production
are therefore of significant interest to biotechnologists. 
In this review we consider some of the advantages and 
disadvantages of the available antibody expression systems
and discuss future considerations. 

Antibody gene isolation and engineering
Complete antibodies or monovalent or bivalent fragments
can be synthesized and used for many of the applications
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described above. Antibodies can be murine, chimaeric 
(i.e. largely murine but containing the human constant
region) or humanized. In the case of humanized antibodies,
only the regions that recognize the antigen are not of
human origin [13]. Humanization minimizes as much as
possible the immune reactions of patients against the
injected antibodies. Antibodies produced in this way may
be IgGs, which contain light and heavy chains, or IgAs
which have, in addition to heavy and light chains, a junction
chain and a secretory component. Ideally, the production
system should provide antibodies requiring no modifications
before use.

The vast majority of monoclonal antibodies used to date
are of murine origin. Rabbits, which have a broad antibody
repertoire, are a possible alternative, but both of these
approaches require antibody humanization [14].

The most attractive strategy is to prepare human monoclonal
antibodies; however, the cloning of the corresponding
genes from human cells has proved to be difficult. Phage
display [15] or polysome display [13] allow the systematic
cloning of genes or gene fragments coding for heavy or
light chains, which are capable of forming functional 
antibodies after their random association. These approaches
may require laborious antibody mutations in order to
obtain the appropriate specificity and affinity.

Pioneering work showed that recombinant antibodies
could be obtained from the blood of transgenic animals
[16,17]. However, these antibodies were hybrids containing
host chains. Nevertheless, antibodies obtained using this
approach were able to protect fish against haemorrhagic
septicaemia virus [18] and mice against prion disease [19].

The simplest way to obtain human antibody genes is to
use transgenic mice. These animals harbour human Ig loci
and their own Ig loci have been eliminated by homologous
recombination [20–22]. These ‘immunized’ mice can
potentially provide most of the human antibodies required
for human therapy (see also Update).

Antibody expression systems
Several studies have concluded that bacteria and yeast are
only suitable for the synthesis of antibody fragments. By
contrast, insect cells and Chinese hamster ovary (CHO)
cells can be the source of intact antibodies fully capable of
recognizing antigens [23,24•,25].

Cultured cells, even when optimized, are expected to have 
limited capacity to produce large amounts of antibodies
[23,24•,25,26••]. Transgenic animals and plants appear to
be the only tools enabling high production levels
[26••,27–29,30••].

Animal and plant cells have a similar capacity to assemble
antibody subunits and active IgAs were prepared from
plants [27] as well as from CHO cells [25]. However, these

systems are not equivalent as far as the post-translational
modifications of antibodies are concerned. The different
systems vary in their capacity to glycosylate antibodies.
This point is essential, as glycosylation is required to
obtain antibodies that are stable in vivo and capable of
inducing complement and ADCC [31].

Antibodies extracted from plants (so-called plantibodies)
have N-glycans that are very different from those secreted
by mammalian cells [32,33]. The N-glycans of plantibodies
are not only unable to provide them with some biological
properties, but might also induce various undesirable 
side-effects in patients. Preliminary data indicate that
plantibodies in mice do not provoke a significant immune
response [33], or at least not after a limited number of
injections, but additional studies will be required before
this problem can be considered to be negligible.

Murine IgGs prepared from tobacco were able to prevent
tooth infection by Streptococcus mutans in mice without
causing any side-effects [34]. Interestingly, human anti-
Rhesus D IgG1 antibody produced in Arabidopsis
inactivated Rhesus-D antigen even though natural killer
(NK)-mediated ADCC did not occur. Thus, unexpectedly,
this inactivating effect seems to be mediated by a 
mechanism different from ADCC. This suggests that 
plantibodies might have a broader pattern of therapeutic
activity than anticipated [35].

Native proteins are often heterogeneously glycosylated.
This phenomenon occurs on a greater scale in recombinant
proteins secreted from CHO cells or mammary glands [36].
This seems to be due to a saturation of the glycosylation
machinery, as recombinant proteins are less completely
glycosylated when their concentration in milk is higher.
The under-glycosylated antibodies may be less stable in vivo
and might not have all the expected biological properties.

Plantibodies are not sialylated. Antibodies found in CHO
culture medium and in milk are only partially sialylated.
Sialic acid exists in two forms: N-glycosylneuraminic acid
(NGNA) and N-acetylneuraminic acid (NANA). Human
proteins contain the NANA form of sialic acid and 
ruminant proteins the NGNA form, whereas rabbit proteins
have both forms and chicken proteins only the NANA
form [37]. It is expected that antibodies with the NGNA
form of sialic acid could provoke some undesirable side-
effects including immune response in patients.

NK-mediated ADCC is known to be induced by antibodies
only if the N-glycans grafted to Asp297 in the human constant
region of the antibody is properly glycosylated. The presence
of N-acetylglucosamine (GlcNac) in the triantennary 
N-glycan is also thought to be required for inducing ADCC.
It is known that plant cells do not add GlcNac and that this is
also the case for several types of animal cell. The presence of
terminal GlcNac in recombinant antibodies extracted from
milk has not been documented so far.
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Glycosylation of antibodies can be improved in plants and
animals by transferring the genes encoding enzymes 
capable of adding GlcNac, sialic acid, fucose and galactose
to the N-glycans. This has been achieved in CHO cells
[38•,39•] and is under study in plants [32] and animals.

The production of a few monoclonal antibodies in milk has
been documented [30••]. Mouse monoclonal antibodies,
both humanized and non-humanized, that are capable of
neutralizing coronavirus have been produced in mouse milk
at a concentration of up to several grams per litre [40,41].

Anti-CD6 [42], anti-CD19 [43] present on the cell surface,
and antitransferrin receptor–RNase fusion protein [44]
have been prepared in mouse milk. Several antibodies
from goat milk are also available [30••].

Protein purification is known to be a key stage in the
preparation of biopharmaceuticals. The culture medium of
CHO cells may contain cell debris, lipids, DNA, cellular
proteins, viruses and other pathogens and, potentially,
serum albumin, transferrin and serum. Immunoglobulin
purification from milk does not raise particular problems:
lipids are eliminated in an early step by centrifugation and
caseins and lactose can be separated from immunoglobulin
by membrane filtration. Affinity chromatography exchangers
can provide antibodies with 99.9% purity with a yield of
65% [30••]. The presence of host animal IgG and IgA in
milk may complicate the purification protocol in some
cases. Available chromatographic systems have given 
satisfactory results so far.

Antibody purification from plants can be achieved with
existing methods. The problems that are encountered are
different when antibodies are stored in seeds rather than in
leaves. It is acknowledged that it may be more difficult to
separate antibodies from seed proteins than from leaf 
cellular proteins; however, products extracted from leaves
are more likely to contain contaminants that will have
undesirable side-effects when injected into patients.

Conclusions
The available data leave little doubt as to the capacity of
CHO cells and transgenic plants and animals for the 
large-scale preparation of diverse recombinant antibodies.
Different experts have their own view on the advantages
and limitations of these different systems, but the data are
still too scarce to allow precise conclusions.

It is claimed that up to 10 kg of recombinant antibodies per
acre can be obtained from transgenic plants [27]. Grams of
antibodies per litre of milk have been repeatedly obtained.
Optimization of vectors and, particularly, the use of gene
insulators will allow increased and more predictable pro-
duction of antibodies in milk [45]. Recent work has shown
that loci are bordered by DNA regions insulating their
genes from those of the neighbouring loci. The known
insulators contain silencers preventing cross-talk between

genes of neighbouring loci, chromatin openers to give free
access to the transcription machinery, and enhancers [46].
One insulator from the chicken β-globin locus allowed
most if not all transgenic lines to express foreign genes
under the control of a ubiquitous promoter [47] and a milk
protein gene promoter (S Rival-Gervier, unpublished
results). Interestingly, long genomic DNA fragments 
containing two independent milk protein genes (α-lactal-
bumin and whey acidic protein) allowed the highly
efficient expression of these genes in transgenic mice
[48–50]. These data strongly suggest that the long DNA
fragments contained insulators, which can be associated to
gene constructs to optimize their expression in milk.
Although CHO cells have a more limited production
capacity, they could still provide a cheaper production 
system than goat milk for quantities ranging from 10 to
50 kg per year [51].

Transgenic plants are expected to provide up to 1 kg of
plantibodies after 36 months [28]. The same levels could
be obtained from rabbit milk, but not from goat milk.

One advantage of transgenic plants and animals over CHO
cells is their flexibility. Building a 100 000 L fermentor
requires four years and costs $400 million [7••]. Scaling up
production in CHO cells is therefore much more difficult
than simply using more plants or animals. 

An argument commonly used as a reason to favour the use
of transgenic plants rather than animals to produce recom-
binant antibodies is that plants are devoid of human
pathogens. The reality is more subtle: it is possible to
breed animals in conditions where they are not subjected
to infections [52••]. Animals can be bred that are not 
contaminated by prions and the presence of prions in puri-
fied proteins can be detected. In the future, animals with
an inactive prion protein gene could be available. One
species, the rabbit, is known to transmit only rare and
minor diseases to humans. Moreover, this animal is not 
susceptible to prion diseases and may prove useful for 
antibody production in the future.

In view of concerns about infection, the US Food and
Drug Administration and the European Medicines
Evaluation Agency have laid down points to consider when
preparing recombinant proteins from milk. These guide-
lines do not appear to be a bottleneck when using animals
for the preparation of recombinant antibodies.

One of the major advantages of transgenic plants and 
animals over cultured cells is their robustness. Domestic
transgenic plants and animals can be maintained in already
defined standard conditions and their levels of production
are very stable. Milk secretion is essentially constant for
weeks or months (depending on the species) and the same
is true for the secretion of recombinant proteins in milk. In
cell culture, protein glycosylation is known to be dependent
on CHO metabolism, which is variable according to 
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culture conditions [24•,31]. By contrast, the metabolism of
the mammary cell is much more stable and the glycosylation
of the recombinant protein secreted in milk is constant for
weeks or months. Lines of transgenic plants and animals
can be preserved using well-known techniques. Seeds and
milk can be easily stored until it is time to purify  the anti-
bodies without any loss of activity. 

Transgenic plants producing antibodies may raise environ-
mental concerns. Indeed, plants cultured in fields could
release recombinant proteins that have an effect in humans.
Furthermore, transgenic plants are acknowledged to dissem-
inate their genes in neighbouring fields in an uncontrolled
manner. This phenomenon is expected to have a negligible
impact for agriculture in most cases. The situation is quite 
different for pharmaceutical-producing plants. These envi-
ronmental problems are expected to be solved using systems
to control plant reproduction. Such problems are unlikely to
be encountered with farm animals, which are kept in enclosed
areas. Biological fluids, other than milk, from transgenic
animals can theoretically be the source of pharmaceutical 
proteins [53]. Among these systems, egg white from trans-
genic chickens appears the most attractive [54] (see also
Update). At present, the production of antibodies in milk is
more technically mature than other systems using transgenic
animals, including chickens [54] or plants [27].

At this time, 11 recombinant antibodies have been approved
by the Food and Drug Administration. About 400 have been
prepared in different ways and are currently under testing.
The present total worldwide capacity for the production of
recombinant proteins in cultured cells is estimated to be
400 000 L, but about five to six times this capacity will be
needed before the end of the present decade to fulfil our
manufacturing needs [7••,26••]. The imminent shortage of
cell culture capacity suggests that the use of both transgenic
plants and animals will be required to reach this goal.

Update
The production of recombinant antibodies is now being
extended to cow. A single human artificial chromosome
harbouring the unrearranged human heavy (H) and lamb-
da (λ) chain loci has been introduced into the cow genome
using micro cell- mediated chromosome transfer and
cloning techniques. Mature and functional human
immunoglobulins were found in the blood of the tran-
schromosomic calf [55,56]. A recent review by Dove [57]
gives additional data supporting the idea that transgenic
animals are an inevitable tool to produce the needed
recombinant antibodies in the coming years.
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