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Bestowing chirality to metals is central in fields such as heterogeneous catalysis and modern 
optics. Although the bulk phase of metals is symmetric, their surfaces can become chiral  
through adsorption of molecules. Interestingly, even achiral molecules can lead to locally chiral, 
though globally racemic, surfaces. A similar situation can be obtained for metal particles or 
clusters. Here we report the first separation of the enantiomers of a gold cluster protected 
by achiral thiolates, Au38(sCH2CH2Ph)24, achieved by chiral high-performance liquid 
chromatography. The chirality of the nanocluster arises from the chiral arrangement of the 
thiolates on its surface, forming ‘staple motifs’. The enantiomers show mirror-image circular 
dichroism responses and large anisotropy factors of up to 4×10 − 3. Comparison with reported 
circular dichroism spectra of other Au38 clusters reveals that the influence of the ligand on the 
chiroptical properties is minor. 
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Chirality is ubiquitous in nature and has tremendous impact 
on biology, medicine, and pharmaceutical sciences. Whereas 
the origin of homochirality on earth is still unclear, it is now 

evident that many biological macromolecules are built from chiral 
building blocks. However, chiral assemblies can also emerge from 
achiral constituents. For example, achiral molecules may turn chiral 
on adsorption on a surface, even if the latter itself is not chiral1–3. 
In addition, achiral molecules can form chiral patterns on achiral 
surfaces4. This emergence of chirality is due to the restriction of the 
molecules to two-dimensional space on adsorption. This may lead 
to a reduced symmetry of the adsorbate complex or to chiral dis-
tortions of the molecule owing to its interaction with the surface.  
If chirality arises in such a way through the bonding of achiral con-
stituents, a racemic mixture is obtained. Such phenomena have been 
studied on metal surfaces, where an adsorbate lattice can destroy 
the reflection symmetry of the metal surface underneath. Chiral 
domains are then formed on the surface with equal abundance of 
left- and right-handedness. This local chirality can be observed by 
scanning tunnelling microscopy4.

An analogous situation was recently discovered on thiolate-
protected gold particles or clusters. Jadzinsky et al. determined 
the structure of the gold nanocluster Au102(p-MBA)44 (p-MBA: 
para-mercaptobenzoic acid) by X-ray crystallography5. An unusual 
bridged binding motif between gold and sulphur (‘staple motif ’) 
was evidenced in which the sulphur atoms become chiral centres 
on adsorption. Moreover, it was found that the arrangement of 
the staples on the cluster surface forms a chiral pattern5. Because  
the p-MBA ligand used is achiral, both enantiomers are observed  
in the unit cell of the crystal. A similar situation is found for 
Au38(SR)24 clusters (see below)6,7.

The chirality of gold nanoparticles has recently become an  
intensively studied field of modern nanoscience as it opens new 
possibilities in catalysis and sensing applications8–10. The use of 
plasmon resonances in chiral metamaterials has been discussed and 
employed in several examples11–15. As gold nanoparticles exhibit 
localized surface plasmon resonances at diameters above ca 2 nm, 
their smaller analogues (up to ca 200 Au atoms) show interesting, 
molecular properties16. Among these small nanoparticles (in the 
following referred to as nanoclusters), thiolate-protected systems of  
the general formula [Aun(SR)m]z (SR: thiolate; z: charge) have evolved 
as the most studied class, because of their extraordinary stability.

Optical activity in Au:thiolate nanoclusters has first been observed 
by Schaaff and Whetten in 1998 (refs 17,18). Since then, numerous 
examples of more or less defined systems have been reported19. Pro-
tecting ligands include several derivatives of cysteine10,20–23 as well 
as ‘artificial’ ligands such as binaphthyl systems24–26 or other small 
organic thiolates27. Besides circular dichroism (CD) studies on the 
electronic transitions, the conformational analysis of the stabiliz-
ing ligand was demonstrated, using vibrational circular dichroism 
in the infrared20,21,25. Chiroptical properties in the ultraviolet- 
visible were found to be strongly size-dependent24. Also, it was 
shown that only a small fraction of enantiopure ligands in a mixed 
ligand system is sufficient to induce significant optical activity to the 
clusters28. Optical activity can result from a number of effects. Sev-
eral models have been proposed to explain its origin in gold clusters, 
including the trivial case of using a chiral ligand (in this, the elec-
trons in the gold core are trapped in dissymmetric electric fields)29; 
a chiral footprint model (in analogy to classic surface chemistry, 
adsorption of a chiral ligand on the cluster surface perturbs the sur-
face atoms in a chiral fashion)20,30 and intrinsic core chirality31,32, 
as it was proposed that the equilibrium geometry of the core atoms 
is asymmetric. The importance of these different mechanisms for 
the optical activity observed in protected metal nanoclusters is dif-
ficult to assess, because, up to now, only for nanoclusters contain-
ing chiral enantiopure (or at least enantioenriched) ligands optical 
activity was reported.

The above-mentioned staple motifs, which have been pro-
posed earlier33,34, are an essential part of cluster structures. They 
can be thought as [thiolate-Au(I)]x-thiolate (x = 1, 2) oligomers 
that bind in a bidentate fashion to the gold atoms of the cluster 
core. Staple-type binding was also identified for extended surfaces 
(self-assembled monolayers of benzenethiol and methylthiol on 
Au(111))35,36. Such staples can be the source of chirality, as outlined 
above. The staple motif was also found in the crystal structure of 
[Au25(SCH2CH2Ph)18] − 1 and Au38(SCH2CH2Ph)24 (refs 7,37,38). 
Similar to Au102, Au38 shows intrinsic chirality by the arrangement 
of the staple motifs on the cluster surface. In contrast, this is not  
the case for Au25. A chiral arrangement of staples has also been  
proposed for Au144(SR)60 clusters39.

Au38(SCH2CH2Ph)24 is of prolate shape, containing a face-fused 
biicosahedral Au23 core and is protected by 3 short Au(SR)2 and  
6 long Au2(SR)3 staples (Fig. 1)6,7,40. The bare core can be idealized 
as of D3h symmetry (in reality, slight distortions are found), which 
is lowered by the protecting staples to adopt a D3 symmetry. The 
staples are arranged in a chiral fashion: the long staples are arranged 
in a staggered configuration of two triblade fans (composed of three 
staples), that either rotate clockwise or anti-clockwise (but both  
in the same sense, within one enantiomer), depending on the  
enantiomer. Moreover, the short staples at the equator of the cluster 
are slightly tilted with respect to the threefold axis, following the 
handedness of the long staples.

In this contribution, we demonstrate for the first time that it is 
possible to separate the enantiomers of this Au38 cluster covered 
with achiral thiolates (2-phenylethylthiolate) by a high-performance  
liquid chromatography (HPLC) column. A major prerequisite is the 
isolation of pure Au38 cluster from the crude reaction product, as 
the employed thermal etching method usually yields polydisperse 
clusters41. This was achieved by gel permeation chromatography 
(GPC, or size exclusion chromatography, SEC). Successful enanti-
oseparation enables us to measure optical activity for an enantiop-
ure thiolate-protected gold cluster. The optical activity arising from 
the chiral arrangement of the staples is large. The anisotropy factors 
(∆A/A) are the largest reported so far for thiolate-protected gold  
clusters, indicating the importance of the chiral pattern for the  
chiroptical response of such systems.
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Figure 1 | Crystal structure of the left-handed enantiomer of Au38(SCH2 
CH2Ph)24. For clarity, the -CH2CH2Ph units were removed; yellow, gold 
adatoms; green, core atoms (Au); orange, sulphur. (a) Top view of the 
cluster; (b) side-view; (c) schematic representation highlighting the 
handedness of the cluster. The inner triangle represents the top three core 
atoms binding to the long staples. The arrows represent long staples and 
the outer triangle represent the core Au atoms binding to the ‘end’ of the 
staple. This representation is a top view along the C3 axis, and the two 
triangles are not in one plane. (d) Top-view in space-filling representation 
mode; (e) side-view in space-filling representation mode. The structures 
were created using the crystallographic data provided in ref. 7.
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Results
Isolation and characterization of rac-Au38(SCH2CH2Ph)24. Racemic 
Au38(SCH2CH2Ph)24 was prepared and purified according to 
previously reported protocols28,41. Briefly, tetrachloroauric acid  
and L-glutathione were co-dissolved in water and methanol 
and reduced by sodium borohydride. The resulting precursor 
material was then dissolved in water and a mixture of acetone and  
2-phenylethylthiol was added. A mixture of Aun(SCH2CH2Ph)m 
(n = 25–144, m = 18–60), containing Au38(SCH2H2Ph)24, as major 
component was gained by heating the system to 80 °C. Excess thiol 
was removed by extensive methanol washing and the crude clusters 
were size-selected by gel permeation chromatography.

The monodisperse racemic clusters were characterized by  
ultraviolet-visible spectroscopy and MALDI mass spectrometry 
(Fig. 2)42,43; the spectra are in agreement with previously reported 
data41. A single peak at 10,778 Da (calc: 10,778.08) and a char-
acteristic fragmentation pattern in the mass spectrum indicates 
monodispersity based on the sensitivity of MALDI spectrometry. 
The unit cell of the crystal structure bears both enantiomers of 
Au38(SCH2CH2Ph)24, but the synthesis of the clusters involves the 
use of homochiral L-glutathione, and a chiral induction that might 
lead to an enantiomeric excess in Au38 cannot be fully excluded. 
A CD spectrum was recorded showing no significant signals, sug-
gesting that the Au38(SR)24 nanoclusters used are a truly racemic 
mixture.

HPLC separation of rac-Au38(SCH2CH2Ph)24. The racemic clus-
ters were separated at room temperature using a chiral cellulose-
based analytical HPLC column and hexane/isopropanol (80:20) 
as eluent. The eluting solutions were monitored by an ultraviolet 
detector at 380 nm. Two peaks well separated were observed at 8.45 
and 17.45 min (enantiomers 1 and 2 according to increasing elu-
tion times, Fig. 3a). The second peak is broadened and less intense  
compared with the first one, but integration gives identical peak 
areas to within the accuracy of the measurement. Runs at differ-
ent temperatures (in the range of 10–25 °C) showed that separation  
is slightly better at lower temperatures. The ultraviolet-visible spec-
tra of both peaks clearly show the distinct signature of Au38(SR)24 
clusters (Fig. 3b).

Circular dichroism of Au38(SCH2CH2Ph)24. To confirm the sepa-
ration of enantiomers, we collected the fractions according to the 
peaks over several HPLC runs and concentrated the combined solu-
tions. CD spectra of these concentrated solutions were measured 
(Fig. 4a). The ultraviolet-visible spectra include the Au38-specific 

electronic transition at 629 nm (Fig. 3b). The CD spectra give per-
fect mirror images and eleven clear signals are observable between 
230 and 900 nm (245 ( + ), 255 ( + ), 308 ( + ), 345 ( − ), 393 ( − ), 440 
( + ), 479 ( − ) 564 ( + ), 629 ( − ) and 747 ( + ) nm; signs are given  
for enantiomer 1, that is, the first enantiomer eluting from the 
HPLC column. Compared with the ordinary absorption spectrum 
of Au38(SR)24, which is highly structured showing several peaks 
and shoulders, more distinct transitions can be identified in the 
CD. The identified peaks are in good agreement with those reported 
for absorption spectra at low temperatures44. Anisotropy factors 
g = ∆A/A = θ[mdeg]/(32980 × A) were calculated over the spectral 
range (Fig. 4b). Surprisingly, these are quite strong with values 
between 1 × 10 − 3 and up to 4 × 10 − 3; notably, the anisotropy factor  
increases with increasing wavelength (decreasing energy). The  
maximum anisotropy factor of gold nanoclusters protected with chi-
ral thiols was reported to be up to 4 × 10 − 3 (ref. 24). This indicates 
that intrinsic chirality due to ligand arrangement can contribute  
significantly to the net optical activity.

Discussion
Comparison of the chiroptical properties of the intrinsically chiral 
Au38 with those reported for Au38 clusters with chiral thiols is self-
evident, as it gives direct insight into the contribution of a chiral 
ligand to the shape and strength of the CD spectra. Schaaff and 
Whetten reported a series of glutathionate-protected Au clusters 
that were separated by gel electrophoresis18. The absorption fea-
tures of compound 3 in ref. 18 are in good agreement with those 
of Au38 clusters, although the assignment is not made in the report. 
Interestingly, the energies and signs of the peak maxima are in very 
good agreement with those of enantiomer 2 of Au38(SCH2CH2Ph)2 
(Table 1). Minor differences occur for ultraviolet transitions (below 
300 nm). In this region, the glutathionate-ligand should contrib-
ute to the CD spectrum. Of note, the maximum anisotropy fac-
tors of Au38(SCH2CH2Ph)24 (4×10 − 3) exceed those of Au38(SG)24 
(1.3×10 − 3), but this could be due to parameters such as solvent or 
sample purity after gel electrophoresis. However, for most of the 
spectral range, the anisotropy factors are similar. This indicates that 
(in this case) the chiral ligand does not have the dominant influ-
ence on the chiroptical properties of Au38 clusters. We doubt that 
this finding can be generalized as chiral ligands can induce opti-
cal activity to clusters that are not intrinsically chiral (such as 
Au25(SR)18)17,27. The good agreement between the CD spectra of 
Au38(SCH2CH2Ph)24 and Au38(L-SG)24 strongly indicates that, in 
the latter case, one-handedness of the cluster (which dominated the 
CD spectra in the Au38 case) is favoured over the other due to the 
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Figure 2 | Characterization of rac-Au38(SCH2CH2Ph)24. (a) mALDI 
mass spectra of Au38(sCH2CH2Ph)24 before (black) and after (red) 
size selection. The signals for Au40(sCH2CH2Ph)24 (11,173 Da) and 
Au25(sCH2CH2Ph)18 (7,391 Da) disappeared from the spectrum, indicating 
successful size exclusion. For a detailed description of this process, see  
ref. 41. (b) ultraviolet-visible spectra of Au38(sCH2CH2Ph)24 before 
(black) and after (red) size selection. The absorption features of Au38  
are drastically enhanced.
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Figure 3 | HPLC-separation of rac-Au38(SCH2CH2Ph)24. (a) HPLC-
chromatogram of the enantioseparation of rac-Au38(sCH2CH2Ph)24 
with the ultraviolet-visible detector at 380 nm. The peak at 8.45 min 
corresponds to enantiomer 1; the second peak at 17.45 corresponds to 
enantiomer 2. (b) ultraviolet-visible spectra of enantiomers 1 (black) and  
2 (red) and of the racemate (blue). The spectra were normalized at 300 nm 
and off-set for clarity. The well-known ultraviolet-visible signature of 
Au38 is perfectly reproduced in all spectra, showing that the two collected 
fractions are composed of Au38(sCH2CH2Ph)24.
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presence of the chiral glutathionate-ligand. In other words, there is a 
strong diastereoselectivity during the formation of Au38(L-SG)24.

In a recent article, Lopez-Acevedo et al. simulated the structure, 
and predicted the intrinsic chirality of Au38(SR)24 (ref. 6). Moreo-
ver, the CD spectra of the cluster were computed for the right-
handed enantiomer (structure 1 in ref. 6 was identified as being 
the ‘correct’ structure). Comparison of the experimental spectra 
with those computed (with methylthiolate as model ligand) shows 
a good match for the spectral range from 800 to 500 nm available 
for comparison with transitions at 747, 629 and 564 nm (a compari-
son of a wider range is not possible as it was either not measured 
(lower energies) or not presented in the figures (higher energies)). 
Moreover, the experimental and calculated anisotropy factors are of 
similar magnitudes (Table 1). As the sign of the calculated spectrum 
agrees with the experimental spectrum of enantiomer 2, we tenta-
tively assign the latter as the right-handed one. Comparison of the 
spectra of Au38(SCH2CH2Ph)24 with Au38(SG)24 and (simulated) 
Au(SMe)24 reveals a minor influence of the ligand to the shape  
of the CD spectra as all three spectra are in good agreement  
concerning energies, sign and magnitude of anisotropy.

As it is possible to separate the enantiomers and measure CD 
spectra of good quality, no racemization is thought to occur over 
several hours in solution (the sum of the anisotropy factor plots 
gives a zero line, indicating the same enantiomeric excess in both 
fractions). The collected solutions of the two chromatographic  
fractions were concentrated to dryness and stored at  − 5 °C over 
3 days. After that time, the anisotropy factors of the enantiomers 

were identical to the one measured directly after chromatogra-
phy, indicating that racemization does not take place under these  
conditions.

In this report, we present the first successful enantioseparation  
of racemic Au38(SR)24 nanoclusters. Moreover, the studied clusters 
are protected by achiral ligands ( − SCH2CH2Ph) and the observed 
chirality is an intrinsic structural property of the cluster. The 
observed optical activity is the first spectroscopic evidence of chi-
rality stemming only from the asymmetric arrangement of achiral 
adsorbates on a surface. This type of chirality has been identified by 
X-ray diffraction and, in the case of extended surfaces, by micros-
copy studies1–4. The observed anisotropy factors of up to 4×10 − 3 
are surprisingly strong, considering the fact that no chiral ligands 
are present. Comparison with glutathionate-protected Au38 clusters 
only shows a minor influence of the chiral ligand to the spectrum 
(indicating that one enantiomer is selectively formed when glutath-
ione is used)18. Moreover, the spectrum is in good qualitative and 
quantitative agreement with those of computed structures6.

Methods
General. All chemicals were used as received, if not mentioned otherwise. Tetra-
chloroauric acid trihydrate (Aldrich, 99.9 + %), reduced l-glutathione (Sigma-
Aldrich, >99%), sodium borohydride (Fluka, >96%), 2-phenylethylthiol (Aldrich, 
98%), anhydrous sodium sulfate (Reactolab, Servion/CH), [3-(4-tert-butylphenyl)- 
2-methyl-2-propenylidene]malononitrile (Aldrich, >98%), methanol (VWR, 
>99.8%), acetone (Fluka, >99.5%), methylene chloride (Sigma-Aldrich, >99.9%), 
tetrahydrofuran (Acros, p.A.), hexane (Sigma-Aldrich, HPLC grade), isopropa-
nol (Sigma-Aldrich, HPLC grade), regenerated cellulose membranes (0.2 µm, 
Sartorius), PTFE syringe filters (0.2 µm, Carl Roth) and Bio Beads SX-1 (Bio-Rad) 
were used as received, if not mentioned otherwise. Tetrahydrofuran was dried over 
sodium sulfate and stored under nitrogen. Nanopure water (>18 MΩ) was used.

Synthesis and isolation of rac-Au38(SCH2CH2Ph)24. Step 1. Preparation of  
l-glutathionate-protected clusters. Tetrachloroauric acid trihydrate (1 g, 2.54 mmol) 
was dissolved in methanol (200 ml); l-glutathione (3.1 g, 10.18 mmol) was dis-
solved in water (100 ml). The solutions were combined and stirred at room tem-
perature for 30 min. During this, a yellow-brown suspension was formed. A freshly 
prepared, ice-cooled solution of sodium borohydride (1.1 g, 30 mmol) in water 
(60 ml) was added all at once. Immediately, the reaction mixture turned dark-
brown to black. The solution was stirred at room temperature for 90 min, during 
which the clusters precipitated. The solvent was decanted and the crude material 
was washed with methanol several times.

Step 2. Thermal etching towards rac-Au38(SCH2CH2Ph)24. The l-glutathion-
ate-protected clusters from Step 1 (ca 550 mg) were dissolved in 10 ml of water 
and 10 ml of acetone and 15 ml of 2-phenylethylthiol were added. The mixture was 
stirred at 80 °C for 3 h, during which the aqueous phase discoloured. Some insolu-
ble white material formed. The crude reaction mixture was diluted with water and 
extracted with methylene chloride. The aqueous phase was discarded. The solvent 
was removed from the organic phase and the clusters were extensively washed with 
methanol to remove excess thiol and other byproducts and filtered over a regener-
ated cellulose filter (0.2 µm). Clusters were redissolved in methylene chloride and 
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Figure 4 | CD spectra and anisotropy factors of Au38(SCH2CH2Ph)24. 
(a) CD spectra of isolated enantiomers 1 (black) and 2 (red) and the 
racemic Au38(sCH2CH2Ph)24 (blue) before separation; (b) corresponding 
anisotropy factors of enantiomers 1 and 2 and of the racemate. The 
spectra exhibit excellent mirror-image relationships and anisotropy factors 
g = ∆A/A of up to 4×10 − 3.

Table 1 | Wavelengths, anisotropy factors, and signs of enantiomer 2 of Au38(SCH2CH2Ph)24, Au38(SG)24 (ref. 18) and 
Au38(SMe)24 (ref. 6).

Enantiomer 2 Au38(SG)24 Au38(SMe)24

Wavelength (nm) g (a.u.) Wavelength (nm) g (a.u.) Wavelength (nm) g (a.u.).

ca 779 ca  − 3.3×10 − 3

747 ca  − 4×10 − 3 ca 747 ca  − 1.3×10 − 3 ca 729 ca  − 0.28×10 − 3

629 ca  + 2×10 − 3 ca 620 ca  +  1.3×10 − 3 ca 629 ca  +  6.2×10 − 3

564 ca  − 1×10 − 3 ca 568 ca  − 1.2×10 − 4 ca 568 ca  − 4.3×10 − 4

479 ca 1×10 − 4 ca 512 ca  +  4×10 − 4

440 ca  − 1.4×10 − 3 ca 449 ca  − 1.2×10 − 4

393 ca  +  1×10 − 3 ca 385 ca  +  6×10 − 4

345 ca  +  1×10 − 3 ca 354 ca  +  6×10 − 4

308 ca  − 8×10 − 4 ca 296 ca  − 1.2×10 − 4

255 ca  − 6×10 − 4

245 ca  − 4×10 − 4 ca 239 ca  +  4×10 − 4
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methanol precipitation and washing was repeated. Overall, five washing cycles were 
applied. Eventually, the clusters were dissolved in methylene chloride and passed 
through a PTFE syringe filter (0.2 µm) to remove insoluble byproducts. After this, 
ultraviolet-visible and MALDI mass spectra were recorded.

Step 3—Size-selection of rac-Au38(SCH2CH2Ph)24. A weight of 45 g of Bio-Rad 
BioBeads SX-1 was suspended in about 7 times the bed volume of tetrahydrofuran. 
The beads were allowed to swell overnight and given into a glass column (100 cm in 
length and 2.5 cm in diameter) equipped with a glass frit (G4) and inert gas inlet. 
The beads were allowed to settle (90 cm bed height) under a gentle stream of N2 
and washed extensively with tetrahydrofuran (ca 500 ml). The crude clusters from 
Step 2 were dissolved in a minimum amount of tetrahydrofuran and repeatedly 
eluted, using tetrahydrofuran as mobile phase (ca 1 ml min − 1) until the eluting 
clusters were purely composed of Au38(SCH2CH2Ph)24 (the eluting band overlaps 
with Au40(SCH2CH2Ph)24; therefore, repeated chromatographic separations  
are necessary.). The collected fractions were characterized by ultraviolet-visible 
spectroscopy, until no further change was observed. The fraction identified as  
rac-Au38(SCH2CH2Ph)24 was washed with methanol and passed over a PTFE 
syringe filter, as described in Step 2 before characterization with ultraviolet-visible 
and CD spectroscopy as well as MALDI mass spectrometry.

Ultraviolet-visible spectroscopy. Ultraviolet-visible spectra were recorded on 
a Varian Cary 50 spectrophotometer, using a quartz cuvette of 10 and 5 mm path 
length. Spectra were measured in methylene chloride and normalized at 300 nm.

CD spectroscopy. CD spectra were recorded on a JASCO J-815 CD-spectrometer 
using a quartz cuvette of 5 mm path length. The spectra were recorded in diluted 
solutions of methylene chloride and the signal of the blank solvent was subtracted. 
For each spectrum, eight scans at a scanning speed of 100 nm/min at a data pitch of 
0.1 nm were averaged. The spectra were recorded at 20 °C; for temperature control, 
a JACSO PFD-350S Peltier element was used. Anisotropy factors g = θ[mdeg]/
(32980 × A) were calculated using the ultraviolet-visible spectrum provided by  
the CD spectrometer.

MALDI analysis. Mass spectra were obtained using a Bruker Autoflex mass spec-
trometer equipped with a nitrogen laser at near threshold laser fluence in positive 
linear mode. [3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile was 
used as the matrix with a 1:1,000 analyte : matrix ratio42. A volume of 2 µl of the 
analyte/matrix mixture was applied to the target and air-dried.

HPLC. Chromatographic separation of the enantiomers was achieved on a JASCO 
20XX HPLC system equipped with a Phenomenex Lux-Cellulose-1 column (5 µm, 
250 mm×4.6 mm). For detection, a JASCO 2070plus ultraviolet-visible detector  
was used. Path length was 10 mm and the wavelength was set to 380 nm. The 
analytes were eluted at a flow rate of 2 ml min − 1 using hexane:isopropanol (80:20). 
For separation at different temperatures, a Thermasphere TS-430 HPLC column 
chiller/heater was used. 
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