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ABSTRACT

Gene regulatory networks (GRNs) are highly dynamic
among different tissue types. Identifying tissue-
specific gene regulation is critically important to un-
derstand gene function in a particular cellular con-
text. Graphical models have been used to estimate
GRN from gene expression data to distinguish di-
rect interactions from indirect associations. How-
ever, most existing methods estimate GRN for a spe-
cific cell/tissue type or in a tissue-naive way, or do
not specifically focus on network rewiring between
different tissues. Here, we describe a new method
called Latent Differential Graphical Model (LDGM).
The motivation of our method is to estimate the differ-
ential network between two tissue types directly with-
out inferring the network for individual tissues, which
has the advantage of utilizing much smaller sample
size to achieve reliable differential network estima-
tion. Our simulation results demonstrated that LDGM
consistently outperforms other Gaussian graphical
model based methods. We further evaluated LDGM
by applying to the brain and blood gene expres-
sion data from the GTEx consortium. We also ap-
plied LDGM to identify network rewiring between can-
cer subtypes using the TCGA breast cancer sam-
ples. Our results suggest that LDGM is an effec-
tive method to infer differential network using high-
throughput gene expression data to identify GRN dy-
namics among different cellular conditions.

INTRODUCTION

At the level of transcription, gene expression is controlled
via transcription factor (TF) proteins that selectively bind
to cis-regulatory elements to regulate target genes. There
are less than 2000 TFs in the human genome and they work

cooperatively to regulate target genes to perform complex
cellular functions in specific context (1–3). Such regulatory
interactions among TFs and their target genes can be mod-
eled as a gene regulatory network (GRN), where nodes are
TFs and their target genes, and edges represent the regu-
latory relationships. It is acknowledged that gene expres-
sion and GRNs are highly dynamic among different tissues
(4–6). In other words, some gene regulatory interactions
may be very conserved and ubiquitous in different tissue
types and many may only occur in certain tissues. There-
fore, identifying tissue-specific gene regulation is critically
important to understand gene function in a particular cel-
lular context, providing key insights into complex biologi-
cal systems (7–9). Such knowledge can also help us unravel
gene-disease association in a tissue-specific manner (10). In
recent years, numerous gene expression data sets across var-
ious cell/tissue types and conditions have been collected.
For example, the Genotype-Tissue Expression (GTEx) con-
sortium profiled the transcriptomes using RNA-seq over
large number of different tissue types in human (5,11) with
the advantage of having many biological replicates for each
tissue type. Such data provide a great opportunity to more
robustly infer tissue-specific GRNs.

To reconstruct GRNs from gene expression data, Gaus-
sian graphical models have been widely used (12–16) (see
Materials and Methods section for an introduction). Gaus-
sian graphical models have the advantage of inferring di-
rect dependencies between genes that correspond to edges in
the estimated network, while missing edges in the estimated
network indicate conditional independence. However, most
existing methods estimate a GRN for a specific cell/tissue
type or in a tissue-naive way, or do not specifically focus on
the network rewiring between different tissues. Therefore,
methods for estimating differential networks between two
tissue types remain under-explored.

One challenge of using Gaussian graphical model to esti-
mate GRNs in the high dimensional setting (where the num-
ber of genes is much greater than the number of samples (p
> n)) is that the sample covariance matrix is singular and the
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estimation of the GRN is impossible unless we make some
assumptions on the GRN, e.g. the estimated GRN is sparse
and approaches such as (14) have been developed. To esti-
mate the differential network, one straightforward method
is to estimate the network of each tissue type separately and
then find the difference between the two estimated networks.
However, this straightforward procedure does not take full
advantage of the similarity shared between GRNs. In ad-
dition, in existing Gaussian graphical models, normal dis-
tribution is an important assumption for the gene expres-
sion values. However, the gene expression values from high-
throughput method such as RNA-seq, even after being nor-
malized, do not follow a normal distribution (17,18) (see
our own analysis later). As a result, in Gaussian graphical
models, the computed sample covariance matrix from gene
expression data cannot precisely capture the associations
among genes. The motivation of our new method in this
work is to estimate the differential network between two tis-
sue types directly without inferring the network for individ-
ual tissues, which has the clear advantage of utilizing much
smaller sample size to achieve reliable differential network
estimation. Importantly, our new method also does not have
the normal distribution assumption for gene expression val-
ues.

In this paper, we develop a new method to address the
following problem of inferring differential networks using
graphical models. Instead of assuming that the GRN is
sparse, we only assume that the differential network be-
tween two tissue types is sparse. This assumption is rea-
sonable and much milder because for many tissue types,
the corresponding GRNs are very similar to each other.
For example, on average 72.4% of regulatory interactions
are shared between any pair of networks from the 41 tran-
scriptional regulatory networks in (4). In particular, we
propose to directly estimate the differential network from
high-throughput gene expression data. Our new method
is called Latent Differential Graphical Model (LDGM).
In LDGM, we have two random vectors X and Y that
represent gene expression profiles in two networks and
follow two different nonparanormal distributions (19,20).
More specifically, a random vector X is said to follow a
nonparanormal distribution, if there exists a set of uni-
variate monotonic functions { f j }p

j=1 such that f (X) =
[ f1(X1), . . . , fp(Xp)]T ∼ N(0,�) with diag(�) = I. It is de-
noted by X ∼ NPN(f,�), where f = ( f j )

p
j=1. � is called the

latent correlation matrix for NPN(f,�). In other words,
we assume X ∼ NPN(f,�X) and Y ∼ NPN(g,�Y), where
g = (g j )

p
j=1. The corresponding latent precision matrices

are denoted by �X = �−1
X and �Y = �−1

Y . Different from
other high-dimensional Gaussian graphical model based
methods, where we need to assume that �X and �Y are
sparse, here we only assume their difference � = �Y − �X
is sparse. The key novelty of LDGM is that it directly esti-
mates � = �Y − �X from sample latent correlation matri-
ces �̂X and �̂Y by quasi log likelihood function maximiza-
tion with �1 norm penalty. Based on our simulation evalu-
ation and real data application, we found that LDGM is a
very effective model that can be applied to a wide range of
differential network inference scenarios.

Our new method is conceptually different from existing
approaches. As mentioned above, our model only assumes
that the differential network between two tissue types is
sparse, while it needs to be assumed that the GRN itself
is sparse in Gaussian graphical model based approaches
such as graphical lasso (Glasso) (14), joint graphical lasso
(JGL) (16) and co-hub node joint graphical lasso (CN-
JGL) (15) that we will directly compare performance with
in the Results section. Our method is also different from re-
cently developed approaches for constructing tissue-specific
networks. In (21), the authors used 987 publicly available
genome-scale expression data sets in ∼38 000 conditions to
identify tissue-specific networks. However, the method re-
lies on a compiled list of known interactions from databases
such as BioGRID and Gene Ontology annotations, while
the goal of our method is to estimate the tissue-specific net-
work rewiring only from the gene expression data with the
potential to identify novel interactions that have not been
annotated. In (22), the authors developed an algorithm
called GNAT to derive shared and tissue-specific gene co-
expression networks utilizing hierarchy of multiple related
tissues. It uses multiple graphical lasso to estimate the pre-
cision matrices of Gaussian graphical models on different
tissues, and constrains the precision matrices of tissues that
were nearby in the hierarchy to have similar entries. When
applying the method to two tissues (which is the goal in our
work also), the method in GNAT is very similar to JGL with
fused lasso penalty (GNAT uses �2 penalty). Even though
the methods developed in (21) and (22) consider related tis-
sues simultaneously to enhance its ability of estimating net-
works, both of them need to specify reliable tissue relation-
ships or hierarchies. A more relevant work to our method is
(23), which was proposed to directly estimate the difference
of the precision matrices from two multivariate normal dis-
tributions. In contrast, we consider estimating the difference
of the latent precision matrices from two nonparanormal
distributions. Since nonparanormal distribution is a strictly
larger family of distributions including multivariate normal
distribution as a special case, our proposed LDGM is more
powerful in modeling without the limit of Gaussian data.
Moreover, the estimator proposed by (23) is based on esti-
mating equation and solved by linear programming, which
is very time consuming in practice (note that we did not
compare with (23) in this work because the code from (23)
is too slow to be evaluated comprehensively). Our estimator
is based on pseudo likelihood and can be solved by accel-
erated proximal gradient descent efficiently (24). Therefore,
our LDGM method not only has unique methodology con-
tribution but also has much broader application potential.

The rest of this paper is organized as follows. We first in-
troduce the details of our LDGM algorithm and the princi-
ples of other graphical lasso models in the Materials and
Methods section. In the Results section, we first demon-
strate the performance of LDGM as compared to other
methods on simulated data sets, including JGL and CN-
JGL. We then evaluate LDGM by applying to the GTEx
dataset to identify network rewiring between brain and
blood. Finally, we apply LDGM to the TCGA breast cancer
samples to study network differences between cancer sub-
types.
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MATERIALS AND METHODS

Brief introduction on gaussian graphical models

Before we introduce our new method, we first briefly review
Gaussian graphical models. In Gaussian graphical model, a
p-dimensional random vector X = (X1, . . . , Xp)T follows a
multivariate normal distribution N(0,�). The conditional
independence structure of a pair of marginal random vari-
ables Xj and Xk is exactly encoded by the precision matrix
� = �−1 (25). More specifically, Xj and Xk are independent
conditioned on the other marginal random variables iff �jk
= 0. Gaussian graphical models can be used for GRN es-
timation, where each marginal random variable Xj, 1 ≤ j
≤ p, corresponds to the expression level of a gene, and the
edge weight between Xj and Xk is �jk. Therefore, the esti-
mation of GRN can be reduced to the estimation of the pre-
cision matrix � in Gaussian graphical model. The remain-
ing question is how to estimate � based on the covariance
matrix �̂. In the high-dimensional setting, the number of
genes is much larger than the number of samples, thus the
sample covariance matrix �̂ is singular and not invertible.
In order to overcome this problem, one has to make some
assumptions on �. For example, we can assume that � is
sparse. Under the sparsity assumption, graphical lasso (14)
was proposed to estimate the sparse precision matrix � as
follows:

�̂ = argmax
�

log(det(�)) − tr(�̂�) − λ‖�‖1, (1)

where �̂ is the sample covariance matrix, � is a non-negative
regularization parameter, �jk is the (j, k)-th element in �
and ‖�‖1 = ∑

j,k |� jk| is the element-wise �1 norm of the
matrix �. The graphical lasso estimator guarantees that the
solution �̂ is positive definite. Generally, increasing � will
decrease the number of non-zero elements in �̂ that makes
�̂ sparse. In terms of the network, there is only a small num-
ber of edges in the corresponding network, i.e. the estimated
GRN is sparse. Based on the estimated sparse precision ma-
trix �̂, we can immediately obtain an estimated GRN as
follows: if �̂jk = 0, there is no edge between the j-th gene
and the k-th gene; if �̂jk �= 0, there is an edge between the
j-th gene and the k-th gene, and the edge weight is �̂jk.

Latent differential graphical models (LDGM)

In this paper, we only consider the problem in the context
of high-dimensional gene expression data from two differ-
ent tissue types. In Figure 1, we illustrate the workflow of
LDGM and also the key differences between LDGM and
other Gaussian graphical model based methods. Let X and
Y be the expression of the p genes in two tissue types. We
assume that the gene expression data are sampled from
two different nonparanormal distributions (19,20), i.e. X ∼
NPN(f,�X) and Y ∼ NPN(g,�Y). In other words, we
consider two nonparanormal graphical models together. As
we explained before, GRNs for the two tissue types can be
characterized by the latent precision matrix �X = �−1

X and
�Y = �−1

Y , respectively. Some gene regulations are rewired
while the other regulatory relationships remain unchanged.
These rewired interactions form the differential GRN be-

tween the two tissue types. In particular, the differential net-
work can be defined as � = �Y − �X (Figure 1A). There is
an estimated edge between the j-th gene and the k-th gene in
the differential network iff the corresponding element in �̂,
i.e. �̂ jk, is non-zero. Given the high-dimensional gene ex-
pression samples x1, . . . , xnX of X, and samples y1, . . . , ynY

of Y (Figure 1B), our goal is to estimate the differential net-
work �. A straightforward procedure is to estimate � by
�̂ = �̂Y − �̂X (Figure 1 G), where �̂X and �̂Y are esti-
mators of �X and �Y respectively, using (20) introduced
before (Figure 1E and F). However, in order to obtain �̂X
and �̂Y, we have to assume that �X and �Y are sparse and
we need sufficient sample size for both tissue types. The goal
of our new method is to significantly relax this assumption.
We observe that the differential network between two tis-
sue types is typically more sparse and we only need about
half the sample size (as compared to estimating the GRN
for individual tissues separately) if we focus on estimating
the differential network directly. Based on this key ratio-
nale, we propose a novel graphical model named LDGM,
for differential network inference. In LDGM, instead of as-
suming that �X and �Y are sparse, we only assume � is
sparse (Figure 1D).

LDGM directly models the differential network between
two tissue types based on high-throughput gene expression
data. To achieve this, we directly estimate � = �Y − �X
based on quasi log likelihood maximization with �1 norm
penalization. Recall that � = �Y − �X, �X = �−1

X and
�Y = �−1

Y , we have:

�X��Y − (�X − �Y) = 0. (2)

Therefore, a reasonable procedure to estimate � is to solve
the following estimating equation:

�̂X��̂Y − (�̂X − �̂Y) = 0, (3)

where we replace the population latent correlation matrices
�X and �Y in Equation (2) with the sample latent correla-
tion matrices �̂X and �̂Y, respectively. Note that Equation
(3) is a Z-estimator (26). The Z-estimator can be translated
into an M-estimator (26) by noticing that �̂X��̂Y − (�̂X −
�̂Y) can be seen as the score function of the following neg-
ative quasi log likelihood function:

�(�) = 1
2

tr(��̂X��̂Y) − tr(�(�̂X − �̂Y)), (4)

where tr( · ) denotes trace operator of a matrix. Since Equa-
tion (4) is the negative quasi log likelihood, we can estimate
� by using maximum likelihood principle. Moreover, since
we assume � is sparse, we can use �1 norm penalty in addi-
tion to the maximum likelihood estimator. This leads to the
following �1 norm penalized M-estimator:

�̂
1=argmin

�

1
2

tr(��̂X��̂Y)−tr
(
�(�̂X−�̂Y)

)+λ‖�‖1, (5)

where � > 0 is a regularization parameter and ‖�‖1 =∑
j,k |� jk| is the element-wise �1 norm of � that encourages

�̂
1

to be sparse. Since �̂
1

is not guaranteed to be symmetric,
we symmetrize �̂

1
by the following procedure (27):

�̂ jk = �̂1
jk1

(|�̂1
jk| ≥ |�̂1

kj |
) + �̂1

kj1
(|�̂1

jk| < |�̂1
kj |

)
. (6)
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Figure 1. Illustration of Latent Differential Graphical Model (LDGM) as compared to other graphical model based methods. (A) A toy example of a
differential network between two tissues. (B) Gene expression levels of genes X and Y involved in the differential network in two tissues. (C) Sample
correlation matrices of gene expression levels in the two tissues. (D) LDGM directly infers the differential network from the two correlation matrices. In
contrast, other graphical model based methods (Glasso, JGL or CNJGL) first infer individual gene regulatory networks of tissues (E) X and (F) Y from
correlation matrices separately, then infer the differential network by the difference between the (G) two reconstructed networks. Red solid lines represent
false positive interactions while blue dashed lines represent false negative interactions in the reconstructed networks.

In other words, we take either �̂1
jk or �̂1

kj depending on
whose magnitude is larger. Note that we can also add a con-
straint such as � = �T in Equation (6) to make �̂ symmet-
ric. However, this additional constraint would make the re-
sulting optimization problem more complex and inefficient
to solve. The remaining question is how to estimate the la-
tent correlation matrices �X and �Y, respectively. Due to
the existence of the marginal monotonic transformations
{ f j }p

j=1 and {g j }p
j=1, the estimation of �X and �Y depends

on the estimation of { f j }p
j=1 and {g j }p

j=1. In order to ad-
dress this challenge, following the idea in (20), instead of
estimating { f j }p

j=1, {g j }p
j=1, �X and �Y simultaneously, we

avoid the estimation of { f j }p
j=1, {g j }p

j=1 by exploiting the re-
lation between the latent correlation matrix and the Kendall
tau correlation matrix. In detail, it is shown in (28) that the
Kendall tau statistics between Xj and Xk, i.e. denoted by � jk,
and the Pearson correlation coefficient between Xj and Xk,
i.e. �jk, satisfy the following:

� jk = sin
(

π

2
· τ jk

)
.

To this end, for X ∼ NPN(f,�X), we use the following es-
timator for the latent correlation matrix �X:

[�̂X] jk =
{

sin
(

π
2 τ̂ jk

)
, j �= k,

1, j = k.
(7)

where τ̂ jk is the estimator for the Kendall tau statistic

τ̂ jk = 2
n(n − 1)

∑
1≤i<i ′≤n

sign
[(

Xi j − Xi ′ j
)(

Xik − Xi ′k
)]

.

Similarly, we can estimate �Y in the same way. By plugging
the above estimators �̂X and �̂Y into Equation (5), we can
estimate � directly.

In order to solve Equation (5) efficiently, by some linear
algebra identities, we have tr(ATB) = vec(A)Tvec(B) and
tr(ATBCDT) = vec(A)T(D ⊗ B)vec(C) for any matrices A,
B, C and D with appropriate size. Note that D ⊗ B is the
Kronecker product (29) of matrices B and D. Using these
identities, we can rewrite the negative quasi log likelihood
in Equation (4) as:

�(β) = 1
2
βTQβ − bTβ, (8)
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where β = vec(�), Q = �̂X ⊗ �̂Y, b = vec(�̂X − �̂Y).
Therefore, the estimator in Equation (5) can be rewritten
as:

β̂ = argmin
β

1
2
βTQβ − bTβ + λ‖β‖1, (9)

where � is a non-negative regularization parameter. Increas-
ing � will make β̂ sparse. It is worth noting that Equation (9)
can be solved by accelerated proximal gradient descent effi-
ciently (24). Given β̂, we can obtain �̂

1
immediately by con-

verting β̂ back into a matrix. The estimated differential net-
work can be sparse when we properly choose �. Note that
when we estimate the differential network directly by Equa-
tion (9), we only assume the unknown differential network
� is sparse and we do not assume individual networks �X
and �Y are sparse. In addition, LDGM only has one regu-
larization parameter to tune. In contrast, if we apply Gaus-
sian graphical models or non-paranormal graphical models
to estimate �X and �Y separately, we need to tune two reg-
ularization parameters, which is less convenient in practice.

Other related works

There are existing methods that estimate the precision ma-
trices of two Gaussian graphical models simultaneously.
These methods can be directly applied to gene expression
data from two tissue types to estimate the corresponding
GRNs. To facilitate the method comparison in the Results
section, here we briefly introduce two methods developed by
others very recently: JGL with fused lasso penalty function
(16) and CNJGL (15). Both methods are able to estimate
the precision matrices �X and �Y of two Gaussian graphi-
cal models simultaneously. The key idea of these methods is
to borrow information across different cell types when esti-
mating each network that would lead to more accurate es-
timation than simply estimating each network individually.

JGL encourages network estimates to share similar edges.
It estimates the precision matrices of two Gaussian graphi-
cal models simultaneously based on penalized joint log like-
lihood maximization as follows:

max
�X,�Y

L(�X) + L(�Y) − λ1
(‖�X‖1 + ‖�Y‖1

) −

λ2

∑
j �=k

|�X
jk − �Y

jk|, (10)

where L(�X) is the log likelihood for the Gaussian graph-
ical model on X, i.e. L(�X) = log(det(�X)) − tr(�̂X�X),
and similarly, L(�Y) is the log likelihood for the Gaus-
sian graphical model on Y. �1 and �2 are non-negative reg-
ularization parameters. Note that the fused lasso penalty
λ1

(‖�X‖1 + ‖�Y‖1
) + λ2

∑
j �=k |�X

jk − �Y
jk| has been in-

corporated to encourage the two networks to share similar
edges.

CNJGL estimates the precision matrices of two Gaussian
graphical models in a similar way to JGL. The only differ-
ence is that instead of using fused lasso penalty, CNJGL
uses a penalty that encourages the two precision matrices
to have a common set of hub nodes in the networks. In par-
ticular, CNJGL estimates the precision matrices based on

penalized joint log likelihood maximization as follows:

max
�X,�Y

L(�X) + L(�Y) − λ1
(‖�X‖1 + ‖�Y‖1

) −

λ2	q
[
�X − diag(�X),�Y − diag(�Y)

]
, (11)

where L(�X) and L(�Y) are the log likelihood for the Gaus-
sian graphical models on X and Y, respectively, and 	q is
the row-column overlap norm proposed in (15) that encour-
ages network estimates to have a common set of hub nodes.

Note that in this study, when we compare the perfor-
mance from different methods, we always ran JGL and CN-
JGL with different �2 and reported the best result without
explicitly mentioning the corresponding �2. For JGL, �2 =
1e-04, 1e-03, . . . , 10. For CNJGL, �2 = c × n, where c = 1e-
04, 1e-03, . . . , 10, following (15). The approaches for select-
ing � for LDGM and Glasso and �1 for JGL and CNJGL
are described in Supplementary Text.

Additionally, (23) proposed to directly estimate the dif-
ference of two precision matrices from two multivariate nor-
mal distributions that is given by the following estimator:

min
�

‖�‖1

subject to ‖�̂X��̂Y − �̂X + �̂Y‖∞ ≤ λ,

(12)

where �̂X and �̂Y are sample covariance matrices for the
two multivariate normal distributions, � > 0 is a tuning pa-
rameter.

Methodological comparisons

Both JGL and CNJGL suffer from the problem that they es-
timate � indirectly. In other words, JGL and CNJGL both
first estimate �̂X and �̂Y separately, and then estimate � by
�̂ = �̂Y − �̂X (Figure 1E–G). This requires JGL and CN-
JGL to access twice the number of observations (i.e. sample
size) than LDGM, because estimating �X and estimating
�Y individually is as difficult as estimating �. In addition,
the assumptions in JGL and CNJGL on network topol-
ogy similarity between two tissues may not hold in reality
for many application settings. For example, the hub nodes
in the GRNs in two different tissues may not be the same,
which is what CNJGL assumes, because key TF proteins in
two tissues could be quite different. The above aspects sug-
gest clear conceptual advantages of LDGM over JGL and
CNJGL. On the other hand, the idea of our method is sim-
ilar to (23). Nevertheless, the method in (23) is limited to
multivariate normal distributions, while our method is ap-
plicable to the non-paranormal family of distributions that
admits multivariate normal distribution as a special case.
Furthermore, our estimator in Equation (9) can be solved
by accelerated proximal gradient descent efficiently, while
the estimator in Equation (12) is a constrained optimization
problem, which is computationally very time consuming.

RESULTS

Performance evaluation using simulation

We assessed the performance of LDGM by comparing to
Glasso, JGL and CNJGL on simulated data sets. We used
huge function with ‘method=glasso’ from the R package



e140 Nucleic Acids Research, 2016, Vol. 44, No. 17 PAGE 6 OF 11

DCBA

HGFE

TP
R

FPR
TP

R
FPR

TP
R

FPR

TP
R

FPR

P
re

ci
si

on

Recall

P
re

ci
si

on

Recall

P
re

ci
si

on

Recall

P
re

ci
si

on

Recall

LDGM
Glasso
JGL
CNJGL

Figure 2. Performance of different methods on simulated data with varied individual network density � . (A–D) are ROC curves. (E–H) are precision-recall
curves. LDGM consistently achieves better performance than other models. Here the proportion of network-specific edges �1 = 0.1, the number of nodes
p = 100 and the sample size n = 300. Each curve is the average over 30 runs.

huge (30) for Glasso (14). For JGL, we used the JGL func-
tion with ‘penalty=fused’ from the R package JGL. We
used the CNJGL source code from (15). Note that we did
not include the method from (23) in the comparison because
their code is too time consuming, making the comprehen-
sive evaluation infeasible.

We first briefly describe our method that generated the
sythetic data. In the simulated networks, we set number of
nodes p = 50, 100. Network density � is defined as the num-
ber of edges divided by p × (p − 1)/2. � = 0 if no edge
is in the graph, � = 1 if every pair of nodes are connected
by an edge. We chose � as individual network sparsity pa-
rameter and set � = 0.05, 0.1, 0.2, 0.3 in our evaluation.
Let � 1 be the proportion of edges only found in network
GX when it is compared to network GY or only found in
GY when compared to GX. When � is fixed, the higher � 1
is, the more different the networks GX and GY are; so the
differential network is denser. We used a combination of �
and �1 as differential network sparsity parameters. We set
� 1 = 0.025, 0.05, 0.1. We set sample size n = 100, 200, 300
for p = 50 and n = 200, 300, 400 for p = 100. In order to
assess the performance of LDGM and the other graphical
models under various individual network sparsity levels, �
starts from 0.05 to approximately match the average density
(0.045) of GRNs reported in (4). Then � gradually increases
to 0.3 to cover more general network sparsity levels. Sample
size n is selected to guarantee that the true differential net-
work structure can be recovered by graphical models under
different combinations of p, � , � 1. To make a fair compari-
son with the other methods which have a Gaussian assump-
tion, we simulated gene expression samples from multivari-
ate normal distributions. Then we computed sample Pear-
son correlation matrices as the input for all the methods.

For every combination of p, � , �1 and n, we repeated the
following steps 30 times:

1. We first generated an undirected scale-free (SF) network
GX (since SF networks and biological networks share
many topological properties (31)). We generated another
network GY in the following way. First we made a copy of
GX, denoted as GY. Then we randomly rewired a propor-
tion (�1) of edges in GY. At each rewiring step, two edges
A–B, C–D were randomly chosen from GY and substi-
tuted with A–D, C–B if they do not already exist in GY.

2. We constructed the precision matrices �X and �Y sepa-
rately from adjacency matrices of GX and GY following
the method used in (30). We constructed � by �Y − �X.

3. We applied each of the graphical models to compute �̂
from �̂X and �̂Y, which were sample correlation matri-
ces computed from n independent samples drawn from
N(0,�−1

X ) and N(0,�−1
Y ), respectively.

4. We computed true positive rate (TPR) and recall by
TP/(TP + FN), false positive rate (FPR) by FP/(TN +
FP), precision by TP/(TP + FP). Here, TP, FP, TN and
FN stand for true positives, false positives, true negatives
and false negatives, respectively:

TP =
∑
j<k

1{�̂ jk �= 0,� jk �= 0},

FP =
∑
j<k

1{�̂ jk �= 0,� jk = 0},

TN =
∑
j<k

1{�̂ jk = 0,� jk = 0},

FN =
∑
j<k

1{�̂ jk = 0,� jk �= 0}.

To assess the performance of differential network esti-
mation, we first compared the ROC curves (Figure 2A–D)
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Figure 3. Performance of different methods on simulated data with different � and �1 when p = 100, n = 300. (A) AUC under ROC curves. Advantage of
LDGM on ROC becomes more visible when differential networks are more dense with an increased network density � . (B) AUC under precision-recall
curves. LDGM consistently has a much larger AUC under a precision-recall curve than Glasso, JGL and CNJGL. Bar height represents an AUC under
an averaged curve over 30 runs. Error bar represents one standard deviation of AUC under 30 replicated curves.

and precision-recall curves (Figure 2E–F) when � is var-
ied with p = 100, n = 300 and � 1 = 0.1. Our results sug-
gest that LDGM has clear advantage over other methods
in two aspects. First, generally LDGM has better perfor-
mance based on ROC as compared to other models, and
the advantage becomes much clearer when we gradually
increase density � of G1 and G2 (Figure 2A–D). Second,
LDGM consistently identifies a remarkably higher propor-
tion of true edges when the estimated differential networks
are more sparse, as demonstrated by much larger area un-
der precision-recall curves from LDGM than those from the
other models (Figure 2E–H). One main reason for LDGM’s
better performance is that, as expected, LDGM does not
assume individual networks to be sparse while the other
graphical models need the sparsity assumption for individ-
ual networks.

In addition, the advantages of LDGM on differential net-
work estimation were observed over different combinations
of parameters. Area-under-the-curve (AUC) under ROC
curves (Figure 3A) and under precision-recall curves (Fig-
ure 3B) is computed to numerically summarize the perfor-
mance of a model under a combination of parameters � and
�1, when p = 100 and n = 300. LDGM has comparable
AUC under ROC curves with the other graphical models
when � = 0.05, 0.1. But when � gradually increases from
0.05 to 0.3, LDGM has a larger AUC under ROC curve
as compared to other methods and the difference becomes
more significant (Figure 3A). Besides, LDGM always has
a much larger AUC under precision-recall curves than the
other methods, regardless of the values of � , �1 (Figure 3B).

Furthermore, these advantages of LDGM are robustly held
when we vary p, n (Supplementary Figure 1 and Supplemen-
tary Figure S2).

Taken together, our simulation results suggest that
LDGM outperforms Glasso, JGL and CNJGL in estimat-
ing differential networks. When individual graph density
is � = 0.05, which is close to the density of regulatory
networks in (4), the estimated sparse differential network
by LDGM has a significantly higher proportion of true
edges than other methods. When individual graph density
increases from 0.05 to 0.3 to represent a more general net-
work sparsity level, the quality of inferred differential net-
works by LDGM is mildly affected. In contrast, the quality
by Glasso, JGL and CNJGL are greatly affected. Overall,
our simulation results strongly suggest that LDGM can be
robustly applied to a wide range of differential network in-
ference scenarios.

Performance evaluation using the GTEx data sets

We further assessed the performance of estimating differ-
ential networks by LDGM and the other graphical models
on real data. The GTEx project generated RNA-seq expres-
sion data for a large number of human tissues (as of October
2015, there are 8020 samples in more than 60 tissues) (11).
However, these samples are not evenly distributed across tis-
sues. Some tissues have a large sample size while others have
very limited sample size. Generally, a larger sample size im-
proves performance of graphical lasso models. In this anal-
ysis, we estimated differential networks between brain and
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blood using the expression data from GTEx and we utilized
the network from (4) as a comparison benchmark.

We downloaded the RPKM expression values from 357
samples across 13 human brain tissues and 191 samples
for whole blood (dbGaP Accession phs000424.v4.p1). Since
human brain tissues are more closely related when com-
pared to other tissues (22), we treated these 357 samples
from brain tissues as samples from the human brain. As a
common challenge in evaluating the reconstructed GRNs
comprehensively, a gold standard differential network is
not available for assessing the accuracy of the inferred dif-
ferential networks, and high-confidence large-scale GRNs
are not available to directly construct a benchmark differ-
ential network. However, GRNs constructed from high-
throughput experimental TF ChIP-seq or DNase-seq open
chromatin data for specific tissue types can be used as rea-
sonable benchmark. We therefore constructed our bench-
mark network based on GRNs from (4).

Neph et al. (4) reported the TF regulatory networks of
41 human cell types based on the DNase-seq profiles. There
are 7 networks from cell types related to whole blood: B-
lymphocyte, B-lymphoblastoid (GM06990 and GM12865),
erythroid, haematopoietic stem cell, acute promyelocytic
leukemia cell and T-lymphocyte. We constructed the GRN
for whole blood from interactions found in at least 6 out
of these 7 networks in (4). We also downloaded the brain
network. Among the TFs with RPKM >1 in over 80%
of the samples in both tissues, 137 TFs are found in both
GRNs. These TFs are connected by 2139 interactions that

are common in both tissue types, 412 interactions specific
to brain and 356 interactions specific to whole blood. To be
more conservative, we used the following rule to keep spe-
cific interactions in the benchmark network. Given an in-
teraction A–B, we first compute the correlation coefficient
of gene expression levels of A and B in brain and whole
blood. A–B is kept if the difference between the two cor-
relation coefficients is greater than a threshold (rb for brain
and rw for blood). The rationale is that a differential inter-
action A–B indicates that the expression of B is enhanced
or inhibited by A only in one tissue. This regulatory rela-
tionship changes the expression of B in that tissue, which
in turn would change the correlation coefficient between
the expression levels of A and B. We set rb = 0.8 and rw
= 0.7. Eventually in our benchmark network, brain and
whole blood have 20 and 19 tissue specific interactions, re-
spectively. A total of 48 TFs are involved in these 39 spe-
cific interactions (Figure 4A). We then generated the corre-
lation matrices of expression levels of these TFs based on
RPKM values in brain and whole blood, respectively (see
Supplementary Text). Methods with varied tuning param-
eters were applied to the correlation matrices to estimate a
series of differential networks. The inferred differential net-
works were compared to the benchmark network to evalu-
ate the performance of the models.

Overall, LDGM outperforms the other methods, which is
consistent with our simulation results. LDGM has a much
higher AUC under ROC curve (Figure 4B). The AUC is
0.762, 0.593, 0.617, 0.637 for LDGM, Glasso, JGL and
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CNGJL, respectively. Besides, LDGM identifies a signifi-
cantly higher proportion of true edges when the estimated
differential networks are sparse, as indicated by a much
higher precision than the other models when recall is rel-
atively small (Figure 4C). The AUC under precision-recall
curves is 0.178, 0.048, 0.044, 0.049 for LDGM, Glasso,
JGL and CNGJL, respectively. Moreover, the advantage of
LDGM is always observed when rb and rw are varied by set-
ting different benchmark data set with different numbers of
TFs and tissue-specific interactions (Supplementary Figure
S3 and Supplementary Figure S4).

Applying LDGM to TCGA breast cancer data sets

Breast cancer has been classified into five major subtypes
based on gene expression: Luminal A, Luminal B, HER2-
enriched, Basal-like and normal-like (32). Luminal A sub-
type is characterized by high expression of estrogen recep-
tor (ER) pathway genes and low expression of proliferation
genes, and is associated with a better prognosis (33). Basal-
like subtype mostly consists of triple-negative breast cancer
that is characterized by low expression levels of ER, pro-
gesterone receptor (PR) and HER2, and high expression
of genes associated with cell proliferation, and is associated
with a poor prognosis (34). As a proof of principle, we ap-
plied LDGM using TCGA data to identify differential net-
work between Luminal A and Basal-like subtypes. LDGM,
Glasso, JGL and CNGJL with different tuning parame-
ters were performed to identify a series of differential net-
works with different sparsity levels. Detailed description of
the data used here is in Supplementary Text. Note that from
these expression values of the genes, we further confirmed
that they typically do not completely follow normal distri-
butions (Supplementary Figure S5 and Supplementary Fig-
ure S6).

In contrast to the other methods, LDGM consistently
identifies ESR1, encoding ER, as one of the genes whose
regulatory relationships are rewired greatly between the two
subtypes. ER can function as a TF and bind to chromatin
directly through estrogen response elements or indirectly by
interacting with other TFs, e.g. JUN, SP1, NFKB1. ER can
also recruit co-regulators to regulate transcription of target
gene expression (35). As demonstrated in Figure 5A and B,
ESR1 is consistently among the top genes with highest de-
grees in differential networks constructed by LDGM. How-
ever, it is not among the top 20 genes with highest degrees in
differential networks by the other methods. The difference
is much greater when the reconstructed networks are more
sparse (<150 interactions).

The majority of interactions involved by ESR1 in differ-
ential networks by LDGM are from Luminal A subtype,
inferred by a principle of majority method based on Glasso
(see Supplementary Text). For example, 9 out of 11 inter-
actions involved in ESR1 are from Luminal A subtype in
a differential network produced by LDGM with � = 0.362
(Figure 5C). This observation is consistent with the high ex-
pression of ESR1 in Luminal A subtype and low expression
of ESR1 in Basal-like subtype.

To further explore the functions of the reconstructed dif-
ferential interactions, we performed pathway enrichment
analysis by DAVID (36,37) on two exclusive sets of genes in

the reconstructed differential network by LDGM (shown
in Figure 5C). One set of genes contains 31 genes where
the majority (>50%) of differential interactions are from
Basal-like subtype. These genes are significantly enriched
in a pathway cadmium-induced DNA synthesis and pro-
liferation in macrophages (FDR = 1.44E-03), including
MAPK1, HRAS, MAP2K1, JUN, PLCB. Another set of
genes contains 25 genes where the majority of differen-
tial interactions (>50%) are from Luminal A subtype.
These genes are enriched with a pathway PTEN-dependent
cell cycle arrest and apoptosis (FDR=1.40E-02), including
AKT1, SOS1, PIK3CA, SHC1 and PIK3R1. Also, AKT1,
PIK3CB and SOS1 are involved in a pathway of inhibi-
tion of cellular proliferation. Our results are consistent with
the characteristics of Luminal A and Basal-like breast can-
cer subtypes. For example, proliferation related genes are
known to have high expressions in Basal-like subtype and
low expressions in Luminal A subtype, and PTEN loss fre-
quently occurs in Basal-like subtype (38). All enriched path-
ways (FDR < 0.05) are reported in Supplementary Table
S1.

In addition, we performed analysis to evaluate the dif-
ferential network related to ESR1 using ChIP-seq data sets
generated in MCF-7 breast cancer cell line which has the
luminal phenotype. A total of 54 ChIP-seq experiments
on ESR1 from MCF-7 cell line were downloaded from
CistromeDB (39,40). A putative target gene of ESR1 in
MCF-7 cell lines is defined as a gene where there is at least
one ESR1 ChIP-seq peak within 5 kbp of the gene in at least
10 out of 54 ChIP-seq experiments. We found that when
ESR1 has at least 10 neighbors, over 50% of the neighboring
genes in the differential networks are putative target genes
of ESR1 in at least 10 ChIP-seq experiments on MCF-7
(Supplementary Figure S7).

These analyses suggest that LDGM has great potential
to identify specific differential networks between different
cancer subtypes to help better understand molecular mech-
anisms of tumor heterogeneity.

DISCUSSION

In this paper, we introduced a new method LDGM to in-
fer differential network among different tissues. The nov-
elty of our method is that we now can estimate the dif-
ferential network between two tissue types directly, with-
out inferring the network for individual tissues and with-
out assuming normal distribution of the gene expression
values. This approach also has a clear advantage of uti-
lizing much smaller sample size to achieve reliable differ-
ential network estimation. Unlike other Gaussian graphi-
cal model based methods that need to assume the GRN is
sparse, our method only assumes that the differential net-
work between two tissue types is sparse. In addition, we do
not have the assumption on certain topological similarity
of the GRNs between two tissues. For example, some pre-
vious graphical model based methods assume that the two
GRNs have similar hub nodes (e.g. CNJGL), which do not
hold for tissues with very different key regulatory proteins
that regulate many downstream genes. Our comprehensive
simulation results demonstrated that LDGM consistently
outperforms other Gaussian graphical model-based meth-
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ods. This is further confirmed by the evaluation using GTEx
data. Finally, we applied our method to the TCGA breast
cancer samples to study network rewiring between cancer
subtypes. We demonstrated the potential of LDGM to iden-
tify subtype specific network interactions that could provide
insight into the molecular mechanisms of inter-tumor het-
erogeneity.

One limitation of LDGM is that it cannot directly tell
which tissue type a differential interaction comes from.
However, once LDGM identifies the differential network,
we can use other method as a subsequent step to distinguish
that. For example, in our analysis of the TCGA breast can-
cer data, we used a principle of majority method based on
Glasso to help infer the origin of a differential interactions.
It would be an interesting future work to reconstruct differ-
ential interactions and their origin simultaneously.

A common challenge in evaluating GRN inference com-
prehensively using real data is the lack of gold standard.
In this work, we made effort to construct a benchmark dif-
ferential network when comparing LDGM with graphical
model based methods using GTEx data. The benchmark
network was from (4) where the authors built the network
interactions based on the presence of TF binding site motif
within DNaseI hypersensitive sites close to the genes. How-
ever, this type of network for the entire transcriptome is rea-
sonable but still not perfect. As a matter of fact, it is not
always true that TF A regulates gene B whenever there are
binding motifs of A within the promoter regions of gene
B. This could also be the reason why the average AUC for
LDGM and Glasso in the GTEx evaluation are both not
very high, aside from the possibility of tissue variation and
difference between the two studies. Nevertheless, with more

data from large-scale projects such as the ENCODE project
(41) and the Roadmap Epigenomics project (42), we now
have access to comprehensive functional genomic profiles
to characterize regulatory regions in the human genome
across various cell lines and tissues. The data from such
high-throughput assays in a given cellular context is very
informative to study gene regulation across cell/tissue types
even though the sample size for each tissue type is typically
very limited. The LDGM method developed in this work
may provide a unique way of integrating network inference
from large gene expression data sets such as GTEx and reg-
ulatory genomics data sets from ENCODE and Roadmap
Epigenomics projects to better ascertain the GRN dynam-
ics globally across different tissue types and cell types.

AVAILABILITY OF DATA AND MATERIAL

The source code of our LDGM method can be found at
https://github.com/ma-compbio/LDGM.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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