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CshA mutant cold sensitivity is a membrane problem

In this issue of PLoS Genetics, Khemici and colleagues make the connection between two

seemingly unrelated bacterial pathways, mRNA degradation and membrane biogenesis [1].

Research of the Linder lab in Geneva has long focused on the family of DEAD-box RNA heli-

cases and their roles in RNA and DNA metabolism [2]. Here, the focus was on the Staphylococ-
cus aureus CshA helicase, which has a general role in mRNA degradation via the RNA

degradosome [3]. Khemici and colleagues used cold sensitivity of the cshA mutant to select for

cold-tolerant mutant suppressors. This simple selection led to a surprising convergence of

mutant genes, which mapped nearly exclusively to membrane lipid-related functions. Remark-

ably, most of the 82 sequenced mutations affected the fatty acid synthesis (FASII) pathway and

precursor production. The authors navigated experimentally through numerous possibilities,

which led them to uncover the basis for the membrane problem in cshA cold-sensitive

mutants. They traced the problem to a failure to degrade the mRNA of pdh, encoding pyruvate

dehydrogenase (PDH), which in aerobic conditions produces acetyl-CoA, a hub metabolite

and FASII precursor (Fig 1). pdh mRNA accumulated in the cshA mutant compared to wild

type (WT), reasonably predicting that acetyl-CoA pools were increased. In S. aureus, FASII

uses acetyl-CoA to produce straight-chain saturated fatty acids (SCFA), which rigidify mem-

branes. But acetyl-CoA competes with branched-chain acyl-CoA, the precursors for branched-

chain fatty acids (BCFA), which fluidify membranes [4]. This SCFA to BCFA ratio is critical to

membrane fluidity. Fatty acid extractions showed that SCFA to BCFA ratios were elevated in

the cshA mutant compared to the WT strain. Less PDH (or more BCFA precursor production)

in tested suppressor mutants restored this ratio to that of the WT, so that the membrane

would regain fluidity. This highly documented study identifies pdh mRNA as the essential

degradosome target for cold survival, and highlights the intimate connection between mem-

brane state and central metabolism via acetyl-CoA.

Why are FASII genes targets for cshA suppressors?

Most cshA suppressors mapped to FASII or associated pathways. Mutations in FASII-related

genes all presumably slow down phospholipid synthesis. Khemici and colleagues generalized

this observation by showing that subinhibitory amounts of triclosan, which inhibits the FASII

pathway protein FabI, suppressed cshA cold sensitivity. Their study also revealed that fakA,

encoding a fatty acid kinase, was a cshA suppressor hotspot that corrected the SCFA to BCFA

ratio. FakA depletion leads to free fatty acid accumulation that may modify S. aureus regula-

tion and FASII activity and alter acetate utilization [5, 6]. How the slowdown of FASII synthe-

sis adjusts fatty acid membrane composition and fluidity is a new open question arising from

this work.
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Do all cshA mutant suppressors relate to the SCFA to BCFA ratio

and membrane fluidity?

The selection for cshA cold-tolerant suppressors identified loci seemingly unrelated to mem-

brane biogenesis. However, underlying links may exist. For example, mutations in ndhF,

encoding a membrane protein involved in the electron transport chain, would lead to reduced

respiration. Consequently higher intracellular NADH might lower PDH activity, which uses

NAD as cofactor. Also, suppression by mutating RNA polymerase cofactor gene rpoE may

have pleiotropic effects on expression of numerous membrane-related functions [7]. Muta-

tions that impact lipoteichoic acid production and lipoprotein maturation may not directly

affect phospholipid composition but could still affect membrane fluidity. Using the SCFA to

BCFA ratio as readout to understand cshA suppressors as done here will be a valuable means

of characterizing these “unknown” suppressors.

New lines of exploration arising from the DEAD-membrane

connection

The approach and findings reported by Khemici and colleagues provide a conceptual scaffold

for discovering factors involved in the balance between central metabolism and the membrane.

For example, anaerobic growth, which uses Pfl rather than Pdh to produce acetyl-CoA, might

Fig 1. Schematic model of how CshA, the DEAD-box helicase, modifies the membrane state in cold conditions. A cold stress signal (snowflake) is

transmitted via the membrane (at top), leading to membrane changes (at bottom). (A) cshA mutant. pdh mRNA accumulates in the cold. Greater PDH activity

increases acetyl-CoA pools relative to competing branched-chain acyl-CoA substrates, favoring synthesis of straight-chain (rigid) fatty acids. Membrane

rigidity accounts for cold sensitivity. (B) WT strain. The RNA degradosome comprising CshA is active and degrades pdh mRNA, which limits acetyl-CoA

production. Less acetyl-CoA relative to branched-chain acyl-CoA favors BCFA synthesis, which fluidifies the membrane. Numerous cshA suppressor

mutations restore the balance between straight and BCFA [1]. Products leading to rigid membranes are blue; those leading to fluid membranes are red. Black

wavy lines represent pdh mRNA; dashed line indicates mRNA is degraded. BC, branched-chain; BCFA, branched-chain fatty acid; BKD, branched-chain α-

keto acid dehydrogenase; PDH, pyruvate dehydrogenase; WT, wild type.

https://doi.org/10.1371/journal.pgen.1008842.g001
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generate different conditions for cshA suppression. S. aureus incorporates exogenous unsatu-

rated fatty acids, as enriched in host tissues [8], which might fluidify membranes and suppress

cshA cold sensitivity, and idem for fluidifying solvents. Cold-sensitivity of cshA is suppressed

in solid, but not liquid medium, raising the question of cell-to-cell contact, nutrient availabil-

ity, and growth phase, in modulating membrane properties.

PDH and its product, acetyl-CoA, were identified here as the connecting link between cshA
mutant cold survival and membrane lipid composition, as a means of adjusting membrane flu-

idity. Remarkably, all PDH subunits in S. aureus are prominent components of extracellular

membrane vesicles [9]. Membrane blebbing could be a rapid means of removing or shuttling

enzymes. Given the present study, a far-fetched but testable possibility is that PDH enrichment

in extracellular vesicles might deplete intracellular PDH and favor BCFA synthesis and cell

membrane fluidity. This epigenetic regulation from “without” could be an economical and

rapid way to adjust membrane properties.

The membrane as a bacterial thermometer was demonstrated by several studies in the de

Mendoza lab. The rigid or fluid state of membrane lipids is transmitted to membrane proteins

by affecting their conformation and/or localization [10, 11]. In S. aureus, membrane fluidity

affects expression of virulence factors [12]. Khemici and colleagues’ studies add CshA-degra-

dosome turnover of pdh mRNA as another type of response to the membrane thermometer.

The signal leading to pdh mRNA degradation remains to be investigated, but one possibility is

that a membrane-associated degradosome component, RNase Y [13], acts as a sensor-relay of

the membrane state.

The branched-chain α-keto acid dehydrogenase complex (referred to as BKD or BFM), syn-

thesizes branched-chain acyl-CoA, the preferred competitors of acetyl-CoA in S. aureus [4].

Interestingly, BKD is a PDH complex homolog. Contrary to pdh mRNA degradation at low

temperature, mRNA of the BKD analog in Bacillus subtilis is cold-stabilized [14]. It will be

exciting to determine whether the S. aureus BKD complex is regulated by the degradosome

under conditions where fluidity may be deleterious, e.g., at high temperature.

Altogether, this original and highly documented study brings a new clarification to the way

S. aureus coordinates fundamental metabolic functions. The original conclusions and insight

provided in this work will be valuable in gaining a holistic understanding of how cells respond

to stress.
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