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Abstract

We introduce the notion of Electric Field Encephalography (EFEG) based on measuring electric fields of the brain and
demonstrate, using computer modeling, that given the appropriate electric field sensors this technique may have significant
advantages over the current EEG technique. Unlike EEG, EFEG can be used to measure brain activity in a contactless and
reference-free manner at significant distances from the head surface. Principal component analysis using simulated cortical
sources demonstrated that electric field sensors positioned 3 cm away from the scalp and characterized by the same signal-
to-noise ratio as EEG sensors provided the same number of uncorrelated signals as scalp EEG. When positioned on the scalp,
EFEG sensors provided 2–3 times more uncorrelated signals. This significant increase in the number of uncorrelated signals
can be used for more accurate assessment of brain states for non-invasive brain-computer interfaces and neurofeedback
applications. It also may lead to major improvements in source localization precision. Source localization simulations for the
spherical and Boundary Element Method (BEM) head models demonstrated that the localization errors are reduced two-fold
when using electric fields instead of electric potentials. We have identified several techniques that could be adapted for the
measurement of the electric field vector required for EFEG and anticipate that this study will stimulate new experimental
approaches to utilize this new tool for functional brain research.
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Introduction

Electro-encephalography (EEG) and magneto-encephalography

(MEG) are well-established modalities of studying brain signals.

EEG samples electric potential across the scalp, while MEG

samples magnetic field (usually, one its component) several

centimeters from the head’s surface. High-density implementa-

tions of these methods typically use 64–256 sensors covering the

top half of the head. Several recent studies compared the two

experimental techniques in terms of their spatial resolution and the

amount of information they offer about the underlying brain

activity. EEG and MEG were found similar in these respects [1–4]

despite the fact that MEG is likely to be less affected by the skull’s

low conductivity than EEG [5], but also see [6]).

EEG and MEG provide somewhat different information on the

brain’s activity: MEG is sensitive to only tangential sources (with

respect to the scalp surface), while EEG is sensitive to both radial

and (less so) tangential sources [7]. Therefore, it is not surprising

that recording both EEG and MEG signals can provide additional

information on the brain’s activity by increasing the effective

number of independent signals recorded [4,8]. Simply increasing

the number of EEG and MEG sensors might not have the same

effect due to a significant cross-talk between sensors. It is believed

that bringing electrodes within 2 cm of each other or closer (,500

sensors) does not further improve spatial resolution of either

method [4].

Unlike electric potential, electric fields associated with brain

activity are not generally studied because of the difficulty of

measuring these weak signals. Furthermore, considering that the

electric field is given by the negative gradient of the electric

potential measured by EEG, one might wonder whether

measuring the electric field instead of its potential could provide

any new information at all. It has been shown that a potential

defined on a surface has a unique continuation to another surface

as long as one surface encloses the other and the volume bound by

the two surfaces is source-free [9]. A potential defined uniquely on

two arbitrarily close surfaces is sufficient to calculate the gradient

of the potential uniquely. Hence, an electric field outside of the

head’s volume is uniquely determined by the potential distribution

on the scalp, and EEG measurements can, in principle, be used to

calculate electric fields instead of measuring them directly.

Although theoretically possible, such a calculation is difficult to

implement for several practical reasons. First, in order to calculate

gradients of the scalp potential, one needs a dense measurement of

the potential distribution, which calls for an unconventionally

large number of small-diameter electrodes separated by distances

of 1 cm or less. The high-density EEG caps or nets currently in use

have at most 256 electrodes. The electrodes are, typically, 1 cm in

diameter and are separated from each other by 3 cm or more.

This makes gradient calculation using EEG relatively imprecise.

Furthermore, a common data processing step in high-density EEG

is to discount one or more ’bad’ electrodes due to the amount of

noise. The resulting data gaps at the locations of the discounted

electrodes further undermine the electric field calculation. Finally,

measuring scalp potentials is not feasible in many situations due to
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poor quality of electric contacts between the electrodes and the

scalp, e.g., for subjects with very thick hair or, conversely, lack of

hair (due to scalp cornification). Apart from this, the quality of the

electric contacts quickly deteriorates during physical activity due to

sweating, and the lightest movement of the electrodes on the scalp

produces overwhelming amounts of noise.

It is, thus, likely that dedicated electric field sensors could

improve current EEG techniques. The sensors could be used by

themselves or in combination with conventional EEG sensors.

However, prior to investing time and money into research and

development of adequate field sensors, one needs to estimate the

promise of the new technique. This defines the rationale of the

presented study. Herein, we model the distribution of electric fields

near the scalp and evaluate the use of these fields for functional

brain research, a method we term Electric Field Encephalography

(EFEG). We demonstrate that electric fields generated by cortical

sources are more focused than their associated potentials. This

makes EFEG a more local measure of brain activity and offers

significantly more uncorrelated signals than EEG, provided that

sensors are located either on the scalp or close to it and are

characterized by signal-to-noise ratio comparable to EEG sensors.

This, in turn, results in major improvement to source localization

precision.

Two head models were used to simulate electric fields of the

brain in this study: an anisotropic 4-shell spherical head model and

a 3-shell boundary element method (BEM) model (see the

Materials and Methods section for details). The purpose of using

these two models is to compare EFEG and EEG as realistically as

possible. Either model has its own inherent limitations. The BEM

model omits the highly conductive cerebro-spinal fluid (CSF) layer,

because this layer is too thin at many locations to model it with

sufficient precision. It also cannot model the radial-tangential

anisotropy of the skull’s conductivity due to the nature of the BEM

method. The 4-shell spherical model, on the other hand, models

the latter two head properties, but cannot be applied to a more

realistic head shape. Taken together, the results for these two

models provide stronger support for the EFEG and EEG

comparisons made in our study than would either model alone.

Results

We first discuss electric fields produced by a single current

dipole positioned inside the brain shell of the spherical model.

Then, the number of uncorrelated signals provided by electric field

measurements (EFEG) and potential measurements (EEG) is

evaluated by principal component analysis (PCA) for spherical and

BEM head models. Finally, the quality of source localization is

compared between EEG and EFEG methods.

Single Dipole Electric Fields
Electric fields produced by a current dipole can be calculated

analytically for an anisotropic spherical shell model [10]. In the

case of a radially oriented dipole, maximal 10 mV scalp potential

(typical for human evoked potentials) is associated with ,1 mV

per meter maximal radial field component at the same location on

the scalp. The maximal tangential component of the field is about

3 times weaker. In the case of a tangentially oriented dipole (with

respect to the scalp surface), the maximal tangential component is

about the same as for the radial dipole, while the radial component

is approximately 3 times weaker than for the radial dipole. The

corresponding potential and field scalp distributions are compared

in Figures 3 and 4 in [10]. The dipole electric fields are

characterized by significantly more focused distributions about

the dipole location than those of the corresponding potentials.

Hence, one might expect that there would be less cross-talk among

nearby electric field sensors than for EEG sensors, and also that

electric field measurements would be more indicative of the source

location.

The electric field was also calculated for the anatomically more

realistically shaped BEM head model as described in the Materials

and Methods section. Scalp electric fields for two representative

cortical sources are shown in Figure 1. The left panel illustrates

positions of the electric field sensors on the scalp, with red arrows

indicating sensors measuring inclinational component Eh, and

green arrows indicating sensors measuring the azimuthal compo-

nent Ew. Tangential field magnitude Et~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

hzE2
w

q
is plotted in

the next two panels using a colormap with hotter hues indicating

larger field magnitudes. The middle panel shows Et for one of the

simulated 5124 source patches (see the Materials and Methods

section) with dipoles oriented primarily in the radial direction. The

right panel shows Et for a different source patch with dipoles

oriented primarily in the tangential direction. Et field patterns and

magnitudes obtained for the BEM head model are similar to those

patterns produced by single dipoles for the spherical head model

(as compared with Figures 3 and 4 in [10]). In particular, radial

and tangential sources produced characteristic ring-shaped and

dumbbell-shaped patterns respectively.

Number of Uncorrelated Signals
Given that electric field patterns are more focused than

potential patterns, and that there are 3 times more electric field

measurements than potential measurements (if all 3 field

components are measured), one might expect that, in the practical

case of a limited number of noisy sensors, the electric field would

provide more information about brain sources than electric

potential. The number of uncorrelated signals present in a set of

data is one possible metric of this information. This metric can be

calculated by modeling a multitude of realistic cortical sources,

with signals measured by sensors located on the scalp or around

the head, and then evaluating the degree of correlation among the

resulting sensor signals. We simulated 5,124 source patches

distributed evenly over the surface of left and right cortices (see

the Materials and Methods section for details). The resulting

potentials and electric fields were sampled by potential and field

sensors positioned as discussed in the Materials and Methods

section. Electric field components Er (radial), Eh (inclinational),

and Ew (azimuthal) at each sensor location were calculated for

each source patch. Only tangential field components Eh and Ew

measured at the scalp surface were calculated for the BEM head

model.

To determine the number of uncorrelated signals the principal

component analysis (PCA) was performed as described in the

Materials and Methods section. The PCA eigenvalues normalized

by the largest eigenvalue for each set are plotted in Figure 2 in

descending order. The normalization allows one to consider the

PCA eigenvalues in terms of the noise-to-signal ratio. Because

PCA eigenvalues fall off very rapidly it is safe to assume that the

overall signal power is of the same order of magnitude as the

largest eigenvalue. Then, the number of eigenvalues (x-axis) above

a given noise-to-signal power (y-axis) determines the number of

uncorrelated detectable signals present in the data. PCA results for

the scalp potential are plotted in red, results for the scalp electric

field are plotted in black; for the electric field measured 1 mm,

10 mm, and 30 mm away from the scalp, the results are plotted in

blue, cyan, and green respectively. Results for the BEM head

model are shown by thin curves. One can see that electric field

measurements provide significantly more detectable signals

Electric Field Encephalography for Brain Research
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(eigenvalues above a given noise-to-signal value) than potential

measurements for any noise level. This is indicated by the electric

field curves lying above the potential (red) curves, with the

exception of the green curve corresponding to EFEG sensors

positioned 30 mm off the scalp. For example, for the noise-to-

signal power 10{3 there were ,30 uncorrelated potential signals

vs. ,60 (spherical model) and ,90 (BEM) electric field signals.

To better illustrate the increase in the number of detectable

signals, the ratio of the two curves for various noise-to-signal levels

(y-axis values) was plotted in the inset to Figure 2. For the realistic

range of noise-to-signal powers (10{4–10{2) there were 2–3 times

more usable signals in the field measurements than in the potential

measurements when the field was measured on the scalp or 1 mm

above it. For larger distances the advantage was quickly lost, so

that at 30 mm the number of potential and field signals were about

equal.

The increase in the number of uncorrelated signals did not

occur simply because there were 3 times more field sensors than

potential sensors. To show this, we simulated a 4-fold increase of

the number of potential sensors by refining the 128-sensor mesh

used for the rest of the simulations into 485-sensor mesh covering

the same area of the head. The corresponding PCA results are

plotted by the dashed orange curve. There was no significant

increase in the number of usable signals except for unrealistically

low noise levels (noise-to-signal power v10{6).

It is also important to explain how different components of

electric field contribute to the number of usable signals. To this

end, PCA for EFEG sensors positioned 1 mm above the scalp

surface was repeated for radial (Er) and tangential (Eh and Ew)

components separately using 128 and 256 sensors in each case.

The results are illustrated in Figure 2 by the dotted and dashed

blue curves respectively. The radial field alone provided almost

two times more usable signals than the potential for the 1–10{5

noise-to-signal power range. This agrees with the dipole radial

field being more focused than the dipole potential [10]. Somewhat

paradoxically, the tangential field provided more usable signals

than the full field. As discussed below, this result appears less

surprising once the sensor noise is considered.

Source Localization
The analysis presented in the previous section shows that,

assuming the same signal-to-noise ratio, high-density electric field

measurements are more informative than potential measurements

when taken near the head surface. Accordingly, a source

localization algorithm should be able to reconstruct cortical

sources more accurately when using electric field data. We

calculated source reconstructions and associated localization errors

for the same 5124 source patches used for the PCA. Details are

given in the Materials and Methods section. Two source

localization algorithms, MNE [11] and Harmony [12], were used

for this purpose.

Both algorithms sought a ’’distributed solution’’, i.e., a pattern

of activation distributed over thousands of cortical dipoles of fixed

orientation and location. For a ’distributed solution’ the number of

usable signals is much smaller than the number of cortical dipoles,

thus the inference problem is severely underdetermined, and some

constraints are necessary to make the solution unique. The two

algorithms use different constraints: MNE chooses the solution

with the least power (activation), while Harmony, in addition,

seeks a smooth solution. The rationale of the Harmony approach

is that the high spatial frequency components of the solution

cannot be reliably inferred from scalp data due to strong low-pass

spatial filtering of the skull and high spatial frequency sensor noise.

Harmony BEM model source reconstructions for two repre-

sentative source patches are shown in Figure 3. Results for radial

and tangential sources are plotted in the top and bottom rows

respectively. By tangential source we mean a source with

tangential (parallel to the scalp) dipole component larger than

radial (normal to the scalp) component. The panels in the left

column display reconstructions based on potential measurements;

the panels in the right column display reconstructions based on

electric field measurements. Reconstructed cortical currents are

shown by a colormap representing both magnitude and direction

of the current dipoles: cold colors for inward currents, hot colors

for outward currents. The currents were probability masked

(pƒ0:05, Bonferroni corrected using the number of sensors [13]).

One can see that reconstructions based on the electric field

measurements were tighter and located more closely to the

simulated source patch shown as a green shape overlaid on the

cortical surface. The improvements are particularly noticeable for

Figure 1. The BEM head model. Electric field sensor locations on the scalp and their orientations (red for inclination, cyan for azimuth) are shown
in the left panel. Magnitude of the tangential component of the electric field on the scalp surface produced by (nearly) radial and tangential cortical
sources are shown in the middle and right panels.
doi:10.1371/journal.pone.0067692.g001

Electric Field Encephalography for Brain Research

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e67692



the tangential source shown in the bottom row. Given that cortical

normals are fairly randomly oriented, a simple calculation of solid

angles shows that, proportionally, 1=
ffiffiffi
2
p

or about 70% of cortical

sources are tangential.

To quantify the localization error for all simulated sources the

LE measure was calculated as described in the Materials and

Methods section and the results were plotted in Figure 4. The

source reconstruction results (Harmony algorithm) for the

spherical head model are shown in the left panel. The LE value

is plotted along the x-axis, and the percentage of sources localized

with a smaller error than the given x-value is plotted along the y-

axis. Results for potential measurements are shown by the red

curve, results for field measurements – by the blue curves. The

field-based reconstructions were carried out for several sensor

distances from the scalp: 0 (scalp), 1, 3, and 10 cm. In the figure,

the corresponding results are traced with solid, dashed, dot-

dashed, and dotted curves. Except for the largest distance (10 cm),

all field-measurement curves are above the potential-measurement

curve, indicating smaller localization errors for the field-based

reconstructions even when there was a considerable separation of

the field sensors from the scalp. It is important to keep in mind,

however, that in these simulations the signal to noise ratio was kept

constant for all sensor distances. For real measurements the signal-

to-noise ratio will be decreasing due to electric field falloff with

distance. This point is illustrated by the inset, where the maximal

field strength for a radial dipole source located 1 cm below the

skull is plotted as a function of the sensor distance from the scalp.

Field strength decreases as the inverse of the cube of the distance

for distances beyond 10 cm and even faster for smaller distances.

BEM head model results are shown in the right panel, where Et

calculated at the scalp surface was used for electric field

measurements. Harmony results are shown by solid curves,

MNE results – by dashed curves. Similar to the spherical head

model, field-based reconstructions had smaller localization errors

for both Harmony and MNE algorithms. The inset shows a

scatterplot of the Harmony localization errors (one dot for each of

the 5124 simulated patches) comparing the potential-based

localization error (x-axis) and the field-based localization error

(y-axis). The majority of the dots fall below the diagonal indicating

smaller localization errors for the field-based reconstructions.

Figure 2. Normalized eigenvalues of the data covariance matrix plotted in the descending order. EFEG sensors at different distances
above the scalp surface (0 mm/scalp, 1 mm, 10 mm, 30 mm) were simulated. The inset shows the ratio of the number of eigenvalues above a given
value (plotted along the x-axis) between the electric field E and the potential W data.
doi:10.1371/journal.pone.0067692.g002
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Discussion

In this study we introduced the notion of Electric Field

Encephalography (EFEG) and used computer modeling to argue

that measuring the electric field vector generated by brain activity

has some significant differences from and advantages over, EEG.

Electric field measurements can be conducted in a contact-free

manner and, unlike EEG, where even the best choice of the

reference point can contribute up to 15% of non-local signal [10],

electric field measurements are truly local because they do not

require any reference point. Our previous study reported formulas

for calculating the electric field generated by a dipolar current

source in a spherical model comprising concentric shells of

anisotropic (radial-tangential) conductivity [10]. The formulas

were used to show that scalp electric fields generated by a cortical

current dipole were ,1 mV per meter for 10 mV scalp potentials.

The electric field distribution over the scalp was shown to be more

focal than the associated potential distribution.

The PCA carried out in the present study for spherical and

BEM head models demonstrated that high-density measurements

of electric field on or near the head surface can provide 2–3 times

more uncorrelated signals of cortical activity than EEG measure-

ments at the same locations (Figure 2). This can be explained by

the more focused distribution of the electric field about the source

location compared to the potential distribution. As a result, one

can expect less cross-talk among sensors and more uncorrelated

signals. The radial component of the electric field vector contained

almost as many uncorrelated signals as the full field, which attests

to a strong redundancy of the field components. As discussed in

the Introduction, electric field in a current-free medium can be

uniquely determined from the associated electric potential defined

on a surface. Consequently, the field vector component normal to

the surface can be determined from the two other components.

The tangential components were somewhat more informative than

the radial (normal to the scalp) components and even provided a

slightly larger number of detectable signals than the full field for

realistic signal-to-noise ratios. To understand this result it is

important to stress that the PCA eigenvalues plotted in

Figure 2 were normalized by the largest eigenvalue for each plot.

Consequently, adding the radial field sensors increased the

normalization constant as well as the rest of the eigenvalues.

Assuming that experimental noise scales with overall signal, the

noise scales with the largest signal’s eigenvalue. Hence, in the

framework of the presented PCA adding more sensors adds signals

Figure 3. Representative reconstructions by the Harmony algorithm of two cortical sources. The results are shown on pial cortical
surfaces, the 37-dipole source patch is shown by the green patch. Color indicates amplitude and direction of cortical currents: inward – cold, outward
– hot.
doi:10.1371/journal.pone.0067692.g003
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and also adds noise, which can effectively reduce some of the

normalized eigenvalues. Given the field vector redundancy, the

radial sensors apparently contributed more noise than signals,

which explains the slight decrease of the normalized eigenvalues

once the radial sensor measurements were included.

The largest increase in the number of uncorrelated signals

between the potential and field measurements was observed for

the BEM head model. There are several possible reasons for this:

the BEM model fitted the brain more closely and, therefore, it had

smaller dipole – sensor distances compared to the spherical model.

The BEM head model produced less cortical current diffusion

because it did not include the large gradient of conductance at the

CSF – skull boundary. It also did not model the skull’s anisotropy,

which spreads currents still further within the skull [10]. In

addition, deviations of the head shape from spherical symmetry

make the simulated scalp currents more specific and, hence, more

characteristic of the underlying cortical sources.

The increased number of detectable signals agrees with higher

spatial resolution of bipolar EEG electrodes compared to

conventional EEG electrodes [14,15]. Provided that electrodes in

a bipolar pair are sufficiently close-by, their measurement

approximates an electric field’s tangential component. A similar

advantage exists for MEG sensors, where planar gradiometers

analogous to bipolar EEG electrodes show superior spatial

resolution compared to axial gradiometers [4]. Importantly, the

signal-to-noise ratio is a critical issue for such bipolar sensors. In

our analysis we assumed the same signal-to-noise ratio for EFEG

and EEG. However, the potential difference across a closely

spaced electrode pair is smaller than for the conventional EEG,

and the resulting decrease in bipolar signal strength has to be

matched by a proportional decrease in bipolar noise to obtain the

same signal-to-noise ratio as for EEG.

The increased number of uncorrelated signals in the electric

field measurements makes the EFEG approach potentially

attractive whenever changes in brain state need to be interpreted

based on real-time changes to its electric activity. Possible

applications include noninvasive brain-computer interfaces, brain

performance monitors, and neurofeedback. The increased number

of uncorrelated signals should also improve source localization

accuracy. Indeed, reconstructions of the simulated cortical sources

were significantly improved when electric field measurements were

used instead of electric potential measurements (Figures 3, 4).

Localization errors for the Harmony algorithm dropped approx-

imately two-fold between potential and field measurements for

sources localized with better than 3 cm precision, which included

about 2/3 of all sources. For the remaining sources, the

improvement was less dramatic but still quite significant. The

MNE algorithm showed qualitatively similar results, but its

performance was poorer than Harmony’s and its localization

was improved less between potential and field measurements.

In principle, EFEG makes it possible to measure brain activity

without making a physical contact with the scalp, once such

electric field sensors become available. The contactless measure-

ment has several advantages. It eliminates variability in electrode

impedance (and consequently the amount of external noise), which

is typical for EEG measurements, where electrodes have to be

applied to the scalp and therefore such factors as hair, sweat, and

skin state play a decisive role especially when electrodes cannot be

readjusted during the measurement. Generally, EEG is very noisy

for bald subjects due to cornification of the scalp, and also is very

Figure 4. Source localization results for Harmony and MNE algorithms. The spherical model results are shown in the left panel, the BEM
model results – in the right panel. The localization error, LE, is plotted along the x-axis. The percentage of sources reconstructed with localization
error smaller than a given x-value is plotted along the y-axis. Results for potential-based reconstructions are shown with squares, results for field-
based reconstructions are shown with circles. Results for various electric field sensor distances from the scalp are plotted in the left panel using
different curve styles. The inset shows the electric field fall-off with distance from the scalp. In the right panel BEM head model results for Harmony
(solid curves) and MNE (dashed curves) algorithms are presented. The inset shows Harmony localization error comparison between electric field and
potential localizations. Each dot represents one of the 5124 simulated source patches.
doi:10.1371/journal.pone.0067692.g004
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difficult to measure for subjects with thick curly hair. Electrode

movement is another major factor impacting the quality of the

signals measured with contact electrodes. This makes it very

difficult to obtain high-quality EEG data for subjects performing

tasks involving head movement.

We have identified several techniques that could be adapted for

the measurement of the electric field vector required for EFEG,

and anticipate that our study will stimulate new experimental

approaches to utilize this novel mode of functional brain imaging.

Several approaches to fiber optic sensors for electric fields have

been demonstrated which could be used for EFEG [16–18]. These

sensors appear to have sensitivity ,1 mV per meter sufficient to

measure the brain’s electric fields, but a 10| to 100|
improvement in sensitivity would lead to more reliable observa-

tions of brain signals.

Materials and Methods
Modeling of electric fields of the brain in this study was based on

the electric field produced by a dipole current source positioned

inside either a set of concentric spherical shells with homogenous

anisotropic conductivity inside each shell (spherical head model),

or inside a set of non-spherical shells with homogeneous isotropic

conductivity (boundary-element head model, BEM). The electric

fields for the spherical head model were calculated in [10].

Parameters of the spherical head model, BEM head model, and

the simulation parameters used to estimate the number of

uncorrelated brain signals and source localization errors are

explained below.

Spherical Head Model Parameters
A 4-shell spherical model was used for simulations. The shells

were (from innermost to outermost): brain (white and gray matter),

cerebro-spinal fluid (CSF), skull (tables and diploë layers), and

scalp (muscle, fat, and skin). We used spherical model parameters

typical for human head tissue simulation. The outer radii of the

brain, CSF, skull, and scalp shells were 9.1, 9.2, 9.7, and 10.2 cm

respectively (Figure 5). The brain shell’s radius (9 cm) was chosen

to fit the averaged pial surface; this was used in simulations to

determine current dipoles placement (FreeSurfer averaged brain,

see the Sources section). The shells’ radial conductivities were set

to 0.3, 1.5, 0.006, and 0.3 S/m for the brain, CSF, skull, and scalp

respectively. Tangential conductivities were equal to radial

conductivities (isotropic conductivity) except for the skull shell,

where the tangential conductivity was set to 0.06, i.e., a 10-fold

anisotropy was assumed due to the higher conductivity of the

diploë layer compared to the table layers of the skull. The values

were based on the available anatomical data discussed in [19] and

also in [2,5,20,21]. As discussed in [10,22] lower anisotropy ratios

and higher skull conductivities might better describe a living

human skull. For this reason, other skull conductivity parameters

were tried as well (isotropic skull, 5| more conductive skull), but

these manipulations did not change the results in any important

ways.

BEM Head Model
The boundary element method (BEM) head model was

constructed based on high-resolution MRI data averaged over

40 subjects, the data were distributed as a part of the FreeSurfer

toolbox [23]. The BEM head-model comprised the three volumes

shown in Figure 5: scalp, skull, and CSF/brain; the volumes were

reconstructed from the group-averaged MRI data with the help of

the FSL toolbox [24]. The BEM solution to the Poisson’s equation

was calculated numerically using MNE Suite toolbox [25]. The

tangential components of the electric field Eh and Ew were

obtained from the potential by numeric differentiation: the

potential was calculated at triplets of points on the scalp, the first

point in each triplet was at the location of one given sensor, while

the other two were displaced from the electrode location by 1 mm

in the azimuthal and inclinational directions respectively (Figure 1,

left panel). The radial component of the electric field was not

calculated. In order to improve the BEM’s precision the inner skull

was meshed as the 5-th subdivision of an icosahedron (20,480

triangles), the outer skull and scalp surfaces were meshed as the 4-

th subdivision of an icosahedron (5,120 triangles). Conductivities

of the three volumes were set to 0.3, 0.006, and 0.3 S/m for the

scalp, skull and CSF/brain respectively. Because the BEM method

can only be applied to isotropic volumes, skull anisotropy was not

modeled.

Cortical Sources
The cortical surface of the group-averaged data (provided with

the FreeSurfer toolbox) was used to place current dipoles in

simulations. 10,242 current dipoles were positioned at the nodes of

a triangular mesh (5-th subdivision of an icosahedron, mid-gray

FreeSurfer mesh) for left and right cortices. The neurologist’s ’’rule

of thumb’’ is that at least 6 cm2 of cortex have to be active in order

to record scalp potentials without averaging [19]. Corresponding-

ly, a simulated source patch included a single dipole and all its

nearest neighbors up to the third-degree coordination number,

which gave 37 dipoles altogether: 1+6+12+18 = 37. The patches

were roughly hexagonal in shape, approximately 2.5 cm in

diameter, when measured along the cortical surface. This

corresponded to 5 cm2 of cortical area, close to the ‘‘rule of

thumb’’ size. The source patch was positioned at the nodes of a

uniform grid (4-th subdivision of an icosahedron, 2,562 nodes)

covering each hemisphere to simulate a total of 5,124 cortical

activation sites.

The dipole orientations were fixed to be orthogonal to the

cortical surface, reflective of the common assumption that EEG

and MEG are due to synaptic currents produced by activity of

cortical pyramidal cells. These currents flow along the pyramidal

cells’ axons, which are primarily perpendicular to the cortex. The

magnitude of the source dipoles was equal among the 37 dipoles

constituting a source patch and was such as to produce the

maximum scalp potentials (for the most superficial sources) at

about 10 mV , typical of human evoked potentials.

Sensors
Realistic sensor locations were obtained by averaging a 128-

channel HydroCell GSN net’s (EGI Inc.) electrode locations, as

they were applied to 34 subjects used for another study. The

electrode locations were measured for each subject using a

Polhemus FASTRACK digitizer. The locations were projected

onto the spherical scalp for the spherical head model and slightly

stretched and shifted by an affine transformation to better fit the

scalp for the BEM head model. The resulting sensor locations are

shown in Figure 5. In the case of the off-scalp locations for the

spherical head model, sensors were shifted radially to the desired

distance from the spherical scalp surface.

Principal Component Analysis (PCA)
To determine the number of uncorrelated signals, the principal

component analysis (PCA) was performed. First, a covariance

matrix Cij for the sampled data mk
i was calculated, with subscripts

indexing sensors (128 for the potential, 384 for the field) and

superscript indexing observations:
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Cij~S(mk
i {Smk

i T)(mk
j {Smk

j T)T, ð1Þ

the angular brackets denote averaging over N~5124 observa-

tions, k, each observation corresponding to a given simulated

source patch. Then, the eigenvalues of the covariance matrix were

calculated.

Source Localization
Two source localization algorithms, MNE [11] and Harmony

[12], were compared in this study. In order to account for sensor

noise and correlations among sensors, the source localization

algorithms required an estimate of the noise-covariance matrix S.

While such a matrix can be estimated from experimental data for

potential (EEG) sensors no such data were available for electric

field sensors. Instead, the simulated signal covariance matrix C,

given by (1), regularized by a small amount of uncorrelated

internal sensor noise, was used:

S~l(CzEI), ð2Þ

where I is the identity matrix, is the regularization constant

defining the amount of internal sensor noise, and l is the overall

noise scaling parameter defining the solution’s regularization. This

choice of S emulates noise from some (irrelevant) cortical activity

as well as the internal sensor noise. The value used corresponded

to 3% signal-to-noise ratio for the internal sensor noise, the

particular choice was not very important. The value of l was more

critical since it determines how well the solution fits the data versus

how well the solution fits the constraints of the localization

algorithm. l was chosen so as to minimize the mean localization

error, separately for potential and field localizations, and for each

of the two algorithms used.

The localization error was calculated as follows: first, the

location of the true source was calculated by averaging the

locations of its n~37 constituent dipoles; then, n highest-

amplitude dipoles were found in the solution for the same cortical

hemisphere where the source was located. For each of the dipoles

the distance di between the dipole i and the source location was

calculated along the (pial) cortical surface. The raw localization

error was then taken as the weighted average of di:

e~

Pn
i~1 Dxi D:diPn

i~1 Dxi D
, ð3Þ

where xi stands for the solution magnitude of the i-th dipole.

Finally, the raw localization error was corrected for the extent of

the true source e0, given by the above formula applied to the

source patch itself:

LE~e{e0: ð4Þ
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