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Asthma is a chronic airway inflammatory disease that is influenced by the interplay 
between genetic factors and exposure to environmental allergens, microbes, or micro-
bial products where toll-like receptors (TLRs) play a pivotal role. TLRs recognize a wide 
range of microbial or endogenous molecules as well as airborne environmental allergens 
and act as adjuvants that influence positively or negatively allergic sensitization. TLRs 
are qualitatively and differentially expressed on hematopoietic and non-hematopoietic  
stromal or structural airway cells that when activated by TLRs agonists exert an 
immune-modulatory role in asthma development. Therefore, understanding mechanisms 
and pathways by which TLRs orchestrate asthma outcomes may offer new strategies 
to control the disease. Here, we aim to review and critically discuss the role of TLRs 
in human asthma and murine models of allergic airway inflammation, highlighting the 
complexity of TLRs function in development, exacerbation, or control of airway allergic 
inflammation.
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TOLL-LiKe ReCePTORS (TLRs) AT A GLANCe

Pattern-recognition receptors (PRRs) are a group of innate conserved sensors, which actively 
contribute to detection of exogenous or endogenous molecules derived from microbes or from 
host cells. Among PRRs, TLRs play a role in allergic diseases since their relevance in asthma is 
well documented (1). TLRs ligands derived from pathogens or from host are known as pathogen-
associated molecular patterns or damage associated molecular patterns, respectively (1). TLRs 
are type I transmembrane receptors distinguished by their ligand specificity found on the plasma 
membrane [TLR1, TLR2, toll-like receptor-4 (TLR4), TLR5, and TLR6] or endosomal compart-
ments of cells (TLR3, TLR7, TLR8, and TLR9) (2). They are expressed by a wide range of cells of 
the immune system and non-immune cells, such as epithelial cells (ECs) (2). So far, 12 to 10 mouse 
or human functional TLRs have been identified and each of them is responsible for recognizing a 
distinct set of molecular patterns.

As shown in Figure  1, stimulation of TLR complex via Toll/interleukin-1 receptor (TIR) 
domains activates two major signaling pathways, the myeloid differentiation (MyD) 88 and TIR-
domain-containing adapter-inducing interferon-β (TRIF). The MyD88-dependent pathway via 
IRAK family kinases mediates induction of inflammatory cytokines via nuclear factor-kappa B  
(NF-κB), mitogen-activated protein kinases, and activator protein 1 while the TRIF-dependent path-
way mediates induction of type I interferons (IFNs) via interferon-regulatory factors (IRFs). All TLRs 
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FiGuRe 1 | Toll-like receptors (TLRs) signaling. Activation of TLRs can proceed through MyD88-dependent or TRIF-dependent pathways. Most of the TLRs form 
homodimers upon activation while TLR2 can also form heterodimers with either TLR6 or TLR1. These signals culminating in the activation of transcription factors 
such as nuclear factor-κB (NF-κB) and interferon-regulatory factors (IRFs), which induce, respectively, the production of inflammatory cytokines and type 1 interferon 
(IFNs). Activation of endosomal TLRs (TLR7 and TLR9) via MyD88 activates NF-κB and also IRF7 leading, respectively, to the production of inflammatory cytokines 
and type-1 IFNs, while the adaptor protein TRIF is recruited by the endosome-localized receptors TLR3 and toll-like receptor-4 (TLR4). TLR3 can interact directly 
with TRIF, while the TLR4–TRIF interaction requires the bridging to adaptor molecule TRAM and both activate IRF3 that induce the production of type I IFNs.
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except TLR3 that signals through TRIF, recruit MyD88 adaptor 
molecule while TLR4 activates both the MyD88-dependant and 
the endosomal TRIF-dependent pathways. Interestingly, stimula-
tion of MyD88 pathway by endosomal TLRs (TLR7, TLR8, and 
TLR9) results in the production of inflammatory cytokines via 
NF-κB and type I IFNs via IRFs.

HYGieNe HYPOTHeSiS AND ALLeRGiC 
DiSeASeS

The basis of the hygiene hypothesis relies on studies indicating 
that several microbial products masterfully activate TLRs that, in 
turn, might exert their suppressive effect against allergic diseases. 
The postulated inverse relationship between asthma and infec-
tions is the basis of the “hygiene hypothesis” (3). Originally, this 
hypothesis suggested that early-life infections are required for 
reduced predisposition to develop allergic diseases (4).

Nowadays, the manipulation of TLRs in order to override 
and control asthma has received considerable attention (5–8). 
Surprisingly, in contrast with the protective role of TLRs, various 
allergens have been classified as a third class of TLRs stimuli that 
participate actively in asthma development (1).

The scenario that emerges from the literature is that TLRs 
could promote, exacerbate, or ameliorate airway inflammatory 
response (9, 10).

It is known that Th2 responses are predominant in  utero 
and newborn infant that in turn, might predispose to asthma. 
According to the “hygiene hypothesis,” exposure to microbial 
agents that drive the immune system to a Th1/Th17 pattern 
might counterbalance Th2 responses and asthma development 
(11). In addition, it has been recognized that the diversity and 
composition of the microbiota of the intestine and lung affect 
asthma outcome since low diversity in intestinal microbiome has 
been found to increase asthma development (12, 13).

A growing body of evidence implies that bacteria and para-
sitic helminths in the digestive tract offer protection against 
asthma and allergies (14–16). Numerous reports have shown the 
inhibitory effects of bacterial components on allergic responses 
(17). Interestingly, the mattress concentration of muramic acid, 
a constituent of peptidoglycan (PGN) present in Gram-negative 
and Gram-positive bacteria, was significantly higher in dust from 
farm children, which showed lower prevalence of asthma and 
wheezing in comparison to nonfarm school children (16–18). 
In support of the hygiene hypothesis, it has been reported that 
the use of antibiotics, which affect commensal bacteria, might 
be a risk factor for allergic diseases (19). Accordingly, a cap-
sular polysaccharide derived from the commensal bacterium 
Bacteroides fragilis could inhibit murine experimental asthma 
(20). Bacterial products also exert immunoregulatory effects 
on asthma development, and it was postulated that the possible 
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mechanism underlying the immunoregulatory effects of bacte-
rial compounds is via recruitment of regulatory T (Treg) cells to 
the airways and the activation of mucosal dendritic cells (DCs) 
by TLRs-dependent signaling, especially through TLR2/6 and 
TLR9 (17, 21).

Toll-like receptors agonists are known to act as adjuvant and 
favor Th1/Th17 responses and they are being used for vaccine 
development especially against infectious diseases (22).

Interestingly, TLRs agonists have been incorporated in 
alum-based vaccines to counterbalance the alum Th2 adjuvant 
activity. For instance, incorporation of monophosphoryl lipid-
A, a TRIF-biased TLR4 agonist, to alum has been proposed 
in alum-based vaccine formulations, such as papillomavirus, 
genital herpes, and hepatitis B virus (22). Apart from that, the 
anti-Th2 activity of TLR2 and 4 have received great of inter-
est in the field of experimental asthma (23). In this regard, 
Bortolatto et al. have shown that incorporation of TLR4 agonists 
[bacterial lipopolysaccharide (LPS) or synthetic TLR4 agonist 
(ER-803022)] into alum could suppress the development of 
allergic Th2 responses without eliciting lung Th1 response (7). 
In another study Bortolatto et al. showed that addition of LPS 
to alum-based tetanus toxoid vaccine forestalls toxoid-mediated 
Th2 responses and IgE production and increases IgG antibody 
(24). More recently, Mirotti et  al. (8) have shown that among 
different TLR agonists, oligonucleotides (ODN) containing 
CpG-motifs (CpG-ODN), a TLR9 agonist, was the most effec-
tive in dampening all Th2-promoting activities of Alum.

Based on these findings we shall discuss more specifically  
the involvement of different TLRs in asthma with a special focus 
on TLR4.

PLASMA MeMBRANe TLR4 AND ASTHMA

Among environmental factors that might positively or nega-
tively influence the development of allergic diseases, endotoxin 
LPS has gained a particular interest (25). The receptor complex 
that recognizes LPS includes the LPS-binding protein, CD14, 
MD2, and TLR4 molecules that are expressed on immune and 
non-immune cells (26, 27). Typically, signaling via TLR4 in 
innate immune cells results in type 1 cytokine production and 
consequent development of Th1/Th17 cell immunity (2, 22, 26). 
In line with this, it is postulated that during early life, TLR4 
activation is reduced and the development of Th1 immunity 
is also reduced favoring the balance toward Th2 responses and 
susceptibility to develop allergic diseases (28). Therefore, it 
is surprising that most of the natural allergens such as HDM 
(house dust mite) not only are contaminated with LPS or PGNs 
but also have structural homology with TLR4 co-receptors  
(29, 30). Der p2 as the main component of HDM and responsible 
for eliciting allergic responses is a lipid binding protein, which 
structurally has significant similarity with MD2. In fact, both 
Der p2 and MD2 belong to the similar family of lipid binding 
proteins. In fact, this structural similarity explains the molecu-
lar mechanism of HDM-induced airway allergy. Up to now,  
this type of structural homology has only been confirmed for 
Der p2, whereas there are no data concerning the structural 
relationship between MD2 and other allergens.

TLR4 POLYMORPHiSM AND ASTHMA

To investigate the role of TLR4 in asthma, clinical studies were 
directed to ascertain whether polymorphism in components 
involved in TLR4 signaling could be correlated with asthma, 
atopy, and airway hyperresponsiveness (27). Keeping with this 
view, some studies supported the notion that allergic inflam-
mation and the regulation of IgE synthesis could be influenced 
by polymorphism in genes that receptors such CD14, TLR 2, 
TLR4 among others (27). Also, a link between polymorphism 
in CD14 gene has been associated with atopy, asthma, and IgE 
levels (31–33). In contrast, other clinical studies did not support 
a relationship between polymorphism and the development 
of asthma (31, 34). Accordingly, it was found that Asp299Gly 
polymorphism in the extracellular domain of the TLR4 recep-
tor that causes an important reduction of TLR4 function (35) 
resulted in increased risk to infections (36) or to develop shock 
(37) but not asthma (38, 39). Similarly, studies considering solely 
the role of LPS exposure per se also reached conflicting results, 
since some clinical studies demonstrated that exposure to LPS 
during the childhood could diminish allergic asthma (19, 40) 
while other studies indicated that LPS could exacerbate allergic 
asthma (41, 42). For instance in guinea pig asthma model, it has 
been shown that combination of ovalbumin (OVA) with LPS 
exacerbates allergic asthma (43).

KeY FACTORS iNvOLveD iN TLR4-
MeDiATeD ALLeRGiC ReSPONSeS

Although the role of TLR4 in asthma is still controversial, it is 
becoming clear that several factors should be considered in the 
TLR4-mediated development of allergen-induced Th2 responses, 
including polymorphism of CD14, the cell type in which TLR4 
is engaged, the dose of stimuli, and the timing of exposure (5). 
The pioneering work of Eisenbarth et al. (44) using a protocol 
of intranasal administrations of OVA containing low doses 
of LPS, demonstrated that the presence of TLR4 and MyD88 
molecules are necessary for development of allergic response. 
Histological findings demonstrated that the administration of 
OVA with low dose LPS increases infiltration of eosinophils 
and neutrophils, airway mucus secretion, and Th2 cytokines 
production (44). By contrast, mice exposed to OVA with high 
dose of LPS showed Th1-associated response, such as airway 
neutrophilia without mucus secretion and high level of IFN-γ 
production (43–45). Another study extended these findings and 
showed that allergic sensitization with low dose of LPS through 
the airway indeed primes for Th2 responses, but in addition, it 
also primes for Th17 responses that are essential for promotion 
of airway neutrophilia and AHR, highlighting the importance 
of concomitant Th2/Th17 cells in the development of AHR (46).  
A different scenario was obtained when allergic sensitization 
was performed with OVA plus LPS administered by intra-
peritoneal route since it did not result in airway inflammation 
(46). Similar results were obtained with cutaneous sensitization 
with OVA plus TLR4 ligand (LPS) or TLR2 ligand (Pam3Cys).  
In this situation, asthma development and Th2 responses in mice 
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FiGuRe 2 | Schematic representation of the factors affecting OVA-model of allergic lung disease. On the left side, it is shown, that when sensitization is performed 
by the subcutaneous route with OVA adsorbed to Alum and the animals are challenged with intranasal OVA, an eosinophilic airway inflammation mediated by Th2 
cells is developed. However, when the same sensitization is induced in the presence of low or high dose of lipopolysaccharide (LPS) and the animals are challenged 
with OVA, the airway inflammation is not developed. A different scenario is seen with intranasal sensitization to OVA. In this situation, OVA administration results in  
airway tolerance (no inflammation) while intranasal sensitization with OVA plus low or high dose of LPS results, respectively, in Th2-mediated airway eosinophilia  
or Th1/Th17-mediated airway neutrophilia. Therefore, part of the controversial reports can be ascribed to the route of sensitization and dose of LPS.
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were blocked in an IFN-γ-dependent manner (47). Interestingly, 
Garcia et al. showed that LPS inhalation before OVA sensitiza-
tion also blocked Th2 development (48). It was shown that LPS 
pre-exposition suppressed eosinophil influx and IL-4 production 
by shaping immune response toward Th1 immunity via IL-12 
production and classical activation of alveolar macrophages (48). 
The absorption of OVA to alum adjuvant results in more robust 
Th2 responses regarding airway eosinophilic inflammation and 
IgE production (7, 44). Using this OVA-model of allergic lung 
disease where sensitization to OVA is done by subcutaneous 
route, it was shown that LPS plus OVA adsorbed to alum sup-
pressed allergic sensitization in a dose-dependent manner, and 
this suppression was dependent on TLR4 and MyD88 but not 
TRIF signaling (6). Therefore, part of the controversial findings 
might be explained whether the route of sensitization is intranasal 
or subcutaneous/intraperitoneal. The summary of OVA-models 
discussed above is depicted in Figure 2.

Age is another important factor affecting TLR4-mediated Th2 
response by LPS exposure. For instance, LPS exposure of new-
born mice inhibits OVA-induced airway inflammation, hyper-
responsiveness, and Th2 cytokine expression (49). Also, early 
exposure to LPS results in development of CD25-positive T cells 
and IL-10 production in newborn mice, indicating mucosal 
antigen exposure in the neonatal period may provide tolerance 
and hyporesponsiveness to environmental allergens (49). In addi-
tion, prenatal LPS exposure prevented allergen sensitization in 
offspring (50). Exposure to bacterial components can modulate 
immune responses during gestation time and might be an effec-
tive way for prevention of allergic diseases. Thus, age and dose 
of LPS could be key factors in determining protection against 
asthma.

Mouse models of experimental asthma confirmed that expo-
sure to endotoxin could protect, induce, or exacerbate asthma 
depending on the experimental model used, route of sen sitization, 
concentration, and period of endotoxin exposure (6, 7, 51–54),.

Fungi-derived allergens especially those with proteolytic 
activity also have been investigated (55). It was shown that 
proteinases derived from Aspergillus spp., by cleaving airway 
fibrinogen, contribute to asthma development (55). This study 
showed that TLR4, but not other TLRs, is essential for induc-
tion of airway inflammation by fungal proteinases and that 
fibrinogen-derived proteins bind to TLR4 on epithelial airway 
cells and macrophages supporting inflammatory signals and Th2 
cell development (55). Therefore, it seems that TLR4 signaling 
could be pro-allergic when considering airway route.

Contact with small animals such as cats and dogs especially 
those that are held in house (indoor) can significantly exacerbate 
asthma through stimulation of TLR4 signaling. Interestingly, 
the critical function of TLR4 in sensitization with small animal-
derived allergens has been established (56). An in vitro study has 
shown that animal danders act in a similar way to lipid binding 
proteins in stimulation of TLR4 (56).

A key molecule in TLRs signaling is MyD88 and as such 
MyD88 has gained great of interest as an important adaptor 
molecule in development of asthma (7, 44). In addition, lack 
of this critical adaptor protein has been found to prevent the 
accumulation of inflammatory cells and airway inflammation 
upon inhalation of HDM (57). Interestingly, in some models, 
MyD88 molecule appears to be more relevant than TLR4 since 
MyD88 expression, but not TLR4, was critical for induction of 
experimental asthma induced by Alternaria extract (58). MyD88 
is shared by all TLRs except TLR3, as well as by IL-33 receptor, 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


5

Zakeri and Russo TLRs and Asthma

Frontiers in Immunology | www.frontiersin.org May 2018 | Volume 9 | Article 1027

which plays a role in inducing Th2 responses (59). The impor-
tance of MyD88 in induction of experimental asthma was further 
proved when Alternaria extract is co-administered with OVA. 
Lung eosinophilia and production of Th2-related cytokines in 
response to Alternaria/OVA administration was induced via 
IL-33 and MyD88-dependent manner, but independent of TLR4 
stimulation (59). Despite the results obtained in TLR4-deficient 
mice or deficient in downstream molecules indicating that 
TLR4 signaling is required to induce airway hypersensitivity 
(44, 57, 60–62), some studies showed that experimental asthma 
is easily induced in TLR4-deficient or MyD88-deficient mice 
(7, 8). However, it should be noted that different allergens were 
employed in these studies suggesting that the nature of the 
allergens might determine whether induction of allergy is TLR4/
MyD88-dependent or independent.

iNTeRACTiON BeTweeN LPS AND TLR4 
eXPReSSeD BY AiRwAY STRuCTuRAL 
CeLLS (ASCs)

With the advent of conditional deletion of specific components 
of TLRs signaling or chimeric mice, the critical role of ASCs 
in asthma development became clearer. ASCs comprise vari-
ous cell types including ECs, endothelial cells, and fibroblasts, 
which play a key role in lung immune responses and airway 
inflammation (60, 63, 64). Accordingly, stimulation of TLRs 
in ASCs has been found to drastically affect the sensitization 
phase. For example, using chimeric mice it has been shown 
that the stimulation of TLR4 on ASCs by LPS results in airway 
neutrophilia (60). Also, stimulation of ASCs through a TLR4-
dependent manner produces chemokines and G-CSF leading 
to inflammatory cell recruitment upon exposure to LPS or 
HDM (63). Another mechanism that enables ASCs-associated 
TLR4 to support airway neutrophilia is vascular endothelial 
growth factor (VEGF) which is released upon inhalation of 
LPS-contaminated allergens (64). Kim et  al. demonstrated 
that intranasal administration of OVA plus LPS induces the 
release of VEGF, stimulating DCs maturation, upregulation of 
co-stimulatory markers, and production of IL-12 and IL-6 in 
regional lymph nodes leading to development of OVA-induced 
Th1/Th17 lung immunity (64). Interestingly, inhibition of VEGF 
receptor by pan-VEGF receptor blocker resulted in suppression 
of Th1/Th17 polarization. This study indicates that intranasal 
exposure to LPS followed by allergen could forestall the initia-
tion of Th2 response via activation of TLR4 on ASCs (63, 64). 
Furthermore, manipulation of downstream molecules mediat-
ing TLR signaling in ASCs corroborates the important role of 
these cells in airway inflammation. In this regard, Skerrett et al. 
(65) using transgenic mice with defect in NF-κB activation in 
airway endothelial cells showed that, upon LPS administration, 
the airway neutrophilia and production of cytokines, such as 
TNFα and IL-1β, were impaired when compared to wild-type 
mice. These data imply that ASCs respond to LPS through acti-
vating downstream signaling involving NF-κB, which ultimately 
leads to release of pro-inflammatory mediators and recruiting 
neutrophils to the airways (65, 66).

eFFeCTS OF TLR4 SiGNALiNG ON ASCs 
veRSuS HeMATOPOieTiC CeLLS (HPCs)

Although epidemiological studies demonstrate that high levels 
of endotoxin exposure may protect against allergen sensitization 
and inversely correlate with atopic rates (67), it has not been 
yet formally determined whether TLR4 stimulation in humans 
promotes or suppresses asthma. Nevertheless, it is known that 
asthmatic patients express low level of TLR4 in their periph-
eral blood mononuclear cells PBMCs as compared to healthy 
individuals. In comparison with healthy subjects, the TLR4 of 
asthmatic patients produces low level of type 1 cytokines, such 
as TNF-α and IL-1β, in response to LPS (68). It is likely that 
factors affecting TLR4–ligand interactions such as agonist con-
centration and timing of exposure could determine the outcome 
of pro- or anti-asthmatic effects of TLR4 (69).

As shown in Figure 2, in mouse models where sensitization 
is performed with alum adjuvant adsorption of TLR4 agonists 
to alum prevent type-2 sensitization (54) through TLR4- and/or  
MyD88-dependent but TRIF-independent mechanism (7, 8),  
indicating that TLR4 signaling during allergic sensitization 
dampens development of asthma-like responses. In contrast, in 
OVA-models where allergic sensitization is done by airway route, 
low dose of LPS promotes Th2 immunity (44).

Now, it is clear that some allergens are able to stimulate TLR4 
on ECs causing DC recruitment and maturation (70). Thus, 
it appears that depending on the dose of LPS, TLR4 signaling 
on structural lung cells plays a pivotal role in the induction of 
Th2-associated responses (60). Engagement of TLRs expressed 
on ASCs by environmental allergens leads to release of mediators 
that support the development of Th2 responses via production 
of various Th2-associated cytokines, including IL-4, IL-13, and 
other cytokines, known as alarmins (IL-33, TSLP, and IL-25) 
(29). Undoubtedly, lung DCs, which have a close interaction 
with airway ECs are affected by these alarmins and undergo an 
essential modification required for presentation of allergens to 
naïve CD4+ T  cells (71). Airway exposure to LPS or to HDM 
accelerates the migration of DCs through stimulation of TLR4 
on ASCs (60). Also, the release of GM-CSF in response to LPS 
or HDM by ASCs expressing TLR4 results in DCs activation 
and priming naïve CD4+ T cells (60). It was found that airway 
inflammation was decreased in mice simultaneously exposed to 
HDM allergens and TLR4 antagonist when compared to mice 
exposed to HDM alone (60). Conversely, direct TLR4 signaling 
on DCs appears to suppress Th2 immunity. Indeed, new insights 
were gathered recently concerning the distinct role of TLR4 on 
AECs and HPCs in deviation of immune response toward Th2 
or Th1/Th17. Now, it is becoming clear that stimulation of TLR4 
on AECs supports Th2 immune responses while stimulation 
of TLR4 on HPCs suppresses Th2 immunity. In this regard, 
Hammad et al. (60) by exploiting chimeric mice in which TLR4 
expression on ASCs (ASC− HPC+) or on HPC (ASC+ HPC−) 
was deleted provided solid evidence indicating that the presence 
of TLR4 on ASCs is essential for activation of pulmonary DCs 
and initiation of Th2 responses after exposure to HDM. They 
showed that lack of TLR4 expression on ASCs but with normal 
expression of TLR4 on HPCs impaired the development of Th2 
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response (60). Keeping with this view, a similar study indicated 
that the deviation of immune response toward Th1 or Th2 is 
dependent on the cell types on which TLR4 is stimulated (61). 
For example, simultaneous exposure to OVA and high dose of 
LPS in mice with TLR4 restricted to stromal but not HPCs (ASC+ 
HPC−) resulted in strong Th2 response and airway eosinophilia, 
suggesting stimulation of TLR4 on ASCs is sufficient for priming 
Th2 response (61). Interestingly, when mice with TLR4 restricted 
on HPCs (ASC− HPC+) were exposed to OVA and high dose of 
LPS, the resulting immune response was deviated toward Th1 
pattern, implying TLR4-mediated signaling on HPCs (immune 
cells) restrain Th2 response (61). In support of this, McAlees 
et al. using conditionally mutant TLR4 mice either in airway ECs 
or HPC showed that exposure of (ASC+ HPC−) mice to HDM 
or OVA along with LPS augments eosinophilic airway inflam-
mation (72). The authors confirmed that absence of TLR4 on 
HPCs (ASC+ HPC−) results in development of Th2 response and 
eosinophilic asthma in mice, whereas presence of TLR4 on HPCs 
but not on ASC (ASC− HPC+) supports Th1/Th17 response and 
neutrophilic asthma (72).

These data reemphasize that TLR4 in the lung is able to 
mediate distinct arms of immune response upon stimulation by 
environmental allergens. As discussed above, TLR4 signaling 
in ASCs instructs DCs in the line of inducing Th2 responses, 
while this receptor on HPCs is able to trigger signaling pathway 
that programs DCs to polarize immune response toward Th1/
Th17 patterns (25). Keeping with this view, Whitehead et  al. 
investigating the effect of different adjuvants during airway 
sensitization to OVA found that mice sensitized using TLR 
ligands or house dust extracts as adjuvants developed mixed 
eosinophilic and neutrophilic airway inflammation following 
OVA challenge, whereas mice sensitized using proteases as 
adjuvants developed predominantly eosinophilic inflammation. 
The TNF signaling in airway ECs promoted Th2; however, 
TNF was dispensable for allergic airway disease in a protease-
mediated model of asthma (73). Conversely, Schuijs et al. added 
new information regarding the protective effects of endotoxin 
in farming environment on the allergic responses. The authors 
showed that chronic inhalation of endotoxin prior to allergen 
exposure suppresses EC-derived Th2-promoting mediators 
(28). Importantly, the Th2-inhibitory effect of endotoxin LPS 
was not related to the redirection of immune response toward 
Th1 or Th17 (28). Molecular analysis revealed that A20, which 
is a ubiquitin-modifying enzyme, plays a pivotal role in the 
LPS-mediated protective effects against asthma development 
since mice deficient in A20 in lung ECs exposed to chronic LPS 
developed HDM-induced Th2-mediated lung inflammation 
(28). In fact, A20 is able to lower TLRs signaling through deu-
biquitinating downstream molecules, which eventually blunts 
the NF-ĸB activation (74). In support to this view comparing 
healthy patients with asthmatic, it was found that bronchial ECs 
pretreated with LPS released low level of GM-CSF and IL-1α in 
response to HDM while in asthmatic patients A20 expression 
and protein levels were lower than in healthy controls (28). The 
authors concluded that the main mechanism by which farm dust 
exerts their protective effects against asthma development is 
activation of A20 in airway ECs. More recently, the same group 

using mice with conditional deletion of Tnfaip3 (A20) gene in 
dendritic cells (DCs) and exposed to HDM developed HDM 
specific Th17 cell differentiation, through increased expression 
of Th17-instructing cytokines, IL-1β, IL-6, and IL-23 (75). The 
authors conclude that A20 levels in DCs critically regulate 
development of either Th2-mediated eosinophil asthma or 
Th17-mediated neutrophilic asthma (75).

Altogether, it is clear that various airway cell types are critically 
involved in the induction or protection against allergic sensitiza-
tion as well as in immune-deviation toward Th1/Th17 patterns as 
depicted in Figure 3.

OTHeR PLASMA MeMBRANe TLRs  
(TLR1, 2, 5, AND 6) AND ASTHMA

The role of TLR4 in asthma has been extensively studied while 
the involvement of other TLRs in asthma has gained less atten-
tion. Nevertheless, the studies focusing on the role of other 
TLRs in asthma also reached divergent results (Table  1). For 
instance, some studies with TLR1 or TLR2 agonists suggested 
that their activation results in asthma inhibition (76–78), while 
other studies indicated that activation of these receptors could 
promote allergic asthma (79, 80). The pro-allergic effect of TLR2 
was emphasized in chronic fungal asthma model induced by 
i.p. and s.c. injection of soluble A. fumigatus antigens dissolved 
in incomplete Freund’s adjuvant where Tlr2−/− C57BL/6 mice 
showed attenuation of airway hyperresponsiveness, decreased 
Th2-type cytokines, and suppression of chemokine production 
when compared to WT mice (81). Likewise, in the OVA-asthma 
model with s.c. OVA sensitization, addition of TLR2 ligand 
(Pam3Cys) potentiated allergic sensitization (80, 82) while TLR9 
agonist suppressed it (75). The exact mechanism by which TLR2 
signaling promotes Th2-associated responses has not yet been 
fully elucidated. It appears that stimulation of TLR2 expressed on 
DCs leads to the activation Th2-promoting molecular pathways 
including the secretion of pro-Th2 cytokines, such as IL-13, IL-1, 
and GM-CSF (80, 82). In sharp contrast to these findings, TLR2 
activation was shown to attenuate allergic airway inflammation in 
mice exposed to OVA or HDM allergen (8, 23). Keeping with this 
view, it is believed that augmented TLR2 expression in PBMCs 
found in children living in farms is the consequence of constant 
exposure to microbial components that, in turn, protect against 
allergic responses (83).

To investigate the relationship between TLRs and asthma, 
studies were undertaken to compare the expression of TLRs in 
PBMCs of asthmatic patients versus healthy subjects. It was found 
that the TLR1 and TLR2 expression in asthmatic patients is sig-
nificantly higher while TLR6 expression is lower when compared 
to healthy subjects (84). Interestingly, TLR6 polymorphism has 
been associated with protection against clinical asthma (85). 
Studies in mice indicated that TLR2/6 agonists attenuate chronic 
allergic airway inflammation (86, 87). Another study assessed the 
effect of a synthetic TLR2/6 agonist, bisacyloxypropylcysteine 
polyethylene glycol conjugate on chronic allergic airway inflam-
mation induced by allergen extract from Timothy grass pollen. 
The level of eosinophils, IL-5, IL-4, eotaxin-2, and RANTES 
in BALF was decreased after administration of the synthetic 
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FiGuRe 3 | Toll-like receptor-4 (TLR4) signaling on airway structural cells (ASC) versus hematopoietic cells (HPCs). The figure illustrates lipopolysaccharide 
(LPS)-mediated TLR4 signaling exclusively on ASCs or HPC during allergen exposure that results, respectively, in orientation of immune response toward Th2  
or Th1/Th17. The figure is based on studies obtained in chimeric mice showing that stimulation of TLR4 on ASCs supports Th2 immune responses while stimulation 
of this receptor on HPCs induces Th1/Th17 immunity. On the left side of the figure, it is shown that the lack of expression of TLR4 on HPC but not on airway 
structural epithelial cell (ECs) (ASC+HPC−) results in strong Th2 response along with airway eosinophilia. In fact, TLR4 stimulation of ECs (ASC) by LPS or 
environmental allergens triggers the production of cytokines including alarmins (IL-33, TSLP, and IL-25) that support the development of Th2 responses via lung 
dendritic cells (DCs) or via other local lymphoid cells (LLCs). The production of type 2 cytokines orchestrates the activation and recruitment of eosinophils, basophils, 
and mast cells. In contrast, on the right side of the figure, it is shown that the lack of TLR4 expression on ASCs but not on HPCs (ASC−HPC+) trigger the production 
of cytokines that support the development of Th1/Th17 immunity and airway neutrophilia via lung DCs or via other LLCs.
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TLR2/6 agonist while the level of CD4+ Foxp3+ Treg cells  
and Th1  cells were unaffected suggesting that TLR2/6 agonist 
inhibits Th2-dominated immune response by another mecha-
nism (86). Interestingly, Moreira et al. showed that stimulation of 
TLR6 on macrophages and DCs induced IL-23 production and 
directed naive CD4+ T cells toward Th17 population. Indeed, lung 
levels of IL-23 and IL-17 in Tlr6–/– C57BL/6 mice were markedly 
lower than wild-type allergic mice. Accordingly, administration 
of exogenous IL-23 restored the production of IL-17 and attenu-
ated allergic responses as compared to the untreated allergic 
TLR6–/– mice (88).

The pro- or anti-allergic effects of TLRs agonists might also 
rely on the type of allergen, dose, adjuvant used for sensitization 
and concomitant activation of TLRs by different agonists. For 
instance, divergent results were obtained with commercial LPS 
when OVA or Blomia tropicalis mite extract were used as allergens 
(89). It was found that commercial LPS, dampened allergic sen-
sitization in the OVA-model while it induced Th17-type airway 
neutrophilic inflammation in Blomia tropicalis model (89). The 
reason for this became apparent when it was found that commer-
cial LPS endotoxin is contaminated with lipid-associated proteins 
that activate TLR2. Thus, in Blomia tropicalis model concomitant 

activation of TLR2 and TLR4 dampen Th2 sensitization and 
boost Th17 sensitization while in the OVA model concomitant 
activation of TLR4 and TLR2 only hampers Th2 sensitization 
without shifting toward Th17 sensitization (89). Regarding 
the effects of different TLR2 agonists, it has been shown that 
tripalmitoyl-S-glycero-Cys-(Lys)4 (Pam3CSK4) which activates 
TLR2/1 potentiates FcεRI induced release of cytokines such as 
IL-8 from human mast cells (MCs), whereas PGN a TLR2/6 
agonist is unable to stimulate this pathway (77) suggesting that 
differential dimerization of TLR2 with TLR1 or TLR6 can also 
play an important role.

TLR5 AND ASTHMA

A common microbial product found in house dust that could 
play a role in asthma is the bacterial protein flagellin, which 
activates TLR5 (90). It has been reported that asthmatic patients 
have higher serum levels of flagellin-specific antibodies when 
compared to non-asthmatic individuals (68, 90). Wilson et al. 
showed that TLR5 is required for strong priming of allergic 
responses induced by house dust extracts. Importantly, nasal 
administration of OVA accompanied by flagellin, contrary to 
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TABLe 1 | Involvement of TLRs in mouse experimental models of asthma.

TLRs Allergen effect on mouse models of asthma Main finding

TLR1/2/6 A. fumigatus in incomplete  
Freund’s adjuvant

Pro-allergic (81) Tlr2−/− C57BL/6 mice showed attenuation of airway 
hyperresponsiveness, decreased Th2-type cytokines

OVA Pro-allergic (80, 82) Addition of TLR2 ligand (Pam3Cys) potentiated allergic 
sensitization

OVA or Timothy grass pollen Anti-allergic (86, 87) TLR2/6 agonist reduced the level of eosinophils,  
IL-5, IL-4, eotaxin-2 in BALF

Fungal- or HDM antigen Anti-allergic (88) TLR6 induced IL-23 production and Th17 deviation, 
decreasing allergic response in C57BL/6 mice

OVA Anti-allergic (78) Pam3CSK4 (TLR2 agonist) reduced IL-4 and IL-5  
secretion, whereas promoted Th1-associated cytokines

TLR3 OVA Pro-allergic (97) TLR3 agonist poly(I:C) with inhaled allergen leads  
to the development of allergic airway

OVA Anti-allergic (100) Simultaneous engagement of TLR3 and TLR7 by viral 
components prevented airway hyperresponsiveness  
and suppressed established asthma

TLR5 OVA Pro-allergic (90) Nasal administration of OVA along with flagellin  
induced strong airway allergic responses

OVA or HDM Anti-allergic (93) Vibrio vulnificus-derived flagellin B (FlaB) increases  
regulatory DCs Tregs, suppressing Th2 response

TLR7/8 HDM antigen followed  
by rhinovirus

Anti-allergic (106) Increased levels of the Th2-priming cytokines IL-25 and  
TSLP in allergic TLR7−/− BALB/c mice infected with RV

OVA Anti-allergic (107) Resiquimod strongly suppressed Th2 cytokines

Birch pollen extract Anti-allergic (108) Both prophylactic and therapeutic effects on allergic asthma

Der p 2 or OVA Anti-allergic (110) A novel TLR7 ligand, arrested Th2-mediated airway 
inflammation via IL-10 and IFNγ

OVA Anti-allergic (109) A novel TLR7 downregulated Th17 and Th2 responses

OVA Anti-allergic (111) R848 induced Treg-mediated suppression of established 
asthma via TGF-β

OVA Anti-allergic (112) TLR7 agonist (AZ12441970) via stimulation of type I  
interferon (IFN) inhibits Th2 immune responses

TLR9 Triple allergens (OVA,  
cockroach, HDM)

Anti-allergic (113) CpG-ODN, TLR9 agonists, decreased allergen-specific  
IgE, eosinophils, and Th2-associated cytokines

OVA Anti-allergic (91) CpG induced a low number of eosinophils in the BAL, 
predominance of CD8 T cells

OVA Anti-allergic (8, 119) CpG ODNs may inhibit established Th2 immune  
responses through IFN-γ and IL-10 production
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OVA alone that induces tolerance, resulted in strong airway 
allergic responses (90). Also, experimental asthma could be 
established when OVA allergen is administrated together with 
flagellin as an adjuvant even in Tlr4−/− C57BL/6 and BALB/c 
mice (90). These results indicate that flagellin signaling via 
TLR5 in airway cells acts as a Th2 adjuvant. As discussed for 
TLR4, it was found that the pro-Th2 activity of flagellin involves 
the contribution of hematopoietic and non-HPCs, including 
lung ECs that produce cytokines, such as IL-1α, IL-1β, IL-6, 
TSLP, TNFα, and release of IL-33 (90, 91). Besides that, MyD88-
dependent and independent signals, likely from IL-1R, IL-33R, 
and TSLP, respectively, were found to be required in cDCs for 
promotion of the early IL-4 response by CD4 T cells in response 
to flagellin (91). Strikingly, patients with severe asthma (Th17-
type) express lower level of TLR5 on ECs of bronchi while 
TLR5 expression in patients with moderate asthma is similar 

to healthy controls (92). However, in opposition to the pro-Th2 
allergic effect of TLR5, it was recently reported that administra-
tion of flagellin inhibited experimental asthma in therapeutic 
doses (93). These conflicting results appear to be related to 
the dose of flagellin used, low dose being pro-allergic and 
high dose anti-allergic. In addition, Shim et al. indicated that 
Vibrio vulnificus-derived flagellin B (FlaB) by acting on regula-
tory DCs and Treg cells suppressed Th2 response induced by 
OVA or HDM (93). Moreover, it was demonstrated that bone 
marrow-derived DCs stimulated by a fusion protein composed 
of OVA-flagellin resulted in the production of IL-10 (94, 95) 
that, in turn, inhibited type-2 cytokine production in  vitro 
(95). Also, adoptive transfer of DCs exposed to OVA/FlaB 
prevented OVA-induced asthma. The role of CD25+ Treg cells 
in the inhibition of asthma was strengthened since depletion 
of CD25+ cells abrogated the suppressive activity of FlaB (93). 
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Interestingly, the levels of TGF-β and IL-10 production were 
increased in DCs of asthmatic patients exposed to FlaB and 
TLR5 transcript in asthmatic DCs was increased after exposure 
to FlaB, reinforcing that TLR5 agonist could upregulate anti-
inflammatory cytokines in asthmatic patients (93).

Collectively, the role of TLRs expressed on plasma membrane 
remains a controversial issue in asthma that requires more 
investigation.

eNDOSOMAL TLRs (TLR3, 7, 8, AND 9) 
AND ASTHMA

Besides TLRs expressed on cell membrane, a group of endosomal 
TLRs agonists have gained increased consideration (Table  1). 
The TLR3, TLR7, TLR8, and TLR9 recognize nucleic acids and 
their stimulation result in the production of type I IFNs. TLR3 
recognizes double-stranded RNA (dsRNA), TLR7, and TLR8 
recognize single stranded RNA and TLR9 recognizes DNA (96).

TLR3 AND ASTHMA

Viral infections are known to exacerbate pulmonary allergic 
responses through amplification of Th2 cytokines and eosinophil 
infiltration (97). The possible mechanism by which viruses 
increase airway inflammation is activation of TLR3 via viral 
dsRNA (97). Experimentally, it was found that administration of 
synthetic TLR3 agonist poly(I:C) with inhaled allergen leads to 
the development of allergic airway (98). In contrast, mice treated 
with allergen along with TLR7/8 ligand (R848) prevented asthma 
development (98). Interestingly, simultaneous engagement of 
TLR3 and TLR7 by viral components prevented airway hyper-
responsiveness and suppressed established asthma (99).

TSLP released by airway ECs primes DCs to Th2 cell dif-
ferentiation (100). However, human DCs stimulated with TLR3 
agonist plus TSLP favor Th17 cells differentiation, suggesting that 
viral infections acting through TLR3 stimulation of DCs might 
favor Th17  cell development and neutrophilic inflammation of 
asthmatic patients (100). Another mechanism by which viruses 
could induce neutrophilic inflammation is by stimulation of 
smooth muscle cells (101, 102). The stimulation of alveolar and 
bronchial smooth muscle cells with TLR2 (PGN), TLR3 (dsRNA), 
and TLR4 (LPS) ligands resulted in the release of CXCL8, a 
neutrophil-attracting chemokine. Among these agonists, dsRNA 
was the most potent inducer of CXCL8 (101, 102). Bronchial ECs 
might also contribute to neutrophilic inflammation since it was 
found that poly(I:C), a synthetic analog of viral dsRNA, enhanced 
the production of IL-6, IL-8, TNFα, and RANTES by human ECs 
in a dose-dependent manner (103). Therefore, all these airway 
cell types might exacerbate airway inflammation of asthmatics 
during viral infections by activating endosomal TLRs.

TLR7 AND ASTHMA

TLR7 has been also investigated and clinical studies support the 
protective effects of TLR7 in asthma since the TLR7 expression 
in bronchial epithelial biopsy of patients with severe asthma is 
markedly lower than healthy persons (92). Keeping with this, it 

was found that PBMCs of adolescents who suffer from asthma 
have low level of TLR7 expression and function and this might 
be a possible explanation for susceptibility to respiratory viral 
infections, which are a major cause of asthma exacerbations 
in children and adults (104). Recently, the effect of imiquimod 
(R837), a TLR7 agonist, on human airway and OVA-induced 
airway inflammation in guinea pigs was examined (105). The 
imiquimod (R837) through a nitric oxide-dependent mecha-
nism not only relaxed the contraction of methacholine-induced 
human airways in  vitro but also suppressed guinea pig airway 
inflammation in vivo. Application of TLR7 antagonist and nitric 
oxide inhibitor abolished this effect, indicating that nitric oxide 
plays a critical role in airway relaxation (105). Interestingly, the 
TLR8 agonists (polyuridylic acid and polyadenylic acid) also 
relaxed human airways, but the effect was nitric oxide independ-
ent (105). In fact, experiments performed in vitro suggest that 
stimulation of TLR7 in airway nerves results in bronchodilata-
tion of both human and animal airways through nitric oxide 
production (105). The role of TLR7 in murine experimental 
asthma and viral-induced asthma exacerbation has been also 
investigated (106). Hatchwell et al. found that lack of TLR7 in 
HDM-induced allergic mice results in acceleration of rhinovirus 
(RV1B) replication, which in turn supports eosinophilic inflam-
mation and airways hyper reactivity (106). Interestingly, they 
revealed that TLR7 expression in the lung of mice exposed to 
HDM or treated with IL-5 is suppressed, paving the way for 
respiratory viral infection (106).

An in  vivo study using the OVA-model compared the anti-
allergic effect of different TLR agonists administered by intranasal 
route (107). It was found that among all TLRs agonist tested, 
stimulation of TLR7 by Resiquimod was the most effective (107). 
Importantly, the suppressive effect on asthma by TLR7 agonists was 
also obtained when administered by intraperitoneal or epicutane-
ous routes (99, 108, 109). For instance, epicutaneous administra-
tion of Resiquimod (R848) together with birch pollen extract had 
both prophylactic and therapeutic effects on allergic asthma in a 
murine model (108). The therapeutic effects of TLR7 agonist have 
been evaluated by Nencini et al. that reported that conjugation of 
OH-modified adenine, a novel TLR7 ligand, with both Der p 2 
(Der p 2-Conj) and OVA (OVA-Conj) diminished Th2-mediated 
airway inflammation in an IL-10 and IFN-γ-dependent manner 
(110), although the exact mechanisms by which TLR7 agonists 
forestall asthma development are still elusive. It appears that each 
synthetic agonist exploits distinct mechanism and in this context, 
activation of TLR7 by 9-benzyl-2-butoxy-8-hydroxy adenine,  
a ligand for TLR7, could attenuate murine asthma restraining Th17 
and Th2 responses (109), whereas R848 arrests the symptoms of 
established asthma through Treg cells (111). Recently, a novel 
TLR7 agonist has been shown to inhibit murine allergic airways 
responses via type I IFN (112).

TLR9 AND ASTHMA

In a protocol of severe form asthma induced in mice by using 
triple allergens, such as OVA, cockroach extracts, and HDM, 
the effects of endosomal TLRs agonists were compared with 
dexamethasone (113). In this model, dexamethasone treatment 
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was ineffective while resiquimod and CpG-ODN, TLR7 and 
TLR9 agonists, respectively, were effective in decreasing aller-
gen-specific IgE, eosinophils, and Th2-associated cytokines 
(113). A double-blind, randomized trial study was conducted 
to inves tigate the efficacy of a novel TLR9 agonist known as 
QbG10 (bacteriophage Qbeta-derived virus-like particle with 
CpG-motif G10 inside). It was shown that TLR9 stimulation 
efficiently controls asthma manifestations (114).

In conclusion, as discussed for plasma membrane TLRs, 
endosomal TLRs agonists might prevent, suppress, or exacerbate 
asthma depending on the time, cell type engaged, and route of 
administration. It is likely that different anti-allergic mechanisms 
are triggered by TLR3, TLR7, TLR8, TLR9 agonists that might 
include the production of class I IFNs that counteract Th2-biased 
immune responses (115, 116) or immune-deviation toward 
Th1 response in the lung (117, 118). CpG-ODN stimulates DCs 
and alveolar macrophages to produce IL-12 that is essential for 
the innate phase of IFN-γ production and consequently Th1 
polarization. Mice sensitized with OVA plus CpG showed a low 
number of eosinophils in the BAL, predominance of CD8 T cells, 
monocytes, and NK cells and high levels of OVA-specific IgG2c 
in serum when compared to control group (91). However, other 
studies indicated that type I or type II IFNs are dispensable for 
the inhibitory effect of CpG-ODN on asthma (119). Mirotti et al. 
and others indicated that IL-10 induced by CpG-ODN is a key 
cytokine for the suppression of allergic inflammation (8, 119).

TLRs SiGNALiNG iN eARLY AND LATe-
PHASe ASTHMATiC ReACTiONS

Herxheimer was the first to describe two distinct components 
in the obstructive response to inhaled allergens, which he 
named the immediate and late reaction (120). The early-phase 
bronchoconstrictor response involves lung resident cells such as 
the MCs and anaphylactic antibodies leading to MC degranula-
tion and the release of inflammatory mediators, such as his-
tamine, prostaglandins, and leukotrienes, as well as cytokines, 
chemokines, and enzymes that are responsible for the allergic/
anaphylactic symptoms (121, 122) while the late-phase reaction 
refers to bronchoconstriction taking place approximately 3–8 h 
after allergen inhalation that is associated with recruitment of 
T cells, eosinophils, neutrophils, and basophils (123).

Toll-like receptors signaling could affect these responses by 
interfering with immunoglobulin isotype switching in B cells or 
by interfering in cells that participate in allergic inflammation.

Regarding B cells, CpG-oligonucleotides and LPS have been 
shown to modulate B cell class switching (124). It was demon-
strated that CpG induce class switching of murine B cells to IgG 
isotypes via TLR9 signaling and MyD88 pathway (125). Moreover, 
it was shown that CpG could inhibit class-switching toward IgE 
and to IgG1 (126). However, besides IgE, anaphylactic reactions 
could be also mediated by IgG antibodies that bind to IgG recep-
tors on MCs and other cell types such as basophils, neutrophils, 
and macrophages (127).

Mast cells express most TLRs and actively participate in allergic 
responses through TLRs-induced cytokine and chemokine secre-
tion (128). Stimulation of TLR3 on human MCs resulted in type I 

IFN production (128), while stimulation of TLR4 and 6 increased 
IL-13 release (129). However, although TLRs signaling in human 
MCs increases cytokine release it does not induce degranulation 
even in the presence of IgE (129). Stimulation of TLR4 on MC 
exacerbates murine experimental asthma (130) and upon LPS 
inhalation IL-5 production increases (131). The role of TLR4 
on murine MCs was highlighted by experiments with adoptive 
transfer of bone marrow-derived MCs from wild-type mice to 
OVA-sensitized MCs-deficient mice. With cell transfers of TLR4-
deficient MCs, mice developed Th2 responses and eosinophilia 
while with TLR4-deficient MCs they failed to develop it (131).

Eosinophils are key cells in allergic responses (132, 133). 
Several studies have shown that stimulation of TLRs, especially 
endosomal TLRs on eosinophils, results in increase of their activity 
and cytokine release (132, 133). For example, human eosinophils 
increase their adhesion molecule CD11b and IL-8 secretion upon 
exposure to R-837 and CpG DNA, suggesting TLR7/8 and TLR9 
in human eosinophil could be responsible for asthma exacerba-
tion by viral infections (134).

Basophils and neutrophils also contribute in atopic and non-
atopic asthma, respectively. Recently, Suurmond et al. reported 
that activation of basophil TLRs supports allergic responses by 
increasing the production of IL-4 and IL-13 along with IL-8 and 
RANTES (135). The involvement of neutrophils in severe asthma 
has been studied and recently, it was reported that HDM via 
stimulation of TLR4 on neutrophils impairs neutrophil apoptosis 
(136). Furthermore, neutrophil TLR4 activation during infection 
with respiratory syncytial virus potentiates airway inflammation 
via production of heat shock protein 72 (137).

All these reports indicate that TLRs signaling might exacer-
bate asthma. However, in Th2 cells, LPS reduced IL-4 production 
(138). Keeping with this, we have previously shown that systemic 
LPS administration blocks airway allergic inflammation and 
passive cutaneous anaphylaxis (PCA) via nitric oxide synthase 
2 activity (6). Since in the PCA assay, anaphylactic antibodies 
are passively transferred, the inhibition of anaphylaxis could be 
attributed to blockage of MCs or other cells in releasing inflam-
matory mediators. Studies performed in vitro and in vivo revealed 
that NO inhibit MC degranulation and MC-dependent cellular 
inflammation (139). In the same vein, we postulate that LPS 
could inhibit exocytosis of other cells involved in anaphylaxis 
such as basophils. In addition, the induction of type 1 or type 
2 IFNs by TLRs agonists signaling in monocyte, macrophages, 
DCs and NK cells might counterbalance the pro-allergic effect 
of TLRs signaling in other airway cell types, such as ECs, MCs, 
eosinophils, basophils, and neutrophils, during the late-phase 
reaction.

CONCLuDiNG ReMARKS

The data provided from human and animal studies indicate that 
the influence of TLRs agonists on asthma outcome might depend 
on the cell type that is activated (hematopoietic versus non-
HPCs), nature of the allergen (HDM versus OVA), and the route 
of administration (airway versus subcutaneous/peritoneal). Here, 
we discussed that TLRs could suppress, exacerbate, or contribute 
to asthma pathogenesis. Therefore, the use of TLRs agonists for 
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