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ABSTRACT

Motivation: Nuclear magnetic resonance (NMR) has been widely
used as a powerful tool to determine the 3D structures of proteins
in vivo. However, the post-spectra processing stage of NMR structure
determination usually involves a tremendous amount of time and
expert knowledge, which includes peak picking, chemical shift
assignment and structure calculation steps. Detecting accurate
peaks from the NMR spectra is a prerequisite for all following
steps, and thus remains a key problem in automatic NMR structure
determination.
Results: We introduce WaVPeak, a fully automatic peak detection
method. WaVPeak first smoothes the given NMR spectrum by
wavelets. The peaks are then identified as the local maxima. The false
positive peaks are filtered out efficiently by considering the volume
of the peaks.

WaVPeak has two major advantages over the state-of-the-art
peak-picking methods. First, through wavelet-based smoothing,
WaVPeak does not eliminate any data point in the spectra. Therefore,
WaVPeak is able to detect weak peaks that are embedded in the
noise level. NMR spectroscopists need the most help isolating these
weak peaks. Second, WaVPeak estimates the volume of the peaks
to filter the false positives. This is more reliable than intensity-based
filters that are widely used in existing methods.

We evaluate the performance of WaVPeak on the benchmark
set proposed by PICKY (Alipanahi et al., 2009), one of the most
accurate methods in the literature. The dataset comprises 32 2D
and 3D spectra from eight different proteins. Experimental results
demonstrate that WaVPeak achieves an average of 96%, 91%, 88%,
76% and 85% recall on 15N-HSQC, HNCO, HNCA, HNCACB and
CBCA(CO)NH, respectively. When the same number of peaks are
considered, WaVPeak significantly outperforms PICKY.
Availability: WaVPeak is an open source program. The source
code and two test spectra of WaVPeak are available at
http://faculty.kaust.edu.sa/sites/xingao/Pages/Publications.aspx.
The online server is under construction.
Contact: statliuzhi@xmu.edu.cn; ahmed.abbas@kaust.edu.sa;
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1 INTRODUCTION
In the last two decades, nuclear magnetic resonance (NMR) has
played a significant role in protein structure elucidation (Wüthrich,
1986). NMR is a powerful technique to determine the 3D structures
of proteins at the atomic level. Different from X-ray crystallography,
the dominant structure determination technique, NMR allows the
study of proteins in vivo. It can therefore be used to study small- and
medium-sized proteins that cannot be crystalized. The 3D structures
determined by NMR, on the other hand, may reveal intravital
characteristics and dynamics of the proteins.

After the spectra are collected, NMR structure determination
usually involves several time-consuming steps, i.e. peak picking,
chemical shift assignment, nuclear Overhauser effect spectroscopy
(NOESY) assignment and structure calculation (Wüthrich, 1986).
These steps can take experienced NMR spectroscopists weeks or
even months. Among the four steps, peak picking is a prerequisite
for all following steps, and thus required much attention from
spectroscopists. The goal of peak picking is to identify cross-signals,
which contain the chemical shift information of the spin systems,
from the noisy NMR spectra.

Computational approaches have been widely applied to
accelerate the post-spectra processing stage of NMR structure
determination (Alipanahi et al., 2009, 2011; Altieri and Byrd, 2004;
Gronwald and Kalbitzer, 2003; Güntert, 2009; Herrmann et al.,
2002; Jang et al., 2010, 2011; Williamson and Craven, 2009).
However, peak picking is the most sensitive and, thus far, it has
been difficult to design automatic methods that can deal with this
sensitivity. There are two reasons for this difficulty. First, the outputs
of peak picking serve as the inputs for both the assignment and
structure calculation steps. Any practical peak-picking method must
therefore be very accurate. Second, there are various sources of
errors in NMR spectra, including random noise, sample impurities,
artifacts and water bands, which makes peak picking a very
challenging problem.

The first automatic peak-picking method was proposed in
1990 (Kleywegt et al., 1990). Symmetry was both assumed and
used to identify peaks in 2D 1H NMR spectra. Since then, a variety
of methods have been explored to solve the peak-picking problem,
which include peak-property-based methods (Garret et al., 1991;
Johnson and Blevins, 1994), machine learning methods (Antz et al.,
1995; Carrara et al., 1993; Corne et al., 1992; Rouh et al., 1994),
and spectra-decomposition-based methods (Alipanahi et al., 2009;
Koradi et al., 1998; Korzhneva et al., 2001; Orekhov et al., 2001).
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Among the existing automatic methods, AUTOPSY (Koradi
et al., 1998) and PICKY (Alipanahi et al., 2009) are the most
accurate. Both of these methods attempt to estimate the noise
level of the given spectrum. The noise is assumed to be white
Gaussian noise and is estimated within small regions of the
spectrum. All the data points that have lower intensities than
the estimated noise level are eliminated, which eliminates most
parts of the spectrum. The remaining spectrum looks like a
set of disconnected components. Instead of dealing with all
the components altogether, both AUTOPSY and PICKY extract
separate components. AUTOPSY extracts components by a simple
flood fill algorithm, whereas PICKY further subdivides weakly
connected components into smaller ones. After the components are
formed, both methods conduct peak picking within each component.
AUTOPSY first identifies strong, obvious peaks from components.
Each of these components is then decomposed as the outer product
of 1D lineshapes. The lineshapes are then clustered and used to
detect overlapping peaks from the remaining components. Different
from AUTOPSY, which uses symmetry properties of peaks, PICKY
directly applies SVD on each of components. Since the components
formed by PICKY are much smaller and simpler than the ones
formed by AUTOPSY, rank-one SVD seems to be powerful enough
to identify peaks from the components. However, both AUTOPSY
and PICKY have a quite high false positive rate. Therefore, a
refinement step is performed in each method to reduce the number
of false peaks. In AUTOPSY, the integration, symmetrization and
filtering modules are applied. In PICKY, the peaks are first sorted
according to the intensities. A certain number of the strongest peaks
(usually 1.2K, where K is the expected number of peaks) is kept.
The peaks from different NMR spectra, which share common atoms,
are used to cross-eliminate false positive peaks.

Although AUTOPSY and PICKY have demonstrated impressive
accuracy on different benchmark spectra, they both have two
bottlenecks. The first is that all the data points with low intensities
are eliminated in both methods. However, a number of true peaks
actually have low intensities due to various reasons, including the
sensitivity of the NMR spectrometer, the strength of the magnetic
field, the characteristics of the target proteins and the local dynamics
of the spin systems. Unfortunately, spectroscopists need the most
help to deal with these weak peaks. An ideal peak-picking method
should therefore be able to identify the weak peaks instead of
disregarding them.

The second bottleneck is the way the two methods eliminate the
false positive peaks. Apparently, a brute force method that selects all
the local maxima as peaks should have higher sensitivity than any
other method. The issue is that since the real spectra are very noisy,
the brute force method will generate a huge number of peaks, making
it almost impossible for users to identify the true ones. On the other
hand, all peak-picking methods try to smooth the spectra such that
there is a good tradeoff between the sensitivity and the specificity.
For example, PICKY first eliminates all the weak data points and
then smoothes the components by rank-one SVD. The problem now
is how to rank the peak candidates in an order such that the true
peaks are at the top. The existing methods use either intensity-
based ranking or cross-references from other spectra. However,
the intensity of a single data point is not informative enough to
distinguish a true peak from a false one. Cross-references from other
less reliable spectra, on the other hand, may eliminate some true
peaks.

In this article, we introduce WaVPeak, a fully automatic peak-
picking method that is based on wavelet-based smoothing and
volume-based filtering and overcomes the two bottlenecks of the
existing methods. We first propose the use of the Daubechies 3
wavelet for the peak-picking problem. We suggest and demonstrate
that this wavelet is the most suitable one for this problem because
it can smooth the spectrum, sharpen the peak shapes and maintain
the peak locations. In this way, no data point will be eliminated.
Furthermore, the weak peaks that are embedded in the noise will
be recovered and will become visible. Then, a brute force method
is applied to isolate all the local maxima in the wavelet-smoothed
spectrum. However, the number of local maxima in the wavelet-
smoothed spectrum is much smaller than the number in the original
spectrum. The peak candidates are then sorted according to the
estimated volume of the peak shapes, which has a much stronger
distinguishable power than intensity-based sorting has.

2 METHODS
WaVPeak consists of three main steps, i.e. wavelet-based smoothing, brute
force peak picking and volume-based filtering. Given any spectrum, it is first
smoothed by wavelets. A brute force algorithm is then applied to identify
all the local maxima as the initial peak candidates. The initial peaks are
ranked according to their estimated volume. The details of the wavelet-based
smoothing and volume-based filtering are discussed in this section.

2.1 Wavelet-based smoothing
Wavelets are mathematical functions that cut up data into different frequency
components. Subsequently, each component is studied with a resolution
matched to its scale. Wavelets have advantages over traditional Fourier
methods in analyzing physical situations in which the signal contains
discontinuities and sharp spikes. Interestingly, wavelets were developed
independently in the fields of mathematics, quantum physics, electrical
engineering and seismic geology.

Interchanges between these fields during the last 20 years have led to many
new wavelet applications, especially image processing and de-noising noisy
data. Wavelets have also been employed in various tasks to do with NMR
signal processing (Barache et al., 1997; Dancea and Güntert, 2005; Gronwald
and Kalbitzer, 2004; Günther et al., 2000, 2002; Hu et al., 2011; Lang
et al., 1996; Neue, 1996; Shao et al., 2000). Such tasks include analyzing
the dynamical behavior of NMR signals (Barache et al., 1997; Hu et al.,
2011; Neue, 1996), de-noising the NMR spectra (Dancea and Güntert, 2005;
Günther et al., 2000), suppressing water peaks from the spectra (Gronwald
and Kalbitzer, 2004; Günther et al., 2002), and increasing the resolution of
the spectra (Shao et al., 2000).

Despite such applications of wavelets in NMR signal processing, wavelet-
based automatic peak picking has not been the focus of research attention.
The most relevant work is Dancea and Güntert, 2005. Dancea and
Güntert combined different wavelet procedures together in a consensus
manner to de-noise the 15N-NOESY spectrum in order to generate a 3D
structure for the Sud protein from Wolinella succinogenes. They considered
the consensus results from three wavelet-base functions, i.e. Symmlet,
Daubechies (Daubechies, 1992) and Coiflet. Although the structure was
accurately determined, the proposed multi-stage de-noising technique was
specific for one particular spectrum and could not be easily generalized.

De-noising or smoothing by wavelets is an indispensable step for
automatic NMR peak picking due to the various sources of noise in the
spectra. It is an important step as the de-noising is carried out without
smoothing the sharp structures. The result is a cleaned-up signal that still
captures important details. The de-noising consists of three steps:

(1) transforming the spectra to the wavelet domain using some
appropriate 2D wavelets (more discussion below);
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Fig. 1. The scaling and wavelet functions of the Daubechies 3 wavelet.

(2) applying thresholding methods (e.g. hard or soft thresholding), i.e.
setting all coefficients to zero that are less than a particular threshold
(we adopt soft thresholding later in this article); and

(3) inverse-transforming the thresholded coefficients to reconstruct the
data set in the signal domain.

We now elaborate more on 2D wavelets in Step 1. First, 2D wavelets
can be constructed from 1D wavelets (see Mallat, 1989). Given a 1D scale
function, φ(x), and its corresponding wavelets, ψ(x), we define the 2D scale
function as

�(x,y)=φ(x)φ(y),

and the corresponding 2D wavelets as

�1(x,y)=φ(x)φ(y),

�2(x,y)=ψ(x)φ(y),

�3(x,y)=ψ(x)ψ(y).

The critical issue then becomes how to choose the 1D wavelets φ(x) and
ψ(x) as different wavelets serve different purposes. Since our objective is to
identify peaks, the ideal wavelet function should resemble the shapes of true
peaks, i.e. a cone shape in our NMR peak-picking problem. We have explored
various wavelet families with different parameters on MATLAB, including
Daubechies, Symlets, Coiflets and Biorthogonal. It turns out that Daubechies
3, Symlets 3 and Biorthogonal 2.4 significantly outperform others on the
peak-picking accuracy, when evaluated with real NMR spectra. The accuracy
of these three wavelets is very similar with Daubechies 3 having slightly
higher sensitivity. Therefore, in WaVPeak, we use 2D Daubechies 3 as the
default wavelet.

Figure 1 illustrates the scaling function, φ, and the wavelet function, ψ, of
the 1D Daubechies 3 wavelet. Clearly, both functions produce a cone shape,
which looks like a peak shape after smoothing. This can be further confirmed
from Figure 2, which shows the original spectrum of the 15N-HSQC of the
VRAR protein with wavelet-based smoothing using Daubechies 3. Clearly,
the original spectrum is much noisier than the wavelet-smoothed spectrum.
Furthermore, the peak shapes are smoothed and sharpened in the smoothed
spectrum as well.

2.2 Volume-based filtering
After the initial peaks are identified by the brute force algorithm on the
wavelet-smoothed spectrum, we need to identify the true peaks from the
relatively large set of initial peaks. The idea is to rank the initial peaks
according to a certain criterion, so that all the true peaks are ranked as
highly as possible. Traditional methods use the intensity of the peak location
as the filtering criterion. However, the intensity of one single data point can
be badly biased by various sources of noise in the NMR spectrum; intensity
is thus not a reliable criterion.

Here, we propose the use of the volume of the peak instead of the intensity.
However, the number of data points that belong to a certain peak shape is not
apparent. We therefore need to select a region around the peak location in

The original spectrum

The wavelet-smoothed spectrum

Fig. 2. The original spectrum and the Daubechies 3 wavelet-smoothed
spectrum of 15N-HSQC of protein VRAR.

order to estimate the volume. A trivial solution is to set a predefined window
size, such as three. This region includes all the data points that differ by at
most one in all the dimensions. To estimate the volume of the peak shape
in this region, we assume that the region of the entire peak shape is at least
larger than this small region with a window size of three. The volume can
thus be estimated as the sum of the volume of the ‘pillars’ (in this case,
nine), each of which corresponds to a part of the peak shape over a grid.
The volume of a pillar can then be simply estimated as the area of the grid
multiplied by the intensity of the data points corresponding to that grid. Note
that in a given spectrum, the area of the grid is a fixed value. Therefore, we
can use the sum of all the intensities in this region to estimate the volume of
the peak.

However, in real spectra, the span of a peak shape over different
dimensions can have different numbers of data points. Figure 3 shows an
example of a peak shape on a 2D spectrum. This peak shape spans over three
and five data points on the two dimensions, respectively. Thus, taking a fixed
region of size 3×3 does not give a good estimation of the volume of the peak.
In order to solve this problem, we propose a self-adapted, window-based
volume estimation.

As shown in Figure 3, the ideal size of the window is 3×5, which includes
all the data points that differ by at most one in one dimension and by at most
two in the other dimension. From Figure 3, it is easy to show that:

rx = Ip

Ip −Ix
, ry = Ip

Ip −Iy
,

where rx and ry are the levels of neighbors being considered for dimensions
x and y, respectively, and Ip, Ix , Iy are the intensities for the peak, the direct
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Fig. 3. A peak shape with different spans over the x- and y-dimensions.

.

Algorithm 1 Self-adapted-window-based filtering algorithm.

Input: The wavelet-smoothed NMR spectrum in d-dimensional space;
Input: n initial peak candidates (p11,...,p1d ),..., (pn1,...,pnd ).
Input: The length of the protein, L.
Output: The re-ranked list of the initial peaks.

Set level size to be l1 = l2 =···= ld =1.
for t =1,...,n do

Calculate the volume as
Vt = ∑

i1=pt1−l1,...,pt1+l1;···;id=ptd−ld ,...,ptd+ld

I(i1,...,id ).

end for
Sort the initial peaks according to the volume V and take the top L.
Calculate the average of the intensity difference between the peak
and its direct neighbor for each dimension,
D1 = I(pm1,...,pmd ) −I(pm1−1,...,pmd ),...,Dd = I(pm1,...,pmd ) −I(pm1,...,pmd−1),
and select the largest dimension q.
for t =1,...,d do

Set level size to be l′t = round (
Dq

mean(Dt )
).

end for
for t =1,...,n do

Calculate the volume as
V ′

t = ∑

i1=pt1−l′1,...,pt1+l′1;···;id=ptd−l′d ,...,ptd+l′d
I(i1,...,id ).

end for
Sort the initial peaks according to the volume V ′ and return the top L.

neighbor of this peak on x-dimension, and the direct neighbor of this peak
on the y-dimension, respectively. Consequently, we have

rx

ry
= Ip −Iy

Ip −Ix
.

To adjust the size of the region in which we calculate the volume, we set
the level size that corresponds to the dimension with the smaller r value to
be one. Without loss of generality, assume rx<ry. The level size for the

y-dimension is set to [ Ip−Ix
Ip−Iy

]. The generalization to higher dimensional

spectra is straightforward. Algorithm 1 gives the pseudocode of the self-
adapted, window-based filtering algorithm for an arbitrary spectrum.

2.3 Evaluation criteria
In order to evaluate a peak-picking method objectively, we adopt three
criteria, i.e. recall, precision and F-score. Let TP denote the number of
true peaks that are discovered by the method, FP the number of false

peaks returned by the method and FN the number of true peaks that are
not discovered by the method. Recall is defined as TP/(TP+FN), where
TP+FN is the total number of ideal peaks. Similarly, precision is defined as
TP/(TP+FP), where TP+FP is the total number of peaks returned by the
method.

Recall measures the ability of the method to discover the true peaks,
whereas precision measures the ability to reject false peaks. In the peak-
picking problem, recall is more important than precision because a false peak
can be possibly eliminated in the following NMR data analysis process.

We further apply the F-score to measure the tradeoff between recall and
precision, where the F-score is defined as the harmonic mean of recall and
precision, i.e. 2 ·Recall ·Precision/(Recall+Precision).

3 RESULTS

3.1 Data set
To fairly evaluate the performance of WaVPeak, we test WaVPeak on the
spectra set proposed in Alipanahi et al. (2009), which is one of the largest
benchmark sets on the peak-picking problem. The set contains 32 spectra
extracted from 15N-HSQC, HNCO, HNCA, HNCACB and CBCA(CO)NH
from eight proteins, i.e. TM1112, YST0336, RP3384, ATC1776, CASKIN,
HACS1, VRAR and COILIN.

3.2 Performance on the benchmark set
WaVPeak is applied on each spectrum of the benchmark set to automatically
pick peaks. Although different spectra in the data set share the common 15N
and 1H atoms, the cross-referencing is not applied in our experiments so that
we may objectively test the peak-picking accuracy of the proposed method.

The Daubechies 3 wavelet is employed to smooth the original spectrum.
Figure 2 shows one example of a wavelet-smoothed 15N-HSQC spectrum
of the VRAR protein. The smoothed spectrum is much smoother than the
original spectrum. Furthermore, the property of the Daubechies 3 wavelet
ensures that the peak shapes are more obvious in the smoothed spectrum.
A brute force algorithm is then used to select all the local maxima in
the smoothed spectrum to build the initial peak list. Note that due to the
smoothness of the wavelet-smoothed spectrum, the number of local maxima
becomes an order of magnitude smaller than the number in the original
spectrum.

All initial peaks are then ranked according to the volume-based estimation.
In the first round, the default window size (differing by at most one step size
in each dimension) is used to define the neighbors. Then, the top N peaks
are extracted, where N is the length of the target protein, which is given as
the input. The window size is adjusted according to Algorithm 1. The initial
peaks are then re-ranked according to the estimated volume in the updated
neighborhood. Finally, the top M peaks are selected as the prediction results,
where M is either given by the users or is set to 1.2K as the default (where
K is the expected number of peaks in this spectrum).

We compared the performance of the publicly available version of PICKY
with WaVPeak, with a default noise cutoff threshold of 5 according to
Alipanahi et al. (2009). Table 1 lists the performance of PICKY and
WaVPeak on the benchmark set when the top 1.2K peaks are considered.
It can be seen that when the same number of peaks is considered,
WaVPeak has a consistently better recall than PICKY on four of the five
types of spectra. It is well acknowledged in the NMR community that
15N-HSQC is the most reliable and clean spectrum among the five, whereas
the HNCACB and CBCA(CO)NH spectra are the noisier. WaVPeak has an
average improvement of 3%, 2%, 16% and 13% on recall over PICKY on
15N-HSQC, HNCO, HNCACB and CBCA(CO)NH, respectively. On the
other hand, the precision of WaVPeak is comparable to that of PICKY on
15N-HSQC, HNCO and HNCA. The improvement in precision is significant
for CBCA(CO)NH. However, PICKY has a much higher precision than
WaVPeak on HNCACB. Since the number of top peaks is the same for
both methods, this higher precision of PICKY seems to conflict with
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the lower recall. This is due to the fact that PICKY detects fewer than
1.2K peaks in the three HNCACB spectra. Figure 4a–e show the receiver
operating characteristic (ROC) curves of PICKY and WaVPeak when
different numbers of top peaks are considered. Therefore, WaVPeak is
consistently and significantly more sensitive than PICKY, and the overall
performance (F-score in Table 1 and area under curves (AUCs) in the Figure
4a–e is also better than that of PICKY.

It is clear from Table 1 that PICKY has a higher recall than WaVPeak
on only 3 of the 32 spectra. It should be noted that on eight spectra,
WaVPeak is able to identify significantly more true peaks than PICKY
identifies (the improvement in recall is over 15%). These spectra are the
15N-HSQC spectrum of CASKIN, the HNCACB spectra of CASKIN, VRAR
and COILIN, and the CBCA(CO)NH spectra of RP3384, CASKIN, VRAR
and COILIN. With the exception of the CBCA(CO)NH spectrum of RP3384,
PICKY’s noise level elimination step overestimates the noise level. The hard-
threshold-based elimination step then removes many true peaks. Some of
these true peaks still have relatively strong intensities, but these intensities
are lower than the estimated noise level. The others are weak peaks that
are completely embedded in the noise, which are impossible for any hard-
threshold-based method to discover. Therefore, PICKY has very low recall
on these seven spectra, but quite high precision due to the small number
of total peaks returned. For CBCA(CO)NH of RP3384, PICKY returns a
large number of peaks. However, the recall is still 20% lower than that of
WaVPeak. This further confirms that the wavelet-smoothed spectrum can
discover the baseline peak shapes of the weak peaks that are embedded in
the noise level, and the volume-based filtering can select the peaks, though
they have very low intensities.

In Alipanahi et al. (2009), the cross-reference step is used to refine the
peak lists of different spectra that share common atoms. This, apparently,
is an efficient way to remove the false positives in practice. However, this
assumes that a set of spectra are available. Our focus is to discover a more
powerful and general method for peak picking for any given spectrum.
Therefore, WaVPeak does not have a default cross-referencing step. It should
be noted that cross-referencing can be easily implemented and applied as a
post-processing step for any peak-picking method. When compared with
the accuracy of PICKY after cross-referencing, WaVPeak without cross-
referencing still has comparable F-scores (87% versus 87%, 82% versus
83%, 81% versus 80%, 72% versus 70% and 78% versus 78% for the five
types of spectra, respectively).

3.3 Effects of wavelet-based smoothing and
volume-based filtering

Table 1 demonstrates the performance of WaVPeak when the top 1.2K peaks
are considered. It is also necessary to see how the accuracy changes when
different number of peaks are considered. When the accuracy of WaVPeak
and PICKY is compared using different numbers of peaks, the results are
very similar to those presented in Table 1.

We further evaluate the contribution of wavelet-based smoothing and
volume-based filtering. To measure the contribution of wavelet-based
smoothing, we compare the smoothing module of WaVPeak plus the
traditional intensity-based filtering by PICKY, which includes intensity-
based filtering as a default. To evaluate the contribution of volume-based
filtering, we compare the smoothing module of WaVPeak with different
filtering methods, including intensity-based filtering and self-adapted,
window-based filtering.

Figure 4f shows the recall curve of the three methods when different
numbers of peaks are considered in the CBCA(CO)NH spectrum of the
ATC1776 protein. The expected number of peaks is 180. Therefore, when
<180 top peaks are considered, the recall for all methods is relatively low.
The three methods have the same recall when <80 top peaks are taken into
account. When we consider >80 peaks, wavelet-based smoothing plus the
self-adapted, window-based filtering, i.e. WaVPeak, consistently has highest
recall, whereas wavelet-based smoothing plus intensity-based filtering has

the second highest recall. Note that the list of initial peaks for the wavelet-
smoothed spectrum is the same for the two different filtering methods. The
filtering method only re-ranks the peaks according to different measures. This
clearly demonstrates that volume has much stronger power to distinguish
peaks than intensity has. When using intensity-based filtering, wavelet-based
smoothing has slightly better recall than PICKY. This demonstrates the power
of the wavelet to discover the weak peaks that are discarded in PICKY’s noise
level elimination. By combining wavelet-based smoothing and self-adapted
windows, WaVPeak has significantly higher recall than PICKY has. When
triple the expected number of peaks are considered, WaVPeak has 95% recall,
whereas the recall of PICKY is 89%.

3.4 Implementation details
One other advantage of WaVPeak is that it can be easily implemented.
WaVPeak does not have as many steps as the other methods.
WaVPeak is also an open source program. The MATLAB version
of the source code with two testing spectra are available at
http://faculty.kaust.edu.sa/sites/xingao/Pages/Publications.aspx. We
are currently developing a web server and making WaVPeak a plug-in for
interactive NMR data processing tools, such as SPARKY (Goddard and
Kneller, 2007).

4 DISCUSSION
WaVPeak is proposed as a general peak-picking approach for
any NMR spectrum. Therefore, WaVPeak does not use the
properties of the specific spectra or the specific amino acids. Such
properties, of course, will be useful to improve the accuracy of
WaVPeak. One efficient way to reduce the number of false positive
peaks further is to take the consensus of the peak lists from
different peak-picking methods, such as PICKY and WaVPeak.
This can significantly increase the precision (data not shown) while
maintaining comparable recall. We have made WaVPeak an open
source program so that expert knowledge can be easily encoded.
Furthermore, we will make WaVPeak a plug-in to SPARKY or
NMRView so that users can do interactive peak picking.

WaVPeak estimates the volume within self-adapted rectangular
regions. The rectangular regions, however, may not be ideal,
especially for peaks with a lot of overlap. In such a case, the volume
of one peak may be added to that of another overlapped peak.
A possible solution is to use a V–N plot to identify true peaks. For
each of the initial peak candidates, we can start with the smallest
diamond-shaped neighborhood region (differing by at most one step
size in at most one dimension), and gradually increase the size
of the region. This will generate a series of alternating diamond-
shaped and rectangular regions. Consequently, we will have a series
of estimated volumes for these regions. We can then plot the volume
in relations to each neighborhood, which will be referred to as the
V–N plot. The V–N plot (or its smoothed version) may reveal a lot
of information about the patterns of the true peaks. For instance,
if two peaks overlap a lot with each other or are even completely
overlapping, it is possible that we only observe one peak in the
wavelet-smoothed spectrum. However, in the V–Nplot, we can see
that the AUC is almost twice the area of the other curves. If a local
maximum is a fake peak, it is very unlikely that it has a regular and
smooth peak shape. In the V–N plot, the curve will not be smooth
either. The gradient change of the curve might be informative in
identifying false peaks.

In evaluating the performance on the benchmark set in Section 3,
the top M peaks are selected as the prediction results, where M is
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Table 1. Comparison between WaVPeak and PICKY on the 32 spectra of the eight proteins in the benchmark set

Spectra 15N-HSQC HNCO HNCA HNCACB CBCA(CO)NH
Methods PICKY WaVPeak PICKY WaVPeak PICKY WaVPeak PICKY WaVPeak PICKY WaVPeak

Protein Len Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec Pre
RP3384 64 96 80 96 81 100 83 100 83 87 72 88 73 – – – – 62 52 92 77
CASKIN 67 78 93 96 80 82 68 83 69 – – – – 32 100 62 52 58 77 88 74
VRAR 72 90 75 97 81 90 75 93 78 – – – – 48 77 68 57 56 67 82 68
HACS1 74 97 80 97 81 91 75 93 77 – – – – 82 68 85 71 89 74 89 74
TM1112 89 98 81 98 81 – – – – 94 78 94 78 92 77 93 77 97 81 98 82
COILIN 98 91 76 90 75 73 61 75 62 – – – – 48 77 68 57 51 46 66 55
ATC1776 101 96 80 94 78 92 77 95 79 83 69 81 68 – – – – 74 62 79 66
YST0336 146 96 80 97 81 97 81 97 81 90 75 90 75 – – – – 87 72 87 73

Average 93 81 96 80 89 74 91 76 88 74 88 74 60 78 76 64 72 66 85 71
F-score 86 87 81 83 80 80 68 70 69 78

To make the comparison, the top 1.2K peaks are considered, where K is the expected number of peaks. For PICKY, the peaks are sorted according to the intensity, whereas for
WaVPeak, the peaks are sorted according to the volume. Recall, precision and F-score are listed as percentiles.
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Fig. 4. (a)–(e) ROC curves of WaVPeak and PICKY for NHSQC, HNCO, HNCA, HNCACB and CBCA(CO)NH, respectively. The curves for WaVPeak
are cyan and the curves for PICKY are magenta. The areas under the curve (AUC) for both methods are given in the figures as well. (f ) The relationship
between the number of top peaks considered and the recall value for the CBCA(CO)NH spectrum of ATC1776. The magenta, black and cyan curves are for
PICKY (with the default intensity-based filtering), Daubechies 3 wavelet plus intensity-based filtering and Daubechies 3 wavelet plus volume-based filtering,
respectively.

either given by the user or is set to 1.2K as the default. In reality,
it would be desirable to have a fully automatic data-driven method
to identify true peaks with high recall rates among the candidate
peaks obtained after wavelet-based smoothing. This is, in fact, a
multiple testing problem, which has received much attention in
the statistical literature since the seminal article by Benjamini and
Hochberg (1995). Work is currently underway to clarify how it can
help in resolve our peak-picking problem.

5 CONCLUSION
In this article, we introduced WaVPeak, an automatic peak-picking
method that is based on wavelet-based smoothing and volume-based

filtering. Experimental results demonstrate that the wavelet-based
smoothing outperforms existing decomposition techniques for this
task, and volume-based filtering outperforms traditional intensity-
based filtering. The combination of these two ideas results in a novel
method that is significantly more accurate than the state-of-the-art
peak-picking methods.
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