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ABSTRACT

Recognition of composite elements consisting of two
transcription factor binding sites gets behind the
studies of tissue-, stage- and condition-specific tran-
scription. Genome-wide data on transcription factor
binding generated with ChIP-seq method facilitate
an identification of composite elements, but the ex-
isting bioinformatics tools either require ChIP-seq
datasets for both partner transcription factors, or
omit composite elements with motifs overlapping.
Here we present an universal Motifs Co-Occurrence
Tool (MCOT) that retrieves maximum information
about overrepresented composite elements from a
single ChIP-seq dataset. This includes homo- and
heterotypic composite elements of four mutual ori-
entations of motifs, separated with a spacer or over-
lapping, even if recognition of motifs within compos-
ite element requires various stringencies. Analysis of
52 ChIP-seq datasets for 18 human transcription fac-
tors confirmed that for over 60% of analyzed datasets
and transcription factors predicted co-occurrence of
motifs implied experimentally proven protein-protein
interaction of respecting transcription factors. Anal-
ysis of 164 ChIP-seq datasets for 57 mammalian
transcription factors showed that abundance of pre-
dicted composite elements with an overlap of motifs
compared to those with a spacer more than doubled;
and they had 1.5-fold increase of asymmetrical pairs
of motifs with one more conservative ‘leading’ motif
and another one ‘guided’.

INTRODUCTION

Combinatorial binding of multiple transcription factors
(TFs) to the regulatory region provides for fine-tuning of
the gene expression dynamics in response to distinct inter-
nal and external signals (1–4). Investigation of pairwise TF
interactions upon binding to DNA is a basis for under-
standing larger TF complexes formation and functioning
(1,5–7). Composite element (CE) is the minimal functional
unit that consists of two co-located motifs for pairwise in-
teraction between partner TFs on regulatory DNA (5,8–
11). Mutual location and orientation of the TF binding sites
within the CE is drastically important for TFs cooperation
or competition on the regulatory DNA (5,8). Reflecting this,
many known and predicted CEs have a rigid and compact
structure with an overlap of the motifs (5,12,13). Chromatin
immunoprecipitation (ChIP)-based high throughput tech-
niques (ChIP-chip, ChIP-seq, ChIP-exo) locate TF binding
to genomic DNA in vivo (14,15) and facilitate bioinformat-
ics identification of CEs functional in certain condition (16).
In order to identify putative CEs one should apply a mo-
tif discovery procedure, e.g. (17–20). In particular, two ap-
proaches were developed earlier.

As a first approach, one can trace if there are enriched
spacings between the genome-wide binding profile of stud-
ied TF and predicted profiles for other TFs. SpaMo (21) and
iTFs (22) tools efficiently discover CEs with a spacer within
a single ChIP-seq dataset, but they omit the big class of CEs
with an overlap (Table 1).

As a second approach, co-occurrence of TF binding calls
from two (or more) ChIP-seq datasets can serve as an es-
timate of combinatorial TF binding (23). Thus, GEM tool
(13) integrates genome-wide read coverage information for
two or more TFs, a posterior prediction of motifs discov-
ered potential CEs with a spacer or an overlap of motifs.
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Table 1. Comparison of various tools for prediction of CEs in ChIP-seq data

Tool name
Sufficiency of a single
dataset of peaks

Prediction of
overlapped motifs URL Reference

SpaMo Yes No http://meme-suite.org/tools/spamo (21)
iTFs Yes No http://veda.cs.uiuc.edu/iTFs/ (22)
GEM No Yes http://groups.csail.mit.edu/cgs/gem/ (13)
TACO No Yes http://bioputer.mimuw.edu.pl/taco/ (12,24)
MCOT Yes Yes https://gitlab.sysbio.cytogen.ru/academiq/mcot-kernel This work

TACO tool (12,24) also started analysis from a library of
ChIP-seq or cell-type specific DNase-seq datasets. Analy-
sis of a single dataset consisted in integration of the rest
datasets in a background model. Subsequent enrichment
tests for various pairs of motifs allowed prediction of po-
tential CEs with a spacer or an overlap of motifs. Despite
these tools are capable of prediction of CEs with an overlap,
they have limitations that substantially restrict their appli-
cation in routine practice (Table 1). Generation of a library
of ChIP-seq or DNase-seq experiments is labor, cost con-
suming and is hardly feasible for non-model organisms.

In this research, we suggest to apply foreground data to
generate a background model with a permutation proce-
dure (25). This advance allows prediction of CEs within a
single ChIP-seq dataset. We implement this approach in a
Motifs Co-Occurrence Tool (MCOT) that identifies over-
represented CEs and describes their structural variants. By
an analysis of single, reciprocal and multiple ChIP-seq pro-
files we prove that MCOT is a reliable prognostic software
that will make the experimental analysis of combinatorial
TF binding cheaper and more effective.

MATERIALS AND METHODS

Input data and parameters

ChIP-seq peaks. Each ChIP-seq dataset (peaks) were re-
trieved from GEO according to annotations from GTRD
(26), ReMap (27) and Cistrom DB (28). Totally, we ex-
tracted 117/47 human/mouse datasets for 57 distinct TFs
and ∼75 various cell/tissue/treatment conditions (Supple-
mentary Table S1).

Anchor motif. We defined the anchor motif as the top-
scored result in a list of motifs from the de novo search gen-
erated for peaks by the HOMER tool (http://homer.ucsd.
edu/homer/, (17)). For de novo search, we took peaks as the
foreground sequences and shuffled these sequences to gen-
erate the background sequences. An anchor motif should
have the significant match (Tomtom, http://meme-suite.org/
tools/tomtom, (29)) to known matrix of immunoprecipi-
tated TF.

Partner motif(s). MCOT have two running modes: it
searches for the co-occurrence of anchor motif with either
sole or multiple partner motifs. For one partner TF and cer-
tain tissue/cell/treatment condition, the best approach to
estimate the partner motif is to search for ChIP-seq data for
partner TF in the same conditions. If such data are absent
or even a certain TF cannot be suspected as a partner, we
get hundreds potential partner motifs form a public library,
e.g. human/mouse matrices from the Hocomoco database

(http://hocomoco11.autosome.ru/, (30)). We computed po-
sition weight matrices (PWMs) from frequency matrices
with log-odds weights (31). For each partner PWM, we
computed the P-value of the best hit (Supplementary Table
S2). This value allowed decide whether stringent thresholds
for PWMs applicable to filter out false positives. Thus, we
discarded from analysis motifs with these P-values above
2E–5 (Supplementary Figure S1).

Motifs mapping

Recognition of motifs. To guarantee the same stringency
for PWMs, we generated for each PWM the comprehensive
list of thresholds (32). Then, we estimated for all thresh-
olds False Positive Rates (FPRs) as probabilities of hits for
respective whole-genome datasets of upstream regions of
human/mouse protein coding genes of length 2 kb. Dis-
tinct start positions for 19795/19991 human/mouse genes
we extracted from Gencode 27/M15 (33). Finally, we took
the unified set of five expected FPRs, {5.24E–5, 1.02E–
04, 1.9E–4, 3.33E–4, 5E–4} and computed five thresholds
{T[k]} for each PWM. The profile of the most stringent hits
contained hits T ≥ T[1], the next profiles comprised scores
in the ranges T[k] ≤ T < T[k-1], index k = 2, 3, 4, 5 denotes
the conservation level of a motif (Figure 1A).

Permutation procedure. MCOT applied the permutation
procedure to estimate the expected co-occurrence for a pair
of motifs (see Supplementary Data 1, Text 2). The novelty
of this procedure consisted in partitioning of a profile of
hits for a certain motif onto clusters of non-overlapping hits
(Figure 2, ‘Masking’). Next, MCOT shuffled clusters and
spacers between them (‘Permutation’, (25)) and ascertained
that shuffled and original versions of a peak were perfectly
aligned (‘Alignment quality check’).

Classification of CEs

MCOT classify CEs according to the ratio of conservation
of two motifs, their mutual orientation and the presence of
their overlap or spacer between them (Figure 1).

Conservation of motifs. If anchor and partner motifs refer
to profiles of T[kAnchor] and T[kPartner] thresholds than crite-
ria kAnchor < kPartner, kAnchor > kPartner and kAnchor = kPartner
define CEs with more conserved anchor, partner motifs and
equal conservation of motifs (Figure 1A).

Orientation. MCOT defines two direct orientations in CEs
according to zero/positive or negative shift between centers
of 5′-anchor-3′ and 5′-partner-3′ motifs; two reverse orien-
tations respect to Inverted or Everted CEs (Figure 1B).

http://meme-suite.org/tools/spamo
http://veda.cs.uiuc.edu/iTFs/
http://groups.csail.mit.edu/cgs/gem/
http://bioputer.mimuw.edu.pl/taco/
https://gitlab.sysbio.cytogen.ru/academiq/mcot-kernel
http://homer.ucsd.edu/homer/
http://meme-suite.org/tools/tomtom
http://hocomoco11.autosome.ru/
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Figure 1. Classification of structural CEs variants with respect to and conservation of anchor and partner motifs (A), their mutual orientation (B), overlap
or spacer (C). Cyan, green and light green colors on the panel B distinguish CEs with a spacer, partial and full overlaps, respectively. The color range
from red to pink on the panel A denotes the conservation level of a motif; brown/orange and grey colors mark imbalance in CEs with more conserved
anchor/partner motifs and a balance between conservation of motifs.

Figure 2. MCOT permutation procedure. ‘Foreground’ shows profiles of hits for two motifs, green and blue colors mark fixed and selected for permutation
profiles. ‘Masking’ partitions each profile onto ‘clusters’ of hits and spacers. ‘Permutation’ shows a real (top) and shuffled (bottom) orders of clusters and
spacers. ‘Alignment quality check’ illustrates the checkpoint of permutation. ‘Background’ shows the result of permutation.
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Overlap and spacer. MCOT runs five parallel computa-
tion flows for five CE types: Any (spacer or overlap), Full
(one motif located entirely within another one), Partial (all
the rest overlaps); Overlap (full and partial); Spacer (Fig-
ure 1C). The minimal and maximal spacer lengths are pa-
rameters, their default values are 0 and 29 bp. The maximal
spacer length should be less than the sum of the minimal
length of a peak, the lengths of anchor and partner motifs.

Similarity of anchor and partner motifs

In the case of overlap, to restrict the false predictions,
MCOT estimated the significance of similarity between an-
chor and partner motifs. A match P-value < 0.05 marked
predictions that can be a consequence of motifs similar-
ity. To compute this P-value, according to previous analysis
(34), MCOT used two similarity measures for a pair of ma-
trix columns (35,36) (see Supplementary Data 1, Text 1 and
Supplementary Figure S2).

Significances for CEs enrichment and their asymmetry

The significance of two-sided Fisher’s exact test proves a po-
tential CE as follow. For all 25 combinations of motifs con-
servation (kAnchor, kPartner) we count: (a) real peaks Obstot /
permuted sequences Exptot that contained both motifs and
(b) respective numbers ObsCE+/ExpCE+ corresponding to
occurrence of at least one CE (Figure 3, 2 × 2 table ‘CE en-
richment’). Since for each CE we consider 25 combinations
of motifs conservation, we used Bonferroni correction for
the significance of CE, P-value < 0.05/25 = 0.002.

We subdivided predicted CEs on three classes: an anchor
motif was more conserved than a partner motif (‘Anchor’,
kAnchor < kPartner), vice versa (‘Partner’, kPartner > kAnchor),
a similar conservation of motifs (‘Equal’, kAnchor = kPartner)
(Figure 1A). As described above, for each class we com-
puted the respective 2 × 2 table {Obstot,X / Exptot,X versus
ObsCE+,X / ExpCE+,X}, (X = Anchor, Partner, Equal; index
of class; Figure 3, 2 × 2 table ‘CE enrichment’). These cal-
culations implied the integrated counts of sequences for five
diagonal cells for ‘Equal’ class, each of the rest classes re-
ferred to ten cells in 5 × 5 table (Figure 1A). Finally, we
applied the Fisher’s exact test to compute the significance
of CEs for each class.

Similarly, we estimated the significance of asymmetry
‘Anchor vs. Partner’ in CEs according to the 2 × 2 table of
counts {ObsCE+,Anchor / Obstot,Anchor versus ObsCE+,Partner /
Obstot,Partner} (Figure 3, 2 × 2 table ‘CE asymmetry’). The
ratio of these two fractions Fold defines criteria Fold > 1 and
Fold < 1 of the asymmetry toward an anchor and partner
motifs. The absence of the significance of the asymmetry to-
ward an anchor or partner motif means balanced conserva-
tion of two motifs. Otherwise, the significance of this asym-
metry denotes their imbalanced conservation. Since MCOT
implied five computation flows and distinguished three con-
servation classes, we applied Bonferroni’s correction for the
significance of asymmetry, P-value < 0.05/15 ≈ 0.0033.

MCOT performance test for the benchmark dataset of CEs

To estimate MCOT predictive efficiency we applied the
benchmark dataset of True Positive (TP) CEs of 29 distinct

pairs of TFs (Supplementary Table S3). This list was com-
piled earlier for TACO tool (24) performance estimation.
We excluded from analysis (a) five TF pairs since for the re-
spective ChIP-seq datasets we found dimeric anchor motifs
in de novo search (17) and the corresponding motif in the
Hocomoco database (30) were also dimeric; (b) two pairs
that contained not bHLH motif with not quite clearly as-
signed respective TF. The juxtaposition of the list of remain-
ing 22 TF pairs and the whole pool of 164 ChIP-seq datasets
(see above) brought 80 distinct ChIP-seq datasets (Supple-
mentary Table S3). For TF pairs that respected to an in vitro
research we took in analysis all available datasets for both
TFs of each pair, for TF pairs that were studied in specific
cells/tissues conditions we analyzed only datasets in rela-
tively close conditions.

We estimated the False Positive (FP) rate for each ChIP-
seq dataset as the P-value for the ‘Overlap’ or ‘Spacer’ com-
putation flow depending on presumed CE structure (Sup-
plementary Table S3 and (24)). For each TF pair the total
estimate of FP rate we computed as the median of FP rates
for a respective list of ChIP-seq datasets. The MCOT sen-
sitivity we computed as the True Positive fraction that re-
spected to certain FP rate.

TF-TF interaction data for validation of MCOT predictions

We applied data on physical interactions of proteins from
BioGRID (37) and EdgeExpress (38) to test CE predic-
tions for all 117 ChIP-seq datasets of 45 distinct human
TFs (Supplementary Table S1). Besides anchor motifs, we
employed 396 partner motifs from the Hocomoco database
(30, see above). Next, we applied MCOT with the thresh-
old 1E-10 for CE significance for five computation flows.
We used the Fisher’s exact test to estimate the significance
of enrichment of TF-TF interaction for all predicted pairs
of anchor-partner TFs. To avoid manipulations with too
small counts in Fisher’s tests we took in analysis ChIP-seq
datasets (a) with anchor TFs possessing at least 25 interac-
tors in a list from the Hocomoco database and (b) with at
least 15 predicted CEs in the ‘Any’ computation flow. These
criteria retained 52 datasets for 18 TFs.

Implementation

MCOT is implemented in C++ and can run in Linux and
Windows platforms. The computation time may vary from
several seconds to a few hours depending on the input data
size. Supplementary Figure S3 represents the MCOT run
time as a function of the total peak number and the mean
peak length. We performed these calculations for all 164
ChIP-seq datasets mentioned above.

RESULTS

Basic concepts of MCOT algorithm

CE with an overlap of TF binding sites implies that the mo-
tifs satisfy certain sequence constraints. Dealing with these
constraints is the main obstacle in identification of CEs with
an overlap within a single dataset. The crucial challenge is
the construction of a background profile of hits for a one
motif to test the hypothesis on the statistical independence
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Figure 3. MCOT algorithm scheme. Grey color highlights input and output data. Pink and blue colors imply observed and expected data. Motifs map-
ping in peaks (Recognition) is performed for five stringencies (see Figure 1A) and it prepares profiles of hits for both motifs. These profiles are used to
generate background profiles with mutually independent occurrences of anchor and partner motifs (Permutation). Observed and expected profiles of hits
for anchor/partner motifs are further used for CEs search. Fisher’s exact tests are applied to estimate CE enrichment and CE asymmetry (P-values) (see
Materials and Methods). Output data also incorporate P-value that characterizes the similarity of anchor and partner motifs.

of its co-occurrences in DNA with another motif (16). If
we fix hits of one motif, than the expected distribution for
spacer locations of another motif is uniform and it does
not depend on the structure of two motifs (21). Whereas
the respective expected distribution for overlap locations of
motifs is not uniform and it depends on the structure of
two motifs. As far as we know, up to now the modeling
of expected distribution of overlaps for two motifs is not
considered elsewhere. Hence, we fix a profile for one motif
and propose the permutation procedure for a profile of an-
other motif. This procedure preserves the number of hits
and their potential to self-overlapping (Figure 2; Materi-
als and Methods, Supplementary Data 1, Text 2). To per-
form a permutation we partition a profile onto (a) distinct
clusters that contain sole or overlapped hits and (b) spacers
between the clusters. Besides the hits number, the resulting
background profile preserves a clumping pattern of the fore-
ground profile, in particular (a) distributions of the number
of hits in clusters and of cluster lengths and (b) the distri-
bution of spacer lengths.

Additionally, we apply the systematic set of five threshold
ranges for motifs recognition. Thus, for a potential CE we
consider balanced and imbalanced combinations of motifs

conservation. This analysis of fine CE structure may facili-
tate an explanation of mechanism for particular CE action.

With these innovations we developed MCOT, a universal
tool for motifs co-occurrence study, that identifies in a sin-
gle ChIP-seq dataset CEs of various structure––homotypic
(anchor-anchor) and heterotypic (anchor-partner); with
different ratios of motifs conservation (Figure 1A), In-
verted, Everted, or Direct (Figure 1B); with a spacer or with
full/partial overlap of motifs (Figure 1C). The term ‘an-
chor’ refers to the immunoprecipitated TF in a ChIP-seq
experiment.

General description of MCOT algorithm

As an input data and parameters, MCOT requires (Figure
3): DNA sequences of a ChIP-seq dataset (peaks); the fre-
quency matrix for an anchor motif; the frequency matrix
for a partner motif or assignment of the library with mo-
tifs of potential partner TFs; the range of spacer lengths.
In this work, we used human/mouse motifs libraries from
Hocomoco database (30).

First, MCOT maps anchor and partner motifs in peaks
taking into account five threshold ranges for each motif
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(Figure 1A). Second, MCOT starts five parallel computa-
tion flows to identify five types of CEs: Any (spacer or over-
lap), Spacer (no overlap), Overlap, and Full/Partial (over-
laps) (Figure 1C). Third, for each peak, MCOT performs
the permutation procedure and generates background hits
distributions for both motifs (Figure 2). Finally, for each
computation flow and each combination of motifs conser-
vation, MCOT compares observed and expected frequen-
cies of CEs and estimates the significance of their enrich-
ment by the Fisher’s exact test (see Materials and Methods,
Figure 3, 2 × 2 table ‘CE enrichment’).

As an output data, for each anchor-partner pair of mo-
tifs MCOT provides (a) detailed statistics of significances
for CEs enrichment and their asymmetry (Figure 3, 2 × 2
tables ‘CE enrichment’ and ‘CE asymmetry’), and (b) pro-
files that show the fraction of peaks with specific mutual
orientation/location of motifs (Figure 4). The most com-
mon spacer/overlap length(s) for specific structural variant
of CEs may be interpreted as it most overrepresented ‘opti-
mal’ length(s).

An overlap of significantly similar motifs may imply a
false positive prediction. To discriminate respective CEs in
output data, MCOT provides a motifs similarity filter that
estimates the significance of match between anchor and
partner motifs (see Materials and Methods; Supplementary
Data 1, Text 1).

Reciprocal analysis of two ChIP-seq datasets

In this section, we verify MCOT capability to predict CEs
for known cases of combinatorial TF action. Additionally,
we compare MCOT results to the other tools that allow mo-
tifs overlaps. To show the robustness, we perform a recipro-
cal analysis of two ChIP-seq datasets (one for each partner
TF), obtained for the same cell/tissue type and conditions.
Below are the examples of MCOT application to ChIP-seq
pairs, which have already been analyzed for combinatorial
binding of the corresponding TFs previously. In this anal-
ysis, we retrieved both TF binding motifs by de novo motif
search (17) in the corresponding peak dataset. Hence, we
applied MCOT with the same pair of motifs to both ChIP-
seq datasets.

MCOT comparison to GEM. Previously, a comprehensive
pairwise analysis of 214 ENCODE ChIP-seq experiments
for 63 human TFs with GEM tool identified 390 potential
CEs (13). Among them the Jun/USF1 was the top-ranked
for K562 cells. The authors identified one structural CE
variant, Direct Jun/USF1 with an overlap of motifs. MCOT
analysis of respective ChIP-seq datasets (GSM935411 and
GSM803441, replicate 1) confirmed significant Jun/USF1
CEs with an overlap (P-value < 3E–22) in Jun peaks. More-
over, it distinguished four structural CE types instead of
one reported earlier (13) (Figure 4A). MCOT found Direct
USF1/Jun, Inverted, Everted and Direct Jun/USF1 CEs
with overlaps of 7, 6, 5 and 4 bp in 5.8%, 5.2%, 2.5% and
2.4% of peaks, respectively. The reciprocal MCOT analy-
sis with the USF1 anchor confirmed these structural types
of CEs (Supplementary Figure S4). Overall, MCOT de-
tected Jun/USF1 CEs in about 15.9% and 23.4% of Jun
and USF1 peaks. Another CE example, deduced for human

H1 embryonic stem cells by (13) and proven with MCOT
is RXRA/USF1 (Supplementary Figure S5). The recipro-
cal analysis of RXRA and USF1 datasets supported Direct
RXRA/USF1 and Inverted USF1/RXRA CE variants.

MCOT comparison to TACO. AR/FoxA1 is a well-known
example of a cooperative action of two TFs (12,39–41).
De novo motif search in AR peaks (40) from ChIP-seq
data for prostate cancer cells LNCaP treated with dehy-
drotestosterone (DHT) for 1 h identified a bipartite motif
AR-FoxA1. Bioinformatics analysis of DNAse I hypersen-
sitivity data for the same cell line with the method beyond
TACO tool (24) confirmed the enrichment of AR/FoxA1
CE with 4 bp spacer (12). MCOT analysis of AR peaks (40)
confirms CEs with spacers below 30 bp (P-value < 2E–7)
and detects the most common Direct AR/FoxA1 CE with 4
bp spacer (2.1% of AR peaks, Supplementary Figure S6A).
In addition, MCOT identifies other potential CE variants
(e.g. Everted with 7 bp spacer, 1.5%). Reciprocal analysis
of FoxA1 ChIP-seq dataset (40) confirmed the significant
AR/FoxA1 CEs with spacers (P-value < 4E–3) and over-
laps (P-value < 6E–5), the most common was Everted CE
with overlap of 3 bp (1.5% of peaks, Supplementary Figure
S6B).

Novel CEs predictions with MCOT. Next, we performed
CEs search for TF pairs with only proven genomic colocal-
ization. We checked potential CEs formed by STAT6, acti-
vated in course of alternative polarization of macrophages
with interleukin-4 (IL-4) treatment, and macrophage lin-
eage determining TFs CEBP�, JUNB, IRF8 and SPI1
(42). All ChIP-seq datasets were generated in mouse bone
marrow-derived macrophage (BMDM) cells treated with
IL-4 for 1 h (43). CEs with spacers formed by STAT6 an-
chor (GSM2845664) and all four partner motifs were sig-
nificant (Supplementary Figure S7). CEs with an overlap of
motifs were significant for CEBP�, IRF8 and SPI1. Over-
all, STAT6/SPI1 and STAT6/CEBP� were the most sig-
nificant. However, SPI1 and STAT6 motifs have shown
moderate similarity (P-value ∼ 0.051); therefore, we kept
only CEBP� (GSM2845732) for further analysis. There are
four most abundant structural variants of STAT6/CEBP�
CEs (Figure 4B): Inverted, Direct CEBP�/STAT6, Di-
rect STAT6/CEBP� and Everted variants had overlaps
of 8, 8, 10 and 10 bp; they were mapped in 2.2%, 1.9%,
1.2% and 1.0% of STAT6 peaks, respectively. Recog-
nition of STAT6/CEBP� CEs for the anchor CEBP�
motif confirmed the enrichment of these four CE vari-
ants (Supplementary Figure S8). Overall, MCOT detects
STAT6/CEBP� CEs in about 6.3% and 4% of STAT6 and
CEBP� peaks (Figures 4B, Supplementary Figure S8). Pre-
viously, it was shown that CEBP� cooperated with STAT6
for induction of the human Iε promoter (44), thus CEs
STAT6/CEBP� are promising for further analysis. Supple-
mentary Figure S9 shows another example of novel CEs
prediction for TFs RELA and IKZF1 with known ge-
nomic colocalization; previous analysis (45) have shown the
strong enrichment of sequence GGAA that was common
for both motifs. Respective two datasets were performed for
mouse BMDM cells with lipopolysaccharide (LPS) treat-
ment (45). MCOT analysis proved the significance of Di-
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Figure 4. Examples of predicted CEs. The reciprocal analysis of two ChIP-seq datasets: fine structure of Jun/USF1 CEs (A); novel CEs STAT6/CEBP�
(B). Analysis of a single ChIP-seq dataset: novel CEs ZNF341/STAT3 (C). Here we represent the analysis of Jun (A) and STAT6 (B) peaks, the respective
reciprocal datasets of USF1 and CEBP� peaks we provided in Supplementary Figures S4 and S8. In reciprocal analyses (A, B) we derived partner motifs
from the de novo motif search (17) in a ChIP-seq dataset for the respective TF; analysis of a single ChIP-seq dataset (C) meant extraction of a partner motif
from the Hocomoco database (30). In each panel, four charts respect to four mutual orientations of motifs within CEs (Figure 1B), the logo alignment
and the arrow point to the most abundant CE variant for each orientation. Axes X denote mutual locations of two motifs (Figure 1C), the ranges of
full/partial overlaps and spacers are marked with dark/light grey and white backgrounds. Axes Y denote the fraction of peaks that contains potential CE
with a specific mutual location and orientation.
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rect RELA/IKZF1 and Everted CEs in Any, Full, Partial
and Overlap computation flows in the reciprocal analysis;
MCOT reported the highest significance for full overlaps
of motifs. In total, about 16.5% and 15.6% of RELA and
IKZF1 peaks contained two major structural types of CEs.

A single ChIP-seq dataset analysis

Since MCOT results received with a reciprocal analy-
sis of ChIP-seq datasets for Jun/USF1, RXRA/USF1,
AR/FoxA1, STAT6/CEBP� and RELA/IKZF1 are con-
sistent; we consider that a single dataset is sufficient for
MCOT to produce relevant predictions of CEs with both
overlaps and spacers. Moreover, MCOT analysis confirms
and substantially supplements the previous knowledge on
the overrepresentation of CEs. It extends information re-
trieved by TACO and GEM tools, providing higher reso-
lution results wherein it requires a single dataset to run. In
this section, we illustrate MCOT application for CEs recog-
nition in a single ChIP-seq dataset, i.e. without requirement
of a priori knowledge about potential partners. To perform
massive analyses we used the Hocomoco database (30).
The lists of human/mouse potential partners comprised
396/353 motifs (see Materials and Methods). For each an-
chor motif, MCOT tested one homotypic (anchor-anchor)
and a multitude of heterotypic CEs (anchor-partner).

Newly studied TF: ZNF341 case study. ZNF341 is a
recently characterized regulator of immune homeosta-
sis in human (46,47). The ChIP-seq data on ZNF341
(GSE107719) were performed for Epstein-Barr virus trans-
formed lymphoblastic B cell lines. MCOT identifies 19 CEs
with an overlap and two CEs with a spacer (Supplemen-
tary Table S4, P-value < 0.05/25/396 ≈ 5E–6). The hierar-
chical classification of TFs (48) substantially supported in-
terpretation of predicted partner TFs. Among top-scoring
partner TFs that respected to CEs with overlaps of mo-
tifs we found the known regulator of immune homeosta-
sis STAT3. Recently, ZNF341 has been detected as a tran-
scriptional regulator of STAT3 (46,47). Thus, the predic-
tion of ZNF341/STAT3 CEs is important for further eluci-
dation of STAT3-mediated mechanisms of immune home-
ostasis. MCOT detected two major structural variants of
ZNF341/STAT3 CEs in ∼4.9% of ZNF341 peaks (Figure
4C), P-value < 3E–11 (computation flow ‘Overlap’). Over-
all, ZNF341 regulation of STAT3 gene (45) with ability to
simultaneously form the ZNF341/STAT3 CEs can form a
highly interconnected regulatory circuit for these two TFs.
Only two CG-rich partner motifs SALL4 and ZIC2 re-
spected to CEs with a spacer. This is in good accordance
with previous studies (46,47) where the extended ZNF-like
motif contained G-rich flanking sequence.

Well studied TF: RELA case study. TF NF-�B is a key
player in inflammation, cancer development and progres-
sion, thus being extensively studied (49). In order to in-
vestigate still largely unexplored responsiveness to inflam-
matory signals of the alternatively polarized macrophages
at the transcriptional level, ChIP-seq data (GSM2845659)
for LPS-activated subunit of NF-�B, RELA (p65), were
obtained (43) for mouse BMDM cells, treated with IL-4

and further with LPS. For RELA dataset MCOT iden-
tifies 39 CEs with an overlap and 14 CEs with a spacer
(Supplementary Table S5, P-value < 5E–6). The first rank
among TFs that respect to CEs with an overlap we found
for IKZF1 (Ikaros). Recent study (45) confirmed that
Ikaros is expressed in macrophages and may cooperate
with RELA participating in the complex transcriptional re-
sponse to pathogen challenge. Among other partner mo-
tifs that are involved in CEs with overlaps, we distin-
guished those for TEF-1 (TEAD1/2/4), HSF (HSF1/2),
STAT (STAT3/4/5A/6) and C/EBP (CEBPε/�/�) fami-
lies. Notably, the top-ranked partner TFs are IL-4-activated
STAT6 and lineage-determining macrophage TF CEBP�
(P-value < 8E–13 and P-value < 2E–9). Both TFs are
known to act in conjunction with NF-�B family members
(44,50). Moreover, the genomic colocalization of STAT6
and RELA peaks were detected in the original work (43).
RELA/STAT6 CE variants with 5–10 bp overlaps of mo-
tifs we found in 12.7% of RELA peaks (Supplementary Fig-
ure S10A). 8.2% of RELA peaks contained RELA/CEBP�
CEs with 6–9 bp overlaps of motifs. Additionally, ∼6% of
RELA peaks contained CEs with either a small overlap (1–
2 bp) or short spacer (3 bp or less) (Supplementary Fig-
ure S10B). A number of top-ranked partner TFs that re-
spect to CEs with a spacer (Supplementary Table S5) in-
clude TFs of above mentioned families C/EBP and STAT
and other to which macrophage lineage determining TFs
belong: ETS factors SPIB and SPI1, interferon-regulatory
factors IRF4/8, and bZIP factors JUN and FOS, which are
the subunits of AP-1 (42). AP-1 has been recently distin-
guished to facilitate RELA chromatin association by their
cooperativity in HeLa and MEF cells (51).

Both in case of newly (ZNF341) and well studied (RELA)
TFs MCOT is able to retrieve relevant predictions of CEs
of any structure. These predictions extend our knowledge
on the mechanisms of TFs functioning. Taken together, the
potential of MCOT to identify all possible CEs within a sin-
gle ChIP-seq dataset and without prespecified TF partners
makes it a beneficial tool for the routine studies of gene reg-
ulatory regions.

Benchmark ChIP-seq data collection

To test MCOT predictions, we collected 117 human and
47 mouse ChIP-seq datasets for 57 distinct TFs (Supple-
mentary Table S1). We retrieved potential partner motifs
from the Hocomoco database (30) as described above. The
whole lists of potential CEs for 164 mammalian ChIP-seq
datasets are available in Supplementary Tables S6–S9. Such
elements depending on the composition of binding TFs and
their affinity to distinct sites as well as the specificity of TF–
TF and TF–DNA interactions may be either cooperative or
competitive. The former implies that two TFs bind simul-
taneously and potentiate each other, while the latter means
exclusive binding of two TFs (5). Supplementary Figure S11
compares predicted CEs with overlaps of motifs and those
with spacers for subgroup of 37 human ChIP-seq datasets.

MCOT outperforms existing CE prediction methods

To compare MCOT predictive efficiency with previously de-
veloped tools we applied the benchmark dataset of 22 TF
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pairs that were compiled earlier for TACO tool verifica-
tion (24, see Supplementary Table S3 and Materials and
Methods). For these TF pairs we extracted 80 respective
ChIP-seq datasets (Supplementary Table S3) from the to-
tal pool of ChIP-seq data (Supplementary Table S1, Ma-
terials and Methods). Examples of output MCOT profiles
that show the percentage of peaks with specific mutual
orientation/location of motifs in TF pairs of the benchmark
dataset are listed in Supplementary Figure S12. For 21, 20
and 18 out of 22 TF pairs (95%, 91% and 82%) FP rates
were below 0.05, 3E–3 and 4E–4 (Supplementary Table S3,
Supplementary Figure S13). Earlier, Jankowski et al. (24)
proved that for the same benchmark dataset (Supplemen-
tary Table S3) TACO predicted ∼80% TF pairs with FP rate
∼0.1, while SpaMo (21) and iTFs (22) performed substan-
tially worse. We may conclude that MCOT revealed the best
performance among available CE prediction tools.

Validation of CE predictions by TF–TF interactions

To validate the predicted CEs we checked the hypothesis
that they respected to known protein-protein interactions
between anchor and partner TFs. We compiled the sub-
set of 52 human ChIP-seq datasets for 18 distinct TFs and
performed the Fisher’s exact test that checked the enrich-
ment protein-protein interaction between anchor and part-
ner TFs respecting to predicted CEs for five computation
flows (see Materials and Methods). Figure 5 illustrates that
∼65% of ChIP-seq datasets and 63% of anchor TFs respect
to the significant enrichment (P-value < 0.01) of known
protein-protein interactions of anchor and partner TFs re-
specting to predicted CEs (P-value < 1E–10). Supplemen-
tary Table S10 shows significances of the Fisher’s exact test
for five computation flows and 52 ChIP-seq datasets.

Massive analysis of abundance and asymmetry of CEs

To annotate the potential CEs with MCOT more thor-
oughly we demonstrate below how testing of various strin-
gencies for anchor and partner motifs may further clarify
the CE structure. MCOT applies five conservation levels for
each motif to identify CEs (see Materials and Methods).
Consequently, we may estimate the enrichment of CEs (a)
with more conservative anchor or partner motifs and (b)
with their similar conservation. We composed 5 × 5 tables
for all combinations of motifs conservation (Figure 1A) and
estimated overall significances for CEs with dominating an-
chor or partner motifs or for those with similar conserva-
tion (see Materials and Methods). Generally, anchor mo-
tifs of CEs were more conservative than partner motifs; this
imbalance was very substantial for anchor pioneer TFs (52)
FoxA1, SPI1 and CEBP� (Supplementary Figure S14).

For a certain anchor-partner pair, the most abundant pre-
dicted CEs may respect to a balanced stringency of anchor
and partner motifs, or one of the motifs tends to dominate.
To test which possibility happens, we applied the Fisher’s
exact test to check whether asymmetry of motifs conser-
vation in predicted CEs was significant (see Materials and
Methods). Mentioned above datasets for TFs RELA and
IKZF1 with proven genomic colocalization (45) illustrate
the robustness of prediction of asymmetry within CEs. Fig-
ure 6 shows the 5 × 5 tables for RELA/IKZF1 CEs with the

Figure 5. Confirmation of predicted CEs with known protein-protein in-
teractions between anchor and partner TFs. Axis X denotes the signif-
icance of the Fisher’s exact test that checks the enrichment of known
protein-protein interactions among anchor and partner TFs that respect
to predicted CEs. Axis Y marks ChIP-seq datasets for anchor TFs. The
dashed line denotes the Bonferroni-corrected threshold, P-value < 0.01.
This figure provides the experimental support for MCOT predictions.
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Figure 6. Asymmetry of motifs conservation within predicted CEs
RELA/IKZF1. The significance of CEs with an overlap of RELA and
IKZF1 motifs with anchor RELA (A) and IKZF1 (B) as a function of
motif conservation. Red/rose colors denote variation of stringency from
the most conservative (red, 1) to the most permissive (rose, 5). Light/dark
blue colors mark the significance of CE (P-value < 0.002) (see Materials
and Methods). This figure shows that irrespective to the selection of an-
chor motif in CEs RELA/IKZF1 the motif RELA is more conserved than
IKZF1 motif.

anchors RELA and IKZF1 for ‘Full’ computation flow. For
these anchors the asymmetry toward RELA motif is highly
significant, P-value < 2E-9 and P-value < 6E–11. The ap-
plication of the Bonferroni-corrected threshold P-value <
0.0033 (see Materials and Methods) revealed moderate sig-
nificances of asymmetry toward RELA motif P-value <
3E–3 and P-value < 2E–3 in ‘Any’ and ‘Partial’ compu-
tation flows for IKZF1 and RELA anchors, respectively.
Thus, irrespective to selection of anchor motif, we revealed
a profound asymmetry in conservation of the motifs with
substantially more conservative RELA motif.

We applied Fisher’s exact test to perform the massive
analysis of asymmetry between anchor and partner motifs
of predicted CEs (see Materials and Methods). We used
thresholds P-value < 5E-6 and P-value < 0.0033 for sig-
nificances of CEs and asymmetry within CEs. The abun-

dance of CEs with overlaps of motifs more than twice ex-
ceeds that of CEs with spacers (7292 versus 2956, Figure
7). We found that 41.2% of all predicted CEs with overlaps
have one participant significantly more conservative than
another (29.5%/11.6% had more conserved anchor/partner
motifs); while for CEs with spacers respective fractions are
lower 32.2% (22.1%/9.1%) (Figure 7). Since short spacers
may imply an overlap of two TF-DNA complexes, we re-
peated calculations for longer spacers and confirmed that
the fraction of asymmetrical CEs fell until 29.4%; on the
contrary, compared to all overlaps, full overlaps of motifs
increased this fraction up to 46.4%, while partial overlaps
decreased it until 37.0% (Supplementary Figure S15). The
lists of potential CEs with significant asymmetry of mo-
tifs for 164 mammalian ChIP-seq datasets are available in
Supplementary Tables S11–S14. Thus, the analysis of mo-
tifs conservation asymmetry provides a deeper insight into
mechanism of collaborative action of TFs.

DISCUSSION

Due to their structural and functional simplicity, CEs rep-
resent a convenient model to study complex mechanisms of
gene expression regulation provided by the crosstalk of mul-
tiple signaling pathways (5,8–10). Therefore, a comprehen-
sive search and structural characterization of such elements
is a tempting idea. However, due to an extremely high reg-
ulatory potential of DNA (53) in silico recognition of CEs
in complete genome sequences is still a challenging problem
in computational biology.

CEs prediction has been greatly simplified by recruiting
ChIP-seq datasets. This allows performing CEs search in
short genomic regions (100–1000 bp) where TF binding
takes place in vivo. Colocalization analyses of TF binding
calls derived from distinct ChIP-seq data sets represent a
popular group of approaches that give an idea about func-
tional interplay of TFs (16). If the binding events are pre-
dicted with a high spatial resolution (e.g. using the mo-
tifs mapping), such analyses allow a prediction and a de-
tailed structural characterization of the corresponding SEs
(Table 1) (13). However, in view of a multiplicity of TFs
in higher eukaryotes (e.g. over 1600 TFs in human, (54)
and considering the molecular machinery significantly rear-
ranges in a cell/tissue/organ/stage-specific manner, check-
ing all the pairs under different conditions requires myriads
of ChIP-seq experiments (26). Therefore, a comprehensive
in silico screening procedure capable of the maximum infor-
mation retrieval from a single ChIP-seq data set would be
indispensable both to guide co-occurrence studies, and to
design SELEX or ChIP-reChIP-seq experiments.

The major challenge for development of such screening
procedures is due to the limitations of the accessible null
models. For example, the available tools that apply analyti-
cal tests based on general null models, e.g. SpaMo (21) and
iTFs (22) fail to predict CEs with an overlap of TF bind-
ing motifs being thereby insufficiently informative. The use
of analytical tests with specifically selected background re-
gions to estimate a null model (e.g. TACO (12,24) allows a
comprehensive search of CEs but brings us back to the re-
quirement of multiple well-ordered datasets to be prepared.
Thus, a simulation of expected distribution appears a good



PAGE 11 OF 14 Nucleic Acids Research, 2019, Vol. 47, No. 21 e139

Figure 7. Abundance and asymmetry of predicted CEs with overlaps of motifs and with spacers. Abundance of heterotypic CEs with overlaps of motifs (A)
and those with spacers of length below 30 bp (B) as a function of the CE significance (axes X) and the significance of asymmetry in conservation between
anchor and partner motifs (axes Y), see Materials and Methods. The color keys show the CE abundance for 117/47 human/mouse ChIP-seq datasets (see
Supplementary Table S1). CEs consisted of an anchor motif and either of 396/353 partner motifs from the Hocomoco human/mouse libraries (30), see
Materials and Methods. CEs without the significant match of anchor and partner motifs (P-value > 0.05) were kept in analysis. This figure shows that
predicted CEs with overlaps compared to those with spacers are more abundant and more often comprise two motifs of various conservation.

alternative. To our knowledge, this idea has not been imple-
mented for motifs co-occurrence analyses so far.

To address this issue, we worked out an accurate per-
mutation procedure that (a) provided an independent mu-
tual positioning of the hits for a pair of motifs, wherein (b)
considered the sequence constraints required for the motifs
overlapping (Figure 2). Moreover, a background profile pre-
served such important characteristics of the foreground as
the number of the motifs hits in each peak and the cluster-
ing tendency of hits, thereby providing more realistic signif-
icance estimates than a background based on a general per-
mutation procedure would do (16). Using this algorithm to
generate a background, we developed the software package
MCOT for the comprehensive prediction of CEs in a single
ChIP-seq dataset. MCOT provides a universal possibility
to search for CEs consisting of both overlapping and non-
overlapping motifs in a single ChIP-seq data set, unlike the
other published tools (Table 1). Besides, MCOT provides
several original capacities (e.g. motifs similarity filter, a con-
venient classification of CEs structure, flexibility in terms
of motifs conservation within a CE and settings for spacer
length) that precise the results and simplify their interpreta-
tion.

Development of sophisticated background model pro-
vides MCOT capacity to substantially complement predic-
tions of spaced motifs of existing tools in a single ChIP-
seq dataset, e.g. SpaMo (21). In addition, MCOT suc-
cessfully predicts the known CEs with an overlap and

spacer (e.g. Jun/USF1, AR/FoxA1, Figures 4A, Supple-
mentary Figures S4–S6) that supports relevance of MCOT
predictions.

MCOT application to search for new CEs in a single
ChIP-seq dataset allowed obtaining intriguing results. For
ZNF341 or RELA ChIP-seq datasets MCOT predicts a lot
of promising potential CEs (Supplementary Tables S4 and
S5), most of them were not revealed yet. We would like
to emphasize that MCOT facilitates the studies for poorly
studied TFs, because the knowledge about TF’s potential
partners proposes the mechanistic insights of its action.
MCOT application to the ChIP-seq data for ZNF341, a re-
cently discovered regulator of immune homeostasis (46,47),
unveiled a combinatorial interplay of ZNF341 with other
immune homeostasis and cell fate TFs. Among them there
is an immune rheostat STAT3, which hyperactivation or in-
activation results in human disease like immunodeficiency,
autoimmunity and cancer (55). STAT3 has been shown be-
ing the ZNF341 target (46,47), thus MCOT predicts an exis-
tence of feedforward loop, wherein ZNF341 regulates tran-
scription of its partner for cooperative transcriptional reg-
ulation of immune defense.

The first ranked partner motif for RELA dataset in the
list of overlapping motifs respect to IKZF1 TF (Supplemen-
tary Table S4). Recent study (45) demonstrated that RELA
and IKZF1 may cooperate in macrophages during response
to pathogen challenge, but the co-occurrence of their motifs
have been not studied yet.
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An interplay between different TFs is crucial for tuning
transcriptional regulation during establishment and main-
tenance of cell phenotypes in metazoans and in response to
environment stimuli (1–4). On the genome-wide level, such
an interplay is provided by clustering of the correspond-
ing TF binding sites referred to as cis-regulatory modules
(CRMs) (56). The results of massive screen for potential
CEs within 164 ChIP-seq datasets support the idea of con-
strained clustering of the regulatory regions with CEs of
various structure (11,13). It has been proposed that CEs
with an overlap of TF binding motifs are widespread and
important from biological point of view (5,8,24).

The massive check of protein-protein interactions (37,38)
among participants of predicted CEs have shown that for
over 60% of anchor TFs and the same portion of ChIP-seq
datasets experimentally proved TF-TF interactions are sig-
nificantly overrepresented in predicted anchor-partner TF
pairs (Figure 5). Hence, the massive analysis of protein-
protein interactions between TFs that respect to partici-
pants of predicted CEs provides the experimental support
for MCOT predictions.

The analysis of motifs conservation within the most sig-
nificant CEs for two reciprocal ChIP-seq datasets of RELA
and IKZF1 have shown that independently of the selection
of an anchor motif, RELA motif had more conservative
motif than IKZF1 within CE (Figure 6).

MCOT application to 164 ChIP-seq datasets for 57 vari-
ous TFs have shown that abundance of potential CEs with
overlaps of motifs more than twice exceeds that of CEs with
spacers (Figures 7). This estimate also is supported by the
previous analysis (12). The comparison between asymmetry
within CEs with overlaps of motifs and those with spacers
allows propose that an overlap more commonly implied a
pair of ‘leading’ and ‘guided’ motifs with various conserva-
tion (Figure 7). The substantial difference of conservation
guarantees the steady mechanics of a step-by-step collabo-
rative regulatory action of multiple TFs on gene expression.
The analysis of the most comprehensive collection of 265
manually collected CEs from the TRANSCompel database
(57) have shown the significant negative correlation between
PWM scores of two motifs within CEs; this significance was
absent for a respective permuted data sample (10). Thus, the
theoretical analysis of the most comprehensive experimen-
tal CE collection supports MCOT massive screen of asym-
metry within predicted CEs between anchor and partner
motifs. This result confirms that MCOT predictions refer
to functional CEs.

CONCLUSIONS

• We have shown that a single ChIP-seq dataset is sufficient
for discovering of motifs co-occurrence with a spacer and
with an overlap;

• We developed the software package MCOT for the com-
prehensive prediction of CEs in a single ChIP-seq dataset;

• We validated the MCOT package with experimentally
and theoretically proven cases of motifs overlapping de-
rived from the reciprocal analysis of several pairs of two
ChIP-seq datasets;

• The massive analysis 52 ChIP-seq datasets for 18 human
TFs confirmed that for over 60% of datasets and anchor

TFs predicted CEs respected to known protein-protein
interactions of anchor and partner TFs;

• The massive analysis of 164 ChIP-seq datasets for 57
mammalian TFs revealed that CEs with overlaps of mo-
tifs compared to those with spacers were more than dou-
bled, and had 1.5 fold increase of asymmetric fraction
with one motif significantly more conservative than an-
other.
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MCOT is implemented in C++ on Linux and Windows
platforms and is available in the GitLab repository, https:
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