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Obesity and diabetes are leading causes of cardiovascular morbidity and mortality.

Although extensive strides have been made in the treatments for non-diabetic

atherosclerosis and its complications, for patients with diabetes, these therapies provide

less benefit for protection from cardiovascular disease (CVD). These considerations spur

the concept that diabetes-specific, disease-modifying therapies are essential to identify,

especially as the epidemics of obesity and diabetes continue to expand. Hence, as

hyperglycemia is a defining feature of diabetes, it is logical to probe the impact of the

specific consequences of hyperglycemia on the vessel wall, immune cell perturbation,

and endothelial dysfunction—all harbingers to the development of CVD. In this context,

high levels of blood glucose stimulate the formation of the irreversible advanced glycation

end products, the products of non-enzymatic glycation and oxidation of proteins and

lipids. AGEs accumulate in diabetic circulation and tissues and the interaction of AGEs

with their chief cellular receptor, receptor for AGE or RAGE, contributes to vascular

and immune cell perturbation. The cytoplasmic domain of RAGE lacks endogenous

kinase activity; the discovery that this intracellular domain of RAGE binds to the formin,

DIAPH1, and that DIAPH1 is essential for RAGE ligand-mediated signal transduction,

identifies the specific cellular means by which RAGE functions and highlights a new

target for therapeutic interruption of RAGE signaling. In human subjects, prominent

signals for RAGE activity include the presence and levels of two forms of soluble RAGE,

sRAGE, and endogenous secretory (es) RAGE. Further, genetic studies have revealed

single nucleotide polymorphisms (SNPs) of the AGER gene (AGER is the gene encoding

RAGE) and DIAPH1, which display associations with CVD. This Review presents current
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knowledge regarding the roles for RAGE and DIAPH1 in the causes and consequences

of diabetes, from obesity to CVD. Studies both from human subjects and animal models

are presented to highlight the breadth of evidence linking RAGE and DIAPH1 to the

cardiovascular consequences of these metabolic disorders.
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INTRODUCTION

We reported the discovery of the receptor for advanced
glycation end products (RAGE; gene name is AGER) in 1992
on account of this molecule’s ability to bind the products of
non-enzymatic glycation and oxidation of proteins/lipids, the
advanced glycation end products, or AGEs (1). AGEs are not
solely biomarkers of a hyperglycemic and pro-inflammatory/pro-
oxidative state; rather, they also play mediating roles in the
pathogenesis of diabetic complications, in large part through
their interactions with RAGE. Various AGEs are also generated
in highly heated and processed foods (2). Hence, AGE interaction
with RAGE ensues both from endogenously-formed AGE
adducts, as well as from dietary AGE sources. RAGE is
expressed on multiple types of cells, such as vascular cells,
immune cells, neurons, cardiomyocytes, adipocytes, glomerular
epithelial cells or podocytes, lung epithelial cells, and a wide
range of transformed cells, both in animal models and human
subjects (3–5).

The pivotal discovery in the biology of RAGE was the
finding that RAGE bound a diverse series of ligands beyond
AGEs, such as members of the S100/calgranulin family, high-
mobility group box 1 (HMGB1), lysophosphatidic acid (LPA)
and oligomeric forms of amyloid beta peptide (Aβ) and islet
amyloid polypeptide (IAPP) (6–10). These ligands bind to the
extracellular domains of RAGE in a heterogeneous manner;
although the extracellular V-type immunoglobulin (Ig) domain
binds to many of the ligand families, the binding sites on the
V-domain are multiple and spatially distinct. Further, ligands
may also bind at the extracellular C1 and C2-type Ig domains,
thereby further diversifying the complexity of the RAGE-ligand
interactions (11–14).

Soluble forms of the receptor have also been described (15).
Identified as “sRAGEs,” these forms of RAGE have been found in
plasma, and in other fluid compartments, such as synovial fluid,
cerebrospinal fluid, and bronchoalveolar lavage fluid, as examples
(15–18). There are two major forms of sRAGE that result from
distinct mechanisms. Most of the circulating sRAGE results
from cell surface-cleavage of the full-length receptor by species
such as matrix metalloproteinases (MMPs) and a disintegrin and
metalloprotease domain-containing protein 10 (ADAM10) (19).
G-protein coupled receptor (GPCR) activity has also been linked
to the production of sRAGE (20). The other form of sRAGE,
known as endogenous secretory or esRAGE, represents a less
prevalent form of the sRAGE in plasma and is a product of a
splice variant of AGER (21).

In the absence of endogenous kinase activity, the means
by which the RAGE cytoplasmic domain signals and impacts
transcriptional programs and cellular functions remained elusive

until the discovery that this RAGE intracellular domain binds
the formin, Diaphanous1 (DIAPH1), and that this interaction
is essential for RAGE signaling in multiple cell types (22).
The cytoplasmic domain of RAGE, particularly through its
amino acids R366/Q367, binds to the formin homology 1
(FH1) domain of DIAPH1; mutation of these amino acids to
alanine residues or knock-down of Diaph1 results in loss of
this binding and loss of RAGE ligand (but not non-RAGE
ligand)-mediated signaling in smooth muscle cells (SMCs)
and transformed cells, respectively (22, 23). Others, using
super-resolution stochastic optical reconstruction microscopy
(STORM) and single-particle tracking (SPT), independently
confirmed the interaction of the cytoplasmic domain of RAGE
with DIAPH1 (24).

In vivo, DIAPH1 has been linked to numerous in vivo
settings in which RAGE ligands and RAGE have been implicated,
such as neointimal expansion after vessel injury, hypoxia-
mediated damage, myocardial ischemia, diabetes-associated
nephropathy, cancer, responses to infection (such as Listeria
monocytogenes), and immune/inflammatory responses (25–33).
Key downstream effectors of DIAPH1 relevant to cellular
perturbation include activation of pathways such as the
following: RhoGTPases, such as CDC42, RAC1, and RHOA;
glycogen synthase kinase3β (GSK3β) and AKT; Rho-associated,
coiled-coil-containing protein kinase (ROCK), Serum Response
Factors (SRF); and SRF-dependent genes, such as Egr1, Tagln, or
c-fos (25–33).

In the sections to follow, recent findings linking RAGE to
both the pathogenesis and complications of diabetes, particularly
in the setting of cardiometabolic dysfunction and disease, will
be discussed. Recent developments in the generation of a
novel class of RAGE/DIAPH1 antagonists will be presented,
as well as opportunities for biomarking cardiometabolic
disease through the lens of the RAGE signaling pathway in
human subjects.

CVD, DIABETES, AND RAGE/DIAPH1

In both types 1 and 2 diabetes (T1D, T2D), CVD remains a
leading cause of morbidity and mortality (34–36). When diabetes
is combined with MI or stroke, the mortality rate for affected
patients is nearly doubled, leading to an estimated reduction in
life expectancy of ∼12 years (37). Beyond management of lipids
and blood pressure and modulation of life style, major gaps in
the therapeutic armamentarium in diabetes and CVD still exist,
underscoring the critical need for disease-modifying therapies for
these disorders. To follow is a review of common manifestations
of CVD and the links to the RAGE/DIAPH1 pathway.
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Atherosclerosis
Numerous studies have illustrated that RAGE is expressed in
both non-diabetic and diabetic atherosclerotic lesions in human
subjects, but that the expression is higher in diabetes and co-
localizes with markers of lesional oxidative and inflammatory
stress (38, 39). An ever-growing series of published work
associates RAGE with atherosclerosis, both in human subjects
and in animal models.

Studies in Human Subjects
Levels of sRAGEs have been extensively studied in human
subjects to test associations of the RAGE pathway to diabetes and
CVD. In a study of T1D subjects and healthy control subjects
studied at baseline (age 8–18 years) and after 5 years of follow-
up, levels of sRAGE and esRAGE declined with aging, in a
manner independent of sex, diabetes, or pubertal stage. In the
diabetic subject group, the levels of sRAGE and esRAGE were
positively associated with carotid intima-media thickness (IMT)
and baseline sRAGE was negatively associated with levels of C-
reactive protein (CRP) at the follow-up testing (40). The authors
concluded that high levels of baseline sRAGEmight protect from
inflammation 5 years later, but no protection from abnormalities
of arterial stiffness or wall thickness was noted (40).

Recent studies have probed if levels of sRAGE in patients with
metabolic dysfunction but without diagnosed diabetes provided
surrogatemarkers for incipient atherosclerosis. Levels of esRAGE
were examined in non-diabetic subjects withmetabolic disease, in
whom 1-h glucose tolerance testing (GTT) revealed a high serum
post-glucose load level of≥155 mg/dl. In these individuals, lower
levels of esRAGE and higher levels of RAGE ligand S100A12
were observed vs. control subjects, in whom 1-h post-glucose
load level was <155 mg/dl, in parallel with increased pulse wave
velocity (PWV) and carotid IMT (41). These data suggested
heterogeneity of metabolic dysfunction among subjects within
normal limits of glucose tolerance, which might be linked to the
RAGE pathway. In a separate study, subjects without a previous
history of diabetes were stratified into three groups: controls, pre-
diabetes, and new-onset T2D. The prediabetic subjects displayed
lower levels of esRAGE and higher levels of S100A12 compared
to controls; in the subjects with lower esRAGE, peripheral
blood mononuclear cells (PBMCs) demonstrated lower levels of
the esRAGE splice variant, suggesting that the lower systemic
levels of esRAGE could be accounted for, at least in part, by
lower transcription of this splice variant (42). Statistical analyses
revealed that age, glycosylated hemoglobin and esRAGE were the
major determinants of IMT and levels of S100A12 and blood
pressure (systolic) were the main determinants of PWV (42).

In a 3-year longitudinal study of 1,002 subjects with CVD, 933
underwent testing for sRAGE levels, which were then segregated
by quartiles. After 3 years follow-up, 16% of the subjects
demonstrated a new CVD event (MI, stroke, and CVD death).
The patients with the highest quartile of sRAGE displayed the
highest incidence of recurrent CVD events, even after correction
for confounders for CVD (43).

Collectively, these recent studies add to a large body of reports
on the relationship between sRAGEs and diabetes and CVD and
suggest the following insights: (1) High levels of sRAGEs may be

protective, at least in early stages of disease or, perhaps, in periods
of active exacerbation of acute CVD events; and (2) even after the
discernment of early metabolic vulnerability subsets in subjects
without diagnosed diabetes, the levels of sRAGEs may align with
markers of CVD risk. These considerations underscore that long-
term prospective studies in subjects without and with varying
degrees of metabolic dysfunction are required to fully test if the
levels of sRAGEs, including both sRAGE and esRAGE, correlate
with CVD predilection, first events and recurrent events.

Studies in Animal Models
Early in vivo studies in animal models of diabetes and
atherosclerosis were performed in mice devoid of Apoe and
rendered T1D-like with streptozotocin; these mice developed
accelerated atherosclerosis in the hyperglycemic state (44).
Daily treatment with recombinant sRAGE (by intraperitoneal
injection) resulted in a reduction in the development of
accelerated atherosclerosis in diabetic mice devoid of Apoe,
without effects on levels of glucose or lipids. In a distinct study,
treatment of diabetic mice devoid of Apoe with established
atherosclerosis with sRAGE resulted in halting the progress of
diabetic atherosclerosis (45). In mice devoid of Apoe or Ldlr, and
in transgenicmice expressing cytoplasmic domain-deleted RAGE
[in endothelial cells (ECs)] or in mice with global genetic deletion
of Ager, significant attenuation in atherosclerosis, irrespective of
the diabetic state, but particularly in animals with hyperglycemia,
was observed (46–48). Studies using transgenic mice in which
the cytoplasmic domain of RAGE was deleted in ECs revealed
prominent roles for EC RAGE in endothelial function and
signal transduction. RAGE ligands specifically upregulated
inflammatory markers, such as Vascular Cell Adhesion Molecule
1 (VCAM1) in ECs from wild-type aorta, but not in ECs lacking
the RAGE cytoplasmic domain (46). Bu and colleagues analyzed
the transcriptome of the aortas of mice devoid of Apoe with
or without simultaneous deletion of Ager in the T1D state. A
significant RAGE-dependent modulation of the ROCK1 branch
of the TGF-β signaling pathway in SMCs was uncovered in these
analyses, suggesting that SMC RAGE contributed importantly to
diabetic atherosclerosis in mice through ROCK1 signaling (47).

Key roles for myeloid Ager in diabetic atherosclerosis
were also uncovered through bone marrow transplantation
studies (49). In macrophages, RAGE ligand-RAGE interaction
significantly attenuated cholesterol efflux to APOA1 and HDL
and downregulated the cholesterol transporters Abca1 and
Abcg1, at least in part through PPAR-γ-dependent regulation
of these transporters in both murine bone marrow derived
macrophages (BMDMs) and human THP1 cells (50). Beyond
genes regulating cholesterol efflux, significant attenuation of
vascular inflammation was observed upon deletion of Ager in
diabetic atherosclerotic mice.

Vascular Calcification
Diabetes is associated with significant acceleration of vascular
calcification, due at least in part to the pathogenic effects of
hyperglycemia and oxidative stress (51–54).
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Studies in Human Subjects
The ligand-RAGE axis has been explored in vascular calcification
in human subjects. In 199 patients on hemodialysis in whom
vascular calcium scores were obtained (49.2% of the subjects had
diabetes), circulating levels of sRAGE were negatively associated
with calcium score independent of the level of S100A12 and
inflammatory markers (55). In non-diabetic subjects undergoing
hemodialysis, levels of esRAGE were significantly lower than
those of control subjects and correlated negatively with the
degree of aortic calcification (56). In SMCs isolated from the
saphenous veins of patients undergoing coronary artery bypass
grafting (CABG), exposure to high levels of glucose resulted in
NADPH oxidase- and Protein Kinase C-dependent translocation
of HMGB1 to the nucleus, which increased calcification through
an NF-κB-dependent regulation of bone morphogenetic protein
2 (BMP2) (57). Consistent with roles for RAGE ligands in
these processes, exposure of vascular SMCs to AGEs increased
calcification, at least in part through activation of p38 mitogen-
activated protein kinase (MAPK) (58, 59). Collectively, these
considerations suggest that RAGE signaling contributes to
vascular calcification in diabetic and non-diabetic settings,
presumably on account of the generation of RAGE ligands such
as AGEs and other pro-inflammatory/pro-oxidative ligands in
conditions such as advanced renal disease.

Studies in Animal Models
Studies in mouse models using various means to facilitate
calcification underscored roles for RAGE in these processes
in vivo. Mice devoid of Apoe or mice devoid of Apoe and
Ager were subjected to either chronic kidney disease (CKD)
or sham surgery and subsets of these animals were fed a
high phosphate diet. After 12 weeks of CKD, RAGE ligands
AGEs, and S100/calgranulins were increased in the serum of
the Apoe null mice with a significant increase in Ager mRNA
in the CKD vessels vs. controls. Vascular calcification was
increased in the CKD Apoe null mice, in parallel with increased
expression of Runx, which was lower in mice devoid of Ager
(60). In vitro, stimulation of SMCs with RAGE ligand S100A12
stimulated mineralization and osteoblast transformation, which
was inhibited byAger deletion in these cells (60). In other studies,
direct mediating roles for S100/calgranulins in the pathogenesis
of vascular calcification were illustrated by studies in which
transgenic mice overexpressing RAGE ligand S100A12 subjected
to CKD demonstrated increased vascular calcification through
NADPH oxidase-dependent mechanisms (61).

In valvular calcification (mitral valve and aortic valve)
associated with CKD, an upregulation of FGF23 in the heart and
vascular tissues was observed selectively in S100 transgenic mice
with CKD but not in CKD wild-type or CKD Ager null S100
transgenic mice, thereby implicating S100/RAGE in upregulation
of FGF23 and pro-inflammatory factors contributing to vascular
calcification (62).

In summary, the accumulation of RAGE ligands in
both diabetes and non-diabetes states of CKD exacerbates
vascular calcification, at least in part through RAGE. The
apparently potent mediating influence of the S100/calgranulins,
demonstrated directly through the study of S100-transgenic

mice, underscores the multi-ligand contributions of the RAGE
pathway to CVD and calcification.

Peripheral Arterial Disease
Peripheral arterial disease (PAD) is increased in patients with
T2D and contributes to amputations and substantial morbidity
and mortality in affected subjects (63, 64). Unlike cardio- and
cerebrovascular disease, PAD is not fully explained by traditional
risk factors, perhaps on account of the fact that endothelial,
neuropathic and immune/infection-related perturbations also
contribute importantly to this disorder and the frequent
accompaniment of impaired wound healing (65).

Studies in Human Subjects
Accumulating evidence links the ligand-RAGE pathway to
the pathogenesis of PAD (66). RAGE ligands S100A12 and
carboxymethyllysine (CML)-AGE are elevated in the circulation
of subjects with PAD vs. control subjects (67) and, interestingly,
in the infrainguinal vein tissue used for vascular grafting in this
disorder, the proportion of the tissue stained for AGE, CML,
RAGE, and S100A12 was similar in patients with and without
diabetes (67), suggesting that non-glucose-related factors also led
to the recruitment of the RAGE pathway in PAD. Examination
of levels of sRAGE in patients with CAD and/or PAD revealed
that the lowest overall levels were observed in patients with both
disorders (68) vs. either disorder alone, suggesting that the factors
mediating disease in both areas differed, at least in part.

In a population-based cohort study, levels of S100, RAGE
ligands, and esRAGE (collectively referred to as RAGE score)
were examined in 106 subjects with PAD with and without
amputation. The authors reported that higher levels of plasma
S100A12 and the overall RAGE score were associated with
shorter amputation-free survival in T2D patients, suggesting that
the RAGE pathway contributed to the severity of PAD (65).

Studies in Animal Models
These concepts have been tested in animal models of PAD, using
unilateral hind limb ischemia as a means to introduce ischemic
injury to the peripheral vascular system. In those studies, key
endpoints include angiogenesis responses and detection of blood
flow by Laser Doppler Imaging techniques. In a mouse model of
hind limb ischemia, using multimodal imaging with molecularly
targeted nanoparticles, a significant increase in RAGE expression
accompanied hind limb ischemia vs. the sham limb (69). Others
showed that RAGE imaging (using an anti-RAGE antibody
fragment) was enhanced in diabetic vs. non-diabetic hind limb
ischemia (70).

Global deletion of Ager and administration of anti-RAGE
antibodies have been shown to improve angiogenesis and blood
flow recovery in diabetic mice; in mice globally devoid of
Ager, the beneficial effects were observed in hind limb ischemia
induced in both diabetic and non-diabetic animals (71–73).

The model of hind limb ischemia underscored interesting
distinctions vis-à-vis RAGE signaling in atherosclerosis vs.
the peripheral vascular system. Whereas, it was shown that
immune cell content (macrophages and T cells) was significantly
reduced in the atherosclerotic lesions of diabetic Apoe null mice
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devoid of Ager vs. diabetic Apoe null mice expressing Ager
(47), macrophage content in the peak period of immune cell
infiltration into the ischemic hind limb was significantly higher
in Ager null vs. wild-type animals, in both the diabetic and non-
diabetic states (71). In parallel, the ischemic hind limb muscle
tissue of Ager null mice displayed significantly higher mRNA
transcripts for Ccl2 and Egr1, genes involved in inflammatory cell
recruitment and pro-inflammatory mechanisms (71).

Despite the apparent differences in RAGE impact on immune
cell content in atherosclerosis vs. hind limb ischemia, in both
settings, deletion of Ager (and administration of anti-RAGE
antibodies in T1Dmice subjected to hind limb ischemia) resulted
in reduced vascular disease. These findings underscore the
complexity and plasticity of RAGE signaling in immune cells in
distinct vascular depots and in in vivo conditions and suggest that
niche-specific cues regulate RAGE ligands and RAGE responses
in distinct forms of vascular injury.

Atrial Fibrillation
Cardiac rhythm abnormalities such as atrial fibrillation (AF)
accompany disorders of the cardiovasculature. It has been
suggested that the incidence of AF is higher in diabetic patients,
especially those with longer disease duration or poor glycemic
control and that RAGE ligand AGEs, through their ability to
increase stiffness, oxidative stress, and fibrosis contribute to this
phenomenon (74). Markers of the ligand-RAGE pathway were
investigated in human subjects with AF. When comparing 38
patients with AF vs. 59 in normal sinus rhythm, it was shown
that levels of fluorescent AGEs and sRAGE were higher in
the AF vs. control subjects, especially in non-diabetic patients
(75). The markers of AGEs and sRAGE correlated with left
atrial dimensions in that study (75). In a distinct study, levels
of plasma sRAGE and esRAGE were found to be higher in
Caucasian patients with persistent AF vs. paroxysmal AF (76). In
another study examining the effects of therapeutic intervention,
higher plasma levels of sRAGE were independently associated
with reduced rate of recurrence of AF after catheter ablation in
diabetic patients (77).

In contrast, in the Atherosclerosis Risk in Communities
(ARIC) study, 1068 participants were studied who had baseline
sRAGE values determined at the time of study entry. Multiple
measures of inflammation were also obtained in these subjects.
Compared to the highest quartile of sRAGE, the lowest quartile
of sRAGE was associated with the higher baseline levels of
inflammatory markers (hsCRP, white blood cell count and
fibrinogen). However, when viewed prospectively (6-year change
in inflammatory markers), there was no association with sRAGE.
Moreover, no significant associations of sRAGE levels were noted
with the risk for AF (78).

Collectively, these studies suggest that at least in certain
populations and certain conditions, levels of sRAGE may be
biomarkers for AF. More work is needed to definitively test
these concepts.

Thrombotic Disorders
There is published evidence suggesting links between diabetic
complications and thrombosis and platelet pathobiology.

For example, examination of mean platelet volume (MPV)
revealed that this measure was higher in human T2D subjects
with uncontrolled hyperglycemia and a statistically significant
association betweenMPV and albuminuria was also documented
(79). High levels of glucose were linked to increased NETosis
(neutrophil extracellular traps) and it is suggested that NETosis
is associated with T2D (80). In a meta-analysis of the adverse
outcomes occurring after Percutaneous Coronary Intervention
(PCI) involving >139,000 subjects, it was identified that short-
term stent thrombosis, but not long-term stent thrombosis,
was significantly higher in subjects with diabetes vs. the
non-diabetic control subjects (81). Others studied platelets
and their characteristics in diabetes and reported that in
T2D, significantly higher platelet activation and markers
of hypercoagulation were observed, with increased platelet
expression of GP11b/IIIa receptors (82). However, the MEGA
study (Multiple Environmental and Genetic Assessment) failed
to identify relationships between self-reported diabetes, fasting
levels of blood glucose, and venous thrombosis (83).

Emerging evidence links RAGE and at its ligands, AGEs,
S100/calgranulins, and HMGB1, to thrombosis and thrombotic
disorders. For example, increased expression of HMGB1 has
been observed in a number of thrombosis-related diseases such
as CAD, stroke, PAD, disseminated intravascular coagulation
(DIC), and venous thrombosis (84). The biology of HMGB1 is
complex in that, in addition to binding to RAGE, HMGB1 is also
a ligand for some of the toll-like receptors (TLRs) (85). Recent
studies have probed potential mechanistic links between RAGE
and thrombotic disorders.

Studies in Human Subjects
In the prothrombotic disorder known as anti-phospholipid
syndrome (APS), it has been established that one of the main
targets of the anti-phospholipid antibody is β2 glycoprotein 1
(or anti-β2-GP1). When platelets and monocytes obtained from
healthy human subject donors were incubated with anti-β2-
GP1, upregulation of RAGE was noted as well as altered cellular
location of HMGB1 (86). In serum studies, levels of sRAGE
and HMGB1 were significantly higher in patients with APS vs.
controls and there was a direct correlation between the levels of
HMGB1 and disease duration (86).

Other studies illustrated that HMGB1 binds to platelets
and that platelet activation resulted in upregulation of
RAGE expression and that HMGB1 was highly expressed
in platelet-rich human coronary artery thrombi (87). In ECs
obtained from human saphenous veins, incubation with AGEs
increased neutrophil adhesion and generation of reactive oxygen
species (ROS) and treatment with simvastatin reduced these
prothrombotic stimuli and reduced RAGE expression (88).
ECs from diabetic patients treated with simvastatin resulted in
reduced expression of RAGE, neutrophil adhesion and ROS
(88). However, other studies tested if the levels of platelet
HMGB1 were associated with outcomes in symptomatic CAD.
The authors reported that there were no differences in platelet
expression of HMGB1 when comparing patients with stable
CAD, unstable CAD, non-ST segment elevation myocardial
infarction (NSTEMI), or ST segment elevation myocardial
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infarction (STEMI) (89). Further, there were no correlations
between left ventricular ejection fraction (LVEF) amongst the
subjects that also suffered MI.

HMGB1 derived from platelets also affected monocyte
behavior; it was shown that HMGB1 trigged monocyte migration
via RAGE and suppressed monocyte apoptosis through a TLR4-
dependent activation of the MAPK pathway in these cells (90).
Hence, platelet HMGB1-RAGE interactions might impact on
distinct cell types, which collectively contribute to the increased
risk and severity of CVD.

Studies in Animal Models
In animal models, neutrophil-derived S100A8/A9, through liver
production of IL6, promoted production of thrombopoietin,
which resulted in reticulated thrombocytosis, was found to
be increased in diabetic animals, but reduced by lowering of
blood glucose using dapagliflozin or by blocking the binding
of S100A8/A9 to RAGE using paquinimod, in mice (91). These
authors correlated their findings in human diabetic subjects in
whom reticulated thrombocytosis correlated both with the levels
of glycosylated hemoglobin and S100A8/A9 (91).

Other studies in mice illustrated that disulfide HMGB1
facilitatedmonocyte recruitment and, through RAGE, stimulated
the formation of the prothrombotic NETs; this process then
exposed additional HMGB1 on their extracellular DNA strands
to propagate the prothrombotic effects of HMGB1 and
NETs (92).

Collectively, these studies link RAGE and its ligands to
platelet perturbation and to upregulation of prothrombotic
mechanisms, which are both associated with and independent
of diabetes, but linked to the complications of diabetes in the
cardiovascular system.

Myocardial Infarction
MI is a critical complication of diabetes, which occurs to
accelerated rates and degrees in patients with diabetes. Studies
in animal models have forged insights into roles for the ligand-
RAGE axis in the pathogenesis of diabetic CVD and MI.
Emerging insights from human subjects now link this axis to MI
as well.

Studies in Human Subjects
Studies in human subjects with MI and related CVD disorders
have been probed for the ligand-RAGE axis. In subjects
from Japan with T2D, baseline clinical, and biochemical data
were examined and prospectively evaluated for the association
between those parameters and CVD events over a mean follow-
up period of 5.6 years with 25 new CVD events reported during
that time. In a tertile analysis, the risk for CVD events rose
with increasing levels of sRAGE; a multivariate Cox proportional
hazards regression analysis showed that even after correction
for typical coronary risk factors, serum sRAGE levels remained
independently associated with CVD (93). In a registry of patients
enrolled during 2009–2011 with acute MI, the mean values of
fluorescent AGEs and CRP did not differ between diabetic and
non-diabetic subjects with MI; however, a direct association
between AGE levels and CRP was observed only in diabetic,

but not non-diabetic patients (94). In patients who had received
statins before their MI, however, this relationship disappeared
(94), suggesting that statin therapies might mitigate the impact
of proinflammatory stimuli. In a distinct study in patients with
acute coronary syndrome (ACS), plasma levels of sRAGE were
significantly lower in subjects with ACS vs. stable angina pectoris.
These authors showed, however, that in the subjects with ACS,
the levels of sRAGE did not correlate with the number of affected
vessels (95). These considerations suggest that sRAGEmight be a
biomarker of plaque destabilization but not necessarily the extent
of plaque burden in human CAD.

Others examined a group of subjects with T2D undergoing
sirolimus-stent PCI. The primary endpoint for the study was
the MACCE, or major adverse cardio-cerebral events, which
included the following: cardiac death, non-fatal MI or non-
fatal stroke during a 2-year period of follow-up. The secondary
endpoint of the study was the need for clinically-driven
repeat revascularization during the 2-year period. The authors
monitored levels of circulating glycated albumin and esRAGE
and found that both glycated albumin and esRAGE predicted
long-term clinical outcomes; specifically, elevated serum glycated
albumin and reduced esRAGE were associated with poor clinical
outcomes in this patient group (96). In a distinct study in
patients with T2D undergoing drug-eluting stent implantation,
the relationship between plasma levels of sRAGE and in-stent
restenosis were probed and measured at the time of the stent
implantation. The authors reported that plasma levels of sRAGE
were significantly higher in the T2D patients with in-stent
restenosis vs. control T2D subjects; interestingly, the levels of
glycosylated hemoglobin, CRP, and IGF-1 (insulin-like growth
factor 1) did not differ between the groups (97). When the
authors performed multivariate regression analysis, they found
that plasma levels of sRAGE and mean stent diameter <2.0mm
significantly predicted in-stent restenosis (97).

A critical complication of acute MI is the development of
cardiogenic shock. As it was shown that higher levels ofmonocyte
RAGE and lower levels of plasma sRAGE were linked to higher
mortality in cardiogenic shock, the effects on levels of MMP9
and Tissue Inhibitors of Metalloproteinases (TIMPs) were tested,
as MMPs have been shown to contribute to the production of
sRAGE through the cleavage of its extracellular domains. MMP9
activity was found to be increased in acute MI survivors but
reduced in subjects with acute MI who developed cardiogenic
shock (98). Further, MMP9 activity was found to correlate
inversely with RAGE expression on monocytes. Collectively,
the above considerations suggest that sRAGE might serve as
a biomarker in acute MI with respect to prognosis and that
maintenance of effective MMP9 activity may serve to stabilize
sRAGE production in MI complicated by cardiogenic shock.

With respect to RAGE ligand HMGB1, plasma levels of this
factor were shown to be related to infarct size and to residual left
ventricular function after MI (99).

Studies in Animal Models
Studies in the isolated perfused heart and in in vivo MI
triggered by occlusion/reperfusion of the left anterior coronary
artery in rats and/or mice have shown that blockade of RAGE,
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using either sRAGE or in genetically modified mice, that
is Ager null mice or transgenic mice expressing cytoplasmic
domain-deleted RAGE (in macrophages or ECs) is protective
against ischemia/reperfusion (I/R) injury in diabetic and non-
diabetic animals (100–102). In those studies, reduced infarct
size, reducedmyocardial necrosis, and increased cardiac function
and ATP recovery accompanied blockade of the RAGE axis.
In cultured cardiomyocytes, induction of hypoxia/reoxygenation
(H/R) stimulated RAGE-dependent activation of JNK MAP
kinase and dephosphorylation of GSK-3β, which was prevented
in cells devoid of Ager or upon treatment with sRAGE in wild-
type cardiomyocytes (103).

Others employed a rat model of MI and cultured
cardiomyocytes to study the S100/calgranulin-RAGE
interactions and showed that S100B via RAGE may contribute
to cardiomyocyte apoptosis via activation of ERK1/2 MAPK
and p53 signaling (104). In a distinct study in T1D mice,
coronary artery ligation was performed in wild-type and S100B-
deleted mice. Diabetes and MI induction each alone induced
expression of S100B and RAGE in the heart; but in the post-MI
myocardium, only in diabetic mice, the expression of S100B
was attenuated. In the diabetic S100B-deleted mice post-MI,
increased dilation of the left ventricle was noted compared to
diabetic wild-type mice, in parallel with increased impairment
of cardiac function, expression of GLUT4 and systemic levels
of AGE (105). Collectively, those studies suggested that S100B
expression may beneficially modulate cardiac metabolism post-
MI in diabetes. Distinct studies also implicated ligand HMGB1 in
experimental cardiac MI, at least in part through RAGE, in both
diabetic and non-diabetic animals (106). Hence, identification
of the timing of the actions of the specific RAGE ligands in
the chronic vs. acute setting appears to be essential in order to
discern the optimal conditions for RAGE antagonism in MI.

Finally, studies have begun to examine the potential roles of
the formin, DIAPH1, the cytoplasmic domain binding partner
of RAGE, in myocardial I/R injury. After induction of I/R
in wild-type mice, DIAPH1 expression was upregulated; in
cultured H9C2 and AC16 cardiomyocytes, H/R also upregulated
expression of DIAPH1 (32). Consistent with mediating roles for
DIAPH1 in myocardial injury, global deletion ofDiaph1 reduced
infarct size and preserved cardiac function after experimental MI
when compared to the Diaph1-expressing control animals. In
H9C2 cells, silencing of Diaph1 in H/R reduced expression of the
sodium-calcium exchanger and increased sarcoplasmic calcium
ATPase activity (32).

Fat Depots, RAGE, Obesity, and CVD
Recent work has highlighted roles for distinct fat depots, such as
brown adipose tissue, subcutaneous adipose tissue (SAT), visceral
(omental/epididymal), perivascular adipose tissue (PVAT), and
epicardial adipose tissue (EAT) in cardiometabolic fate in human
subjects and animal models. Intriguingly, RAGE contributes to
metabolic perturbation via its expression in multiple fat depots.

Studies in Human Subjects
In human omental adipose tissue, obesity was associated with
increased accumulation of CML-AGE RAGE ligand and RAGE

expression compared to lean individuals; interestingly, it was
reported that CML-AGE levels were reduced in the circulation of
obese subjects, which was proposed to be due to tissue trapping
of CML-AGE in the adipose tissue, at least in part on account
of higher RAGE expression (107). These decreased levels of
circulating CML-AGE were also shown to correlate with insulin
resistance (107).

Increasingly, epicardial adipose tissue or EAT has been
linked to CVD (108, 109). In 33 human subjects undergoing
open-heart surgery, EAT was retrieved for analyses. As RAGE
expression rose, increased EAT thickness, reduced expression
of GLUT4, adiponectin and glyoxalase1 (GLO1), and elevated
levels of HMGB1, TLR4, and MYD88 were observed (110),
suggesting that the ligand-RAGE axis may be associated with
EAT adiposity and metabolic dysfunction. In a distinct study,
SAT and EAT were obtained for RNA-sequencing from 5 T2D
patients with CAD and 3 subjects without CAD with or without
T2D undergoing cardiac surgery. 592 genes were differentially
expressed in diabetic vs. non-diabetic EAT; there were no changes
in the transcriptome between diabetic and non-diabetic SAT
(110). The diabetic EAT-associated genes were largely linked to
inflammation (IL1B and IL6); KEGG pathway analysis placed
these differentially-expressed genes in the TNF, NF-κB, andAGE-
RAGE pathways (110).

Imaging modalities have also been employed to track
epicardial fat volume (EFV), paracardial fat volume (PFV) and
perivascular fat (PVAT) in 66 consecutive patients (33 with
diabetes) and multivessel CAD included for study. In diabetes,
higher EFV was observed; at the transcript level, patients with
diabetes displayed significantly higher RAGE expression in
EAT (111).

Studies in Animal Models
Similar observations have been made in animal models; even
prior to the onset of high fat diet-induced obesity and the
development of insulin resistance in wild-type mice, RAGE
ligands are upregulated in the metabolic organs (112). On
account of these observations, the potential roles of RAGE in
diet-induced obesity were studied by feeding mice a high-fat diet
(60% kcal from fat).

In mice globally devoid of Ager, mice fed a 60% high-fat
diet were significantly protected from the gain in body mass
that accompanied the feeding of this diet in wild-type mice
(112). In parallel, the Ager null mice were protected from
insulin resistance that accompanied obesity in the wild-type
animals; this was determined both through insulin tolerance
tests (intraperitoneal injections of glucose) and through the
hyperinsulinemic euglycemic clamp (112). Indirect calorimetry
studies revealed that food intake did not differ between the two
genotypes of mice fed the high-fat diet, but energy expenditure
was significantly higher in the mice devoid of Ager vs. the
control animals. Pharmacological blockade of RAGE, using
sRAGE, in wild-type mice, significantly suppressed weight gain
when compared to vehicle upon introduction of sRAGE either
immediately at the time of the high-fat diet feeding or 3 weeks
after the initiation of the high-fat diet (112). These results led
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to the direct testing of roles for RAGE in regulation of energy
expenditure, focusing on the adipocyte.

Ager floxed mice were bred into the Adiponectin (Adipoq)
Cre recombinase background, which resulted in deletion of
Ager in both brown and white adipose tissue adipocytes. These
mice were significantly protected from high-fat diet-induced
obesity and from cold-induced loss of body temperature when
compared to Ager floxed control mice, in which RAGE was
expressed in the adipocytes (113). The underlying mechanisms
were traced to RAGE ligand-RAGE-dependent suppression of
lipolysis and thermogenic programs (such as expression of
Ucp1) in these settings, through reduced phosphorylation of
p38 MAP kinase and hormone sensitive lipase (HSL) (113).
On account of the fact that the Adipoq Cre recombinase mice
could not discern mechanistic roles for RAGE in white vs.
brown adipose tissue, adipose tissue transplantation of either
brown or subcutaneous white adipose tissue from these mice,
or their controls, were introduced into wild-type mice C57BL/6J
recipients. Transplantation of adipocyte Ager-deficient brown
or subcutaneous white adipose tissue protected the recipient
mice from obesity induced by high-fat feeding via upregulation
of thermogenic programs. Interestingly, in both cases, the
native brown or white adipose tissue of the recipients of the
Ager-deleted adipocytes (white or brown) displayed increased
expression of UCP1 protein by immunostaining, suggesting
that the transplanted tissue conferred its beneficial effects, at
least in part through paracrine mechanisms that directly and
beneficially affected the native brown and subcutaneous white fat
depots (113).

Collectively, these results identified a natural function for
RAGE in energy conservation mechanisms and suggested that
the cardiometabolic effects of the RAGE signaling pathway are
active even before the development of T2D.

Increasingly, studies in human subjects demonstrate genetic
associations of AGER and DIAPH1 SNPs to disease. In the
sections to follow, we detail the findings on AGER and DIAPH1
SNPs in cardiometabolic disease.

RAGE AND DIAPH1 AND
SNPS—DEEPENING THE CONNECTIONS
TO HUMAN SUBJECTS

AGER SNPs
Multiple SNPs of the AGER gene have been described; among
the most common include the following: rs2070600, rs1800624,
rs1800625, rs184003, and a 63 bp deletion (114, 115). The
rs2070600 represents the nucleotide change 244G>A and at
the amino acid level, Gly82Ser (114). This AGER SNP was of
particular interest on account of the fact that the Gly82Ser is
within the V-type Ig domain, that is, the extracellular domain
encompassing much of the ligand binding capacity (116).
Structurally, the Gly82Ser SNP promotes N-linked glycosylation
of Asn81, which is important for RAGE ligand binding (117).
Indeed, in vitro, cultured cells bearing the RAGE 82S allele
displayed enhanced binding affinities for RAGE ligands in the
S100/calgranulin family, and upon RAGE ligand stimulation,

exaggerated expression of cytokines and MMPs was observed
in G82S- vs. G82G-transfected cells, suggestive of an amplified
inflammatory response (116). With respect to human subjects
and inflammatory disease, a case-control study revealed that
there was an increased prevalence of the 82S allele in patients with
rheumatoid arthritis (RA) compared with control subjects (116).

Other SNPs, specifically, rs1800624 (-388T>A), rs1800625
(-442T>C), and rs1051993 (-1435G>T); and a 63 base pair
deletion (-421_-359) reflect promoter variants and rs184003
(822+49G>T) affects intron 7–8 (114).

Review of the literature suggests that the links of AGER SNPs
to cardiovascular disease (CVD) may be dependent on ethnicity
(114). For example, extensive studies in the Chinese Han
population suggested that the rs2070600 SNP was significantly
associated with increased risk of all-cause mortality and acute
myocardial infarction (MI) (118). Ma and colleagues performed
a meta-analysis of 16 eligible studies reporting on rs2070600 SNP
and CVD; they reported an association between this SNP and
coronary artery disease (CAD) and ischemic stroke (IS) in the
Chinese population, but not in non-Chinese populations (119).
Until studies examining larger groups of subjects are examined
to fully test this AGER SNP and potential relationships to CVD,
studies of these specific populations in Chinamay, therefore, shed
light on mechanisms of RAGE-dependent predilections to CVD.

DIAPH1 SNPs
Compared to AGER, at least to date, less is reported with respect
to DIAPH1 SNPs and human disease. However, a report linked
a DIAPH1 SNP to a blood-related disorder. The R1213∗ variant
of DIAPH1 was associated with sensorineural hearing loss and
a disorder of platelets, called macrothrombocytopenia (MTP),
in which cytoskeletal abnormalities in megakaryocytes (platelet
precursors) and platelets were described (120). This mutation,
which affects the autoregulatory domain of DIAPH1, results in
constitutive activation of DIAPH1 (120).

Recently, DIAPH1 SNPs were linked to stroke. One of the
DIAPH1 SNPs, Rs7703688T>C was significantly associated with
increased risk of ischemic stroke, p = 4.139 × 1012, which was
further validated in an additional group (121). Further, in a small
artery occlusion (SAO) subtype of stroke, DIAPH1 expression in
affected tissue displayed trends to increased levels in subjects with
the rs25019 genotype, ptrend =0.048 (121). These findings add
to the connections between DIAPH1 and human subjects in the
context of CVD.

Collectively, these data, from animal models and human
subjects suggest roles for RAGE/DIAPH1 in cardiometabolic
disease. Hence, efforts to target RAGE pharmacologically might
provide substantial benefit in obesity, metabolic dysfunction,
diabetes, and diabetic complications.

TARGETING RAGE THROUGH BLOCKADE
OF RAGE-DIAPH1 INTERACTION

As indicated earlier in this review, the extracellular domains of
RAGE (V, C1, and C2-type Ig domains) bind the diverse classes of
ligands in distinct sites; although the V-type Ig domain is the chief
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FIGURE 1 | RAGE binds DIAPH1: effect of a small molecule antagonist. Both DIAPH1 and a small molecule RAGE antagonist bind to the proximal sites on the RAGE

cytoplasmic domain, suggesting a mechanism of RAGE inhibition. Interaction surfaces of DIAPH1-RAGE [see (23)] (A) and small molecule RAGE antagonist-RAGE

[see (124)] (B) are mapped onto a solution structure of RAGE cytoplasmic domain (PDB code 2lmb). Affected residues are labeled. The residues are numbered based

on the full length RAGE.

site for ligand interaction, the C1- and C2-type Ig domains are
reported to bind ligands as well (11–14). Hence, it was perhaps
not surprising that the small molecule known as Azeliragon failed
to show benefit in a Phase III clinical trial in Alzheimer Disease
(AD) for subjects with mild cognitive impairment (MCI) when
compared with placebo-treated patients (122). In AD, beyond
RAGE ligand Aß, it is known that multiple classes of pro-
inflammatory and pro-oxidative RAGE ligands are enriched in
the AD brain (123, 124).

In this context, the demonstration of the binding of the RAGE
cytoplasmic domain to DIAPH1 in a discrete manner, with a
binding pocket <200 Å, paved the way for the development of
small molecule antagonists for this interaction as a means to
block RAGE signaling (23). Accordingly, a 59,000 small molecule
library was screened to identify inhibitors of the interaction of
the RAGE cytoplasmic domain with DIAPH1; 11 such molecules
were reported on the basis of their ability to bind to the RAGE
cytoplasmic domain and block DIAPH1 binding (Figure 1); the
ability to block RAGE ligand-mediated signaling stimulated by
multiple different classes of ligands; the ability to block RAGE
ligand, but not non-RAGE ligand-mediated cellular migration in
SMCs; the ability to reduce I/R injury in the isolated perfused
heart model; and the ability to block the proinflammatory actions
of RAGE ligands (CML-AGE) injected into wild-type mice
(125). Further development and refinement of the key scaffolds
identified from that work is underway at this time. If successful,
such efforts may result in the development of a novel class of
RAGE antagonists.

PERSPECTIVES AND CHALLENGES

Despite multiple advances for therapeutic interventions in
CVD, gaps in therapies remain for subjects with diabetes, in
whom traditional treatments do not afford the same degree of
protection as they do in non-diabetic subjects. In this context, the
identification of diabetes-specific disease-modifying pathways is
essential to fill the chasm in therapeutic opportunities for patients
with diabetes. Further, the identification of the optimal timing for

intervention with disease-modifying agents is essential in order
to maximize potential benefits, even if preventive therapies are,
ultimately, deemed more realistic, as they are for hyperlipidemia
and hypertensive disorders, for example.

Hence, in diabetes, it is logical that targeting the consequences
of the defining feature of the disorder, that is, hyperglycemia,
may yield benefit. The acute and long-term effects of high
glucose, manifested in part by the formation of AGEs, is one
such target. As AGEs form and accumulate both endogenously
and through dietary ingestion, and as AGEs represent a highly
heterogeneous class of structures, the direct targeting of AGEs
may be challenging. For this reason, antagonizing the cellular
effects of AGEs may be more comprehensive and feasible.
Complicating this notion, however, is the finding that the chief
receptor for AGEs, RAGE, is a multi-ligand receptor whose
ligands display significant promiscuity in their binding modes
to the extracellular domains of RAGE. Thus, inhibiting the
interaction of the RAGE cytoplasmic domain with DIAPH1 may
reflect a superior approach by curating the effects of diverse
ligands signaling through RAGE/DIAPH1. Indeed, significant
advances in the development of protein-protein interaction
inhibitors (PPI) in other settings bolster promise for this
proposed approach (126, 127).

Of note, studies in human subjects underscore that the
measurement of the levels of sRAGE and/or esRAGE might
provide a biomarker to track the activity of the RAGE pathway
(Figure 2). In chronic disease without exacerbation, the levels
of sRAGEs appear, in general, to be lower than those in control
subjects. However, it is plausible that in exacerbations of chronic
disease, such as acute cardiac events, levels of sRAGEs might rise,
perhaps in response to increased MMP and ADAM activities,
although these relationships remain to be definitively discerned.
It is clear, however, that studies testing both sRAGE and esRAGE,
in a serial manner, prior to and at the time of and after acute
cardiac events will be required to fully discern the reasons for the
apparent variability of these markers.

Beyond immediate benefits for antagonizing RAGE/DIAPH1
in cardiometabolic disease in the periphery, it is plausible
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FIGURE 2 | Schematic representation of the ligand-RAGE-DIAPH1 axis and its role in diabetic cardiometabolic complications. The receptor for advanced glycation

end products (RAGE; gene name is AGER) mainly acts through its known ligands, such as AGEs, HMGB1, S100 family of proteins, LPA, and Aβ, which bind the

RAGE extracellular domains. The cytoplasmic domain of RAGE interacts with its cytoplasmic effector protein, Diaphanous1 (DIAPH1), thereby activating multiple

downstream regulators and stress responses, as illustrated in the figure. Cellular stressors such as inflammation, oxidative stress, endothelial dysfunction, and

necrosis amongst others, are well-known induce cardiovascular and metabolic complications such as atherosclerosis, vascular calcification, peripheral artery disease,

atrial fibrillation, thrombotic disorders, myocardial infarction, and obesity. In contrast, soluble forms of RAGE, including sRAGE, that results from cell surface-cleavage

of the full-length receptor by Matrix Metallopeptidase-9 (MMP9) and A Disintegrin And Metalloproteinase Domain-Containing Protein-10 (ADAM10), and esRAGE, a

product of a splice variant of AGER, have been demonstrated to show a protective role in cardiometabolic complications, at least in part, by preventing the RAGE

ligands from binding to the cell surface receptor, and, therefore, reducing the RAGE-DIAPH1 signaling activation. Hence, currently identified potential therapeutic

targets include blocking the binding of the ligands to the receptor and by interruption of the RAGE-DIAPH1 interaction.
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that targeting the diverse signaling platform through DIAPH1
and stimulated by RAGE ligands may be broadly beneficial,
including in the central nervous system. Beyond AGEs
and proinflammatory ligands, RAGE is also a receptor for
oligomeric forms of Aß, which is strongly implicated in the
pathogenesis of AD (128). The relatively recent designation
of VCID, or “vascular contributions to cognitive impairment
and dementia” culls the collective impact of aging, age- and
lifestyle-related disorders (such as hyperlipidemia, hypertension,
elevated fasting blood glucose, and obesity) and AD into a
schema that suggests that these disorders may complicate and
exacerbate each other, with a final common manifestation of
“dementia” (129–131). Potentially biomarked by “white matter
hyperintensities” or WMHs by imaging techniques, VCID may
represent the product of the sum total of vascular/cognitive
risks in individuals. It was recently shown that DIAPH1 is
upregulated in the brains of AD vs. age-matched control
human subjects; that its expression co-localizes with that of
RAGE; and that the AD-specific upregulation of DIAPH1
was localized to microglia (132), the endogenous/resident yolk
sac-derived immune/inflammatory cells of the brain. In this
context, the demonstration of roles for RAGE ligands/RAGE
in pathological aging, vascular and cognitive disturbances may
suggest broader benefits for RAGE/DIAPH1 antagonism in aging
and cardiometabolic disease.

In summary, the identification of fundamental roles for RAGE
in energy conservation mechanisms, which go awry in nutrient
excess, thereby contributing to the development of obesity in
high-fat feeding inmice; and in the propagation of chronic tissue-
damaging pro-inflammatory mechanisms, lay the framework for
the potential benefits for RAGE antagonism both in the causes
and consequences of diabetes and its complications, particularly
in CVD. Despite the finding that the highest levels of RAGE

expression are in the lung, a plethora of evidence suggests
that RAGE plays pathogenic roles in this organ, as RAGE is
implicated in such disorders as allergic airway inflammation
and asthma, pulmonary fibrosis, lung cancer, chronic obstructive
pulmonary disease, acute lunginjury, pneumonia, cystic fibrosis,
and bronchopulmonary dysplasia (133). We speculate that
therapeutic interruption of RAGE, post-development and in the
setting of the mature lung, and with partial antagonism to be
achieved by pharmacological means, is very likely to be safely
tolerated in the lung and in the overall organism. Further, the
observations that deletion of Ager is protective in polymicrobial
sepsis, massive liver injury and in most forms of infection (134,
135), at least in animal models, suggest that targeting RAGE
may, on balance, exert salutary benefits in chronic diseases such
as diabetes. These concepts remain to be tested definitively in
human subjects with diabetes and cardiometabolic disease and
the results of these investigations are eagerly awaited.
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