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ABSTRACT
Purpose: To define robust miRNA-based molecular classifiers for human clear 

cell renal cell carcinoma (ccRCC) subgrouping and prognostication.

Experimental design:  Multidimensional data of over 500 clear cell renal cell 
carcinoma (ccRCC) patients were retrieved from The Cancer Genome Atlas (TCGA) 
archive. Data analysis was based on a novel computational approach that selectively 
considers patients with extreme expression values of miRNAs to detect survival-
associated molecular signatures.

Results: Our in silico analysis unveiled a novel ccRCC-specific 5-miRNA 
(miR-10b, miR-21, miR-143, miR-183, and miR-192) signature able, when 
combined with information from conventional TNM staging and the age of the 
patient, to prognosticate ccRCC outcome more accurately than known ccRCC miRNA 
signatures or TNM staging alone. Furthermore, our approach revealed the existence 
of 6 distinct subgroups of ccRCC characterized by discrete differences in overall 
survival, tumor stage, and mutational spectra in key ccRCC tumor suppressor genes. 
It also demonstrated that BAP1 mutations correlate with tumor progression rather 
than overall survival.

Conclusion: Integrated analysis of multidimensional data from the TCGA archive 
allowed to draw a portrait of distinct molecular subclasses of human ccRCC and to 
define signatures for prognosticating disease outcome. Together, these results offer 
new prospects for more accurate stratification and prognostication of ccRCC.

INTRODUCTION

Renal cell carcinoma (RCC) is a frequent malignancy 
affecting nearly 300,000 individuals worldwide [1]. The 
most common subtype is clear-cell renal cell carcinoma 
(ccRCC) which accounts for 70–80% of all renal 
malignancies [2]. Recent advances in the genomic analysis 
of ccRCC revealed extensive tumor heterogeneity [3, 4]. 
This poses a formidable challenge to complement the 
currently most accepted clinical decision making basis, 
the TNM staging [5] with molecular signatures derived 
from genomic analyses for prognostication and prediction 
of ccRCC outcome and response to therapy, respectively.

MicroRNAs (miRNAs) are a class of small 
non-coding RNAs that are increasingly considered as 

molecular biomarkers for tumor diagnosis, prognosis, and 
prediction [6]. In ccRCC, several miRNAs have been 
identified and associated with specific aspects of ccRCC 
biology. For example, a 11-miRNA signature has been 
suggested to distinguish between ccRCC and normal 
tissue [7] and other miRNA signatures have been linked 
to metastases, recurrence, prognosis, or RCC subtypes 
[8–14]. Remarkably, the overlap between these signatures 
is almost inexistent. A common methodology to these 
studies is to group patients into two categories based on 
pathological features—such as normal vs. tumor tissue, 
overall survival, tumor stage, or presence of metastasis—
and to identify miRNAs that are differentially expressed. 
While this methodology is valid for binary variables 
such as presence of metastasis, it becomes inappropriate 
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for continuous data such as overall survival or disease-
free survival [15]. Also most studies rely on a rather 
small number of samples. With respect to the latter, 
the Cancer Genome Atlas (TCGA) Research Network 
recently provided a comprehensive molecular description 
of more than 500 ccRCCs and over 60 matching normal 
controls with respect to genomic alterations, RNA 
and proteomics signatures, DNA methylation profiles 
and clinical and pathological features [16]. Data were 
collected through several studies across more than ten 
different institutions, creating thus a robust, diverse, 
and unique dataset of ccRCC samples. Through in silico 
analysis of their comprehensive genomic data sets, they 
were able to identify four major patient clusters with 
different outcomes and characterized by a 4-miRNA 
signature [16].

Here we re-analyzed these TCGA datasets on 
ccRCC with a new computational approach and assessed 
its performance through the concordance index, avoiding 
thus the continuity issue associated with survival variables. 
Our analyses identified novel miRNA signatures linked to 
patient subclassification and survival. The latter, when 
combined with patient’s age and conventional TNM-based 
staging information, allows prognostication of ccRCC 
with superior power over published molecular signatures 
or the TNM stage information alone.

RESULTS

Identification of miRNA clusters associated with 
overall survival in ccRCC

To identify miRNAs linked to patient survival, we 
used TCGA datasets of over 500 ccRCC patients that 
we split into training and validation cohorts based on 
the respective miRNA-sequencing technology, yielding 
252 patients in the training cohort and 261 in the 
validation cohort. We then asked whether low or high 
levels of a given miRNA had a significant correlation with 
a patient’s overall survival. For each miRNA, patients 
were first separated by expression level quartiles of the 
given miRNA. Then, the overall survival of the patient 
group characterized by low expression of the miRNA—
below the first quartile—was compared to the survival 
of the patient group with high expression levels—above 
the third quartile—through a log-rank statistical test. 
Using this new methodology, we identified 65 miRNAs 
that were statistically linked to overall survival 
(pFDR < 0.1; Supplementary Table S1). Among them, 
32 were also significantly associated to overall survival 
in the validation cohort (  p-value of log-rank test < 5%). 
A clustering procedure revealed the presence of 5 distinct 
miRNA clusters, which were best represented by miR-21,  
miR-146b-3p/5p, and miR-155 for cluster 1, miR-1 and 

miR-143 for cluster 2, miR-10b for cluster 3, mir-194-3p 
and miR-192-3p/5p for cluster 4, and miR-182, miR-183, 
and miR-221 for cluster 5 (Fig. 1). Note that although 
published miRNA signatures overlap with our set of 
65 miRNAs, none has miRNAs in more than 3 of the 5 
identified clusters.

miR-21, miR-10b, miR-143, miR-183, and miR-
192 define a prognosis signature in ccRCC

A list of miRNAs that significantly affect survival 
is a mandatory step to build a prognosis method but is, 
in itself, not sufficient. The most common methodology 
is to perform a multivariate Cox regression on a selected 
few miRNAs and use the Cox coefficients to build a risk 
score [11, 17–19]. Additionally, we assessed the accuracy 
of a prognosis method through the Concordance index 
(c-index), a standard approach that computes the rank 
concordance between a risk value and the survival time 
and avoids thus the arbitrary stratification of patients into 
high- and low-survival groups [20–22]. Building on that, 
we identified 5 miRNAs, representative of the previously 
identified 5 miRNA clusters, that are best able to predict 
overall survival in the training cohort. That is miR-21, 
miR-10b, miR-143, miR-183, and miR-192, which will 
be further referred to as the “top miRs” signature. All of 
them have been reported to play a role in cell proliferation 
or metastasis but miR-192 and miR-183 have never been 
included in a miRNA signature for ccRCC. In that respect, 
miR-192 is of primary interest as it has been well studied 
but never reported as a potential biomarker for ccRCC. 
A correlation analysis on gene expression confirmed 
the regulation of miR-192 by HNF1A (Pearson’s rho 
of 0.59) as reported by Khella et al. [23] however 
proposed targets, such as FZD6, show a weak correlation 
in the TCGA data (Pearson’s rho of −0.31). Among 
the top 5 negative correlation in the training cohort, 
only TPM4 (tropomyosin 4, Pearson’s rho of −0.43) 
and DBN1 (drebrin 1, Pearson’s rho of −0.42) had a 
potential 3’-UTR binding reported by miRWalk2.0 [24]. 
Both proteins have relations with the actin cytoskeleton 
[25, 26], which strengthens the hypothesis that miR-192 
is involved in the epithelial-mesenchymal transition and 
metastases [23, 27].

When compared to other published miRNA 
signatures on the validation cohort, our “top miRs” 
signature outperforms all other, to the exception of 
Wu et al.’s, in terms of overall survival prediction 
(Fig. 2A). Of note, it surpassed all other signatures in 
the training cohort (Supplementary Fig. S1A). However, 
with respect to tumor stage and metastasis, one observes 
that our “top miRs” signature is superior to all other 
signature for early-stage patients and for late-stage 
patients with metastases, and only slightly inferior to 
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Wu et al.’s for late-stage patients without metastases 
(Fig. 2B). Interestingly, only four signatures, including 
ours, lie further away than one standard deviation from 
a random 5-miRNA signature.

We then combined clinical features with our miRNA 
signature to increase its prognosis power. Through a 
model selection procedure, we identified the TNM stage 
and the patient’s age as the most informative features to 
be included. The new composite signature allowed an 
increase of 0.11 in the c-index (from 0.66 to 0.77), which 
places it as the best signature for OS prognostication on 
the validation cohort (Fig. 2C) and second best on the 
training cohort (Supplementary Fig. S1B). Wu et al.’s 
signature, which ranks first when using miRNAs only, 
did not benefit as much from the addition of clinical 
variables. Finally, our composite signature is the only 
one to be largely superior to a random miRNA signature 
complemented with age and stage for early-stage patients 
and late-stage patients with metastases (Fig. 2D).

miRisk5 describes a clinically-applicable risk

A continuous risk, as resulting from a Cox 
regression analysis, has a high discriminative power 
but is unpractical for clinical usage. Consequently, 
we summarized our composite risk into 5 categories 
to provide a usable tool, referred to as miRisk5 
(see Supplementary Methods). Kaplan-Meier survival 
curves, as displayed in Fig. 3A, show that our 
summarized risk is able to span a wider range of patient 
outcomes than the TNM staging or the Mayo Clinic 
score (SSIGN), which is another well-established 

scoring system for RCC patients [28]. Both the TNM 
staging and the SSIGN score identify three different 
groups while miRisk5 clearly separates 5 different 
groups. Additionally, miRisk5 provides a substantial 
amelioration with respect to TNM staging (c-index of 
0.65 vs. 0.59 for the TNM staging; Fig. 3B). Although 
it does not significantly outperform the SSIGN score 
in terms of prognosis, it does assign patients into 
different risk groups than the SSIGN or the TNM 
score (Fig. 3C).

The 5-miRNA prognosis signature 
is specific to ccRCC

We extended this type of analysis to other cancer 
types represented in the TCGA database and we 
selected 7 cancer types where genomic information 
on a considerable number of tumors was available. 
We applied the same approach as outlined before 
for ccRCC to identify miRNAs in each cancer type 
that correlate with overall survival (Supplementary 
Table S2). This analysis revealed to our surprise that 
some cancers, including ovarian, liver, and lung cancer, 
display zero or only a few miRNAs associated to overall 
survival while others, such as ccRCC and uterine cancer, 
demonstrate a high number of miRNAs correlating with 
overall survival (Fig. 4A). A re-analysis of the ovarian 
cancer data using the same methodology as the TCGA 
Research Network, that is a univariate Cox regression 
analysis, led to the same conclusion.

Next we used these results in a comparative analysis 
to assess whether any of these miRNAs overlap with the 
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Figure 1: Identification of miRNAs associated to overall survival (OS) in ccRCC. NMF clustering consensus map of 
the 65 identified miRNAs (training cohort) and Kaplan-Meier plot (validation cohort) for the most significantly OS-associated cluster 
representative, miR-146b-5p. Identified clusters (color-coded) and representative miRNAs are displayed on the right side of the map. 
Dotted lines represent the 5% confidence interval.
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ones identified in ccRCC and their associated clusters. 
No other cancer type displayed a similar pattern of 
OS-associated miRNAs (Fig. 4B). Uterine carcinoma 
and head and neck carcinoma have overlapping miRNAs 
in four out of five clusters but only 3 of them are 
cluster representatives: miR-10b for head and neck and 
miR-146b-3p and miR-221 for uterine.

Prognostication of overall survival based on our 
5-miRNA signature in other cancer types unveiled the 
specificity of our signature to ccRCC (Fig. 4C). In none 
of the other cancer types is our 5-miRNA signature able 
to surpass a random 5-miRNA signature. The use of our 
composite signature, miRisk5, yields similar results for 
lung adenocarcinoma, uterine, colon, and liver cancers but 
an improvement for lung squamous, ovarian, and head and 
neck cancers (Fig. 4D). From Fig. 4C, we know that the 
5-miRNA signature is uninformative, hence the observed 
improvements are likely due to the combination of the 
patient’s age with the pathological stage.

Subgroups of patients characterized by the 
5-miRNA signature demonstrate different 
outcome, pathological stages and ccRCC cancer 
gene alterations

To investigate patient characteristics inherent to 
the expression levels of our 5-miRNA signature, we 
performed a clustering analysis on the complete ccRCC 
cohort (513 primary tumor samples and 71 normal tissue 
samples) and identified 7 major patient clusters (Fig. 5A). 
As expected, all normal samples were clustered together. 
Of note, there seems to be two groups of normal samples 
(group “N” and part of group 1) that differ in in their 
miR-192 and miR-183 expression levels. Patients with 
normal samples in group “N” are mostly in early stage 
(51%) while patients with normal samples in group 1 are 
principally in late stage (70%). However, there was no 
correlation in miR-192 levels between normal and tumor 
tissue in matched samples.
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Figure 2: Performance assessment of several prognosis signatures on the validation cohort. A. Overall survival prediction 
from pure miRNA signatures. B. Detailed analysis, stratified by tumor stage, of miRNA signatures that outperform a random 5-miRNA 
signature by more than a standard deviation. C. Prognosis performance of miRNA signatures when combined with the patient’s age and 
TNM tumor stage. D. Same as B but for miRNA signature combined with the patient’s age and tumor stage. Error bars represent the 
standard deviation.
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Kaplan-Meier curves, as displayed in Fig. 5B, 
reveal that patients with high miR-21 and low miR-10b 
levels have a worst survival (i.e. patient groups 5 and 6), 
an observation that is consistent with the findings of Fritz 
et al. [12]. As expected, these two groups are also enriched 
in late-stage tumors (Fig. 5C). Despite their similarities, 
group 5 differs from group 6 by a higher number of 
stage IV patients (38% vs 22%), a worse survival, and 
low miR-192 expression levels. Interestingly, miR-192 
expression does not significantly correlate with tumor 
stage (Wilcoxon test between early and late stage patients) 
and hence might be a marker for two different ccRCC 
subtypes. A recent study revealed the existence of two 
ccRCC subtypes with different outcomes and a panel of 
34 genes to differentiate them [29]. miR-192 expression 
levels highly correlate with their subtype classification 
(Wilcoxon test p-value: 1.95x10-11) and could also act as 
a subtype predictor (area under ROC curve of 0.7).

We then assessed whether the identified patient 
clusters feature distinct genetic alterations in known 
ccRCC cancer genes. Recent comprehensive genomic 
analyses of ccRCC revealed in addition to VHL 
mutations, recurrent mutations in several other ccRCC 
tumor suppressor genes including PBRM1, SETD2, and 
BAP1 [16, 30]. The products of these genes have been 
implicated in chromatin regulation but their precise 
functions in ccRCC development remain to be elucidated. 
Our analysis of these four most frequently mutated genes 
in ccRCCs revealed enrichment in BAP1 mutations for 
patient groups 5 and 6, but no distinct patterns for SETD2 
(Fig. 5D). BAP1 mutations are known to correlate with 
poor survival [31] and hence could explain the low 
survival of patients from group 5. Nonetheless, patients 
from group 6, despite having the highest BAP1 mutation 
rate, display a better survival than patients from group 
5 (median survival of 52.1 months vs. 25.6 months 
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for group 5). One can thus hypothesize that BAP1 
mutations are associated to late-stage tumors but not to 
overall survival. Also, a recent study showed that BAP1 
and SETD2 mutations tend to appear late in tumor 
development [3], a finding that supports our observation.

The miR-192/194 cluster has been reported to 
depend on the p53 mutation status in multiple myeloma, 
hepatocellular, and renal diseases but this association has 
not been studied in RCC [32, 33]. Here, we observe that 
the two patient groups characterized by low miR-192 
expression levels (group 1 and group 5) also display a 
higher p53 mutation rate than the other groups (Fisher 
exact test p-value: 0.0022) hence linking the regulation of 
miR-192 by p53 to ccRCC.

BAP1 mutations are associated to tumor 
progression but not with overall survival

To further investigate a potantial association of 
BAP1 mutation and tumor stage, we measured tumor 

progression as the distance to the average miRNA values 
of normal patients (group “N”) and analyzed the mutation 
rates of the four most mutated genes in ccRCC with 
respect to the aforementioned distance. We observed that 
the BAP1 mutation rate increases with the distance, as one 
would expect, although not in a linear fashion (Fig. 6A). 
Indeed, the gain in BAP1 mutations seems to be restricted 
to patients within a distance of 3.5 to 4.5 to the normal 
group. VHL and PBRM1 mutations decrease linearly as 
the distance augments and SETD2 mutations peak at a 
distance of 3.5. VHL and PBRM1 have been reported as 
founding mutations [3] and high mutation rates at short 
distances concur with this hypothesis. As the tumor 
progresses, the environmental pressure changes and core 
mutations may not be required anymore, which in turn 
would translate into a decrease in mutation rates.

A comparison of pathological stage with our 
progression distance reveals a similar picture (Fig. 6B). 
Short distances correlate with early stage while metastases 
occur only at a distance of 4 or greater. Late-stage tumors 
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without metastases peak around 4 then diminish, in 
agreement with the hypothesis that a distance based on our 
5-miRNA signature is reflective of the tumor evolution. 
One can thus deduce a sequential order of core mutations 
in ccRCC: VHL and PBRM1 (founding mutations), SETD2 
(transitional mutation), and finally BAP1 (metastasis).

BAP1 mutations are related to tumor progression but 
do not define a category of patient with a worse outcome. 
As seen on Fig. 6C, a comparison of BAP1 wild-type 
vs. mutated late-stage patients with a distance greater 
than 4.5 (the point where the BAP1 mutation rate stops 
to increase) shows no significant difference in overall 
survival. A prognosis based on our 5-miRNA signature 
can consequently better capture tumor progression and 
a patient outcome in ccRCC than a mutation-based 
prognosis.

DISCUSSION

The publication of large-scale datasets on human 
ccRCC has dramatically changed our perspective of 
the genomic landscape of this cancer type and offered 
new opportunities for better prognostication of ccRCC, 
prediction of response to molecular-targeted therapy, 
and development of novel, more effective therapies. 
In this report we performed an integrated analysis of 
multi-dimensional data from the TCGA archive 
(584 ccRCC cases split into similarly-sized training 
and validation sets) and identified a novel 5-miRNA 
signature able to classify ccRCC in distinct subgroups 
and to function as molecular descriptors for ccRCC 
prognostication [34]. Interestingly, our unique miRNA 
signature allowed also the identification of six distinct 
patient clusters that span different clinical outcomes, 
pathological features, and somatic mutation profiles. An 
analysis of the distinct characteristics of each cluster led 
to new insights regarding the role of BAP1 mutations 
in ccRCCs. That is, enrichment in BAP1 mutations is 
associated with late tumor stages but does not define 
per se a patient’s outcome.

Transcriptome signatures represent an important 
basis for the development of biomarkers and their 
application in clinical settings and must thus display high 
reliability and robustness. The TCGA Research Network, 
who disclosed the ccRCC cohort, performed a global 
analysis with a focus on genetic lesions and changes in 
miRNA and gene expression levels. The difference in 
methodology and thresholds between our approach and 
the one used by the TCGA Research Network—log-rank 
test vs. univariate Cox regression—revealed substantial 
differences in terms of deduced signatures. As miRNAs 
are known to affect gene regulation in a non-linear fashion 
[35], a log-rank test approach, as used here, appears to be 
more appropriate.

Insights into the biology of ccRCC have provided 
rationales for treating the disease. Although recent 

advances have improved patient outcomes, targeted 
agents still display low response rates and are not without 
toxic side effects. Accurate ccRCC subtyping is therefore 
imperative and the molecular signature described here 
represent a reliable foundation for the development of 
molecular biomarkers of ccRCC facilitating stratification 
of patients and prognosticating disease outcome.

MATERIALS AND METHODS

Data

584 clear-cell renal cell carcinoma samples 
from distinct patients were collected from the TCGA 
online database (http://tcga-data.nci.nih.gov, accessed 
on October 28, 2014). Samples comprise miRNA- 
and RNA-sequencing data, clinical information, and 
mutation status of several genes. For more details 
regarding the TCGA cohort, please refer to the original 
publication [16].

Clinical data and miRNA expression levels were 
also analyzed for uterine corpus endometrial carcinoma 
(540 samples), ovarian serous cystadenocarcinoma 
(484 samples), lung adenocarcinoma (542 samples), 
lung squamous cell carcinoma (512 samples), colon 
adenocarcinoma (438 samples), head and neck squamous 
cell carcinoma (463 samples), and hepatocellular 
carcinoma (186 samples). Only primary tumor samples 
were considered for the analysis. Other cancer types 
available in the TCGA had either too few primary tumor 
samples with miRNA-sequencing data or a too low 
mortality rate within the cohort.

Training and validation sets were created from 
the ccRCC cohort based on the miRNA-sequencing 
platform. This resulted in a 323-sample training cohort 
(252 primary tumor samples and 71 normal tissue 
samples, analyzed by Illumina HiSeq) and a 261-sample 
validation cohort (all primary tumors, analyzed by 
Illumina GenomeAnalyzer). No bias in tumor stage, age, 
overall survival, or gender distribution was observed 
between the training and validation cohorts. Both training 
and validation cohorts contain samples from several 
institutions (mainly from Memorial Sloane Kettering 
Cancer Center, University of Pittsburgh, MD Anderson 
Cancer Center, Harvard Cancer Center, and International 
Genomics Consortium).

Statistical and computational analyses

miRNA and mRNA expression values

TCGA miRNA isoform expression values (level 3) 
were summed to obtain strand-specific expression values 
(miRBase v16). Gene expression levels were obtained 
from RNA-sequencing data (level 3). All samples were 
normalized by the Upper Quartile method [36].
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miRNA signature identification

For each miRNA in the training cohort, two groups 
of patients were constructed based on expression levels 
of the miRNA: Lower than the 25% quartile and higher 
than the 75% quartile. A log-rank test was then applied 
to determine if the difference in terms of overall survival 
between the two groups was significant. All miRNAs with 
a false discovery rate below 0.1 and a third quartile value 
above 10 RPKM were defined as significantly associated 
to overall survival (OS).

Clustering of significant OS-associated miRNAs 
was performed through a non-negative matrix 
factorization (NMF) with ranks tested from 2 to 15 [37]. 
Representative miRNAs for each cluster were selected 
based on their basis coefficient (> 0.75). All possible 
combinations of representative miRNAs (such that to 
have only one representative per cluster) were tested to 
obtain the “top 5-miRNA” signature. A multivariate Cox 
regression analysis on miRNA expression values was used 
to compute a risk for each combination. The addition of 
clinical variables was assessed through a forward model 
selection procedure (Aikake information criterion) 
combined with a Cox regression. Only clinical variables 
where at least three quarters of the patients in the training 
cohort had an assigned value were considered: gender, 
age, pathological stage, presence of metastasis, Fuhrman 
grade, TNM stage, hemoglobin level, platelet level, and 
white cell count. A bootstrapping procedure (resampling 
with replacement) was performed to test the robustness of 
the results (100 iterations, bootstrap value > 0.8).

For each signature, coefficients from a multivariate 
Cox regression analysis on the training cohort were used to 
compute a risk on the validation cohort. Performance was 
assessed through the concordance index (c-index). To test 
the significance of the results, a random miRNA signature 
was designed by selecting 5 random miRNAs from the 
TCGA dataset. Sampling was performed over 1000 
iterations to obtain an average C-index and its standard 
deviation. In the pan-cancer analysis, Cox coefficients 
for the random miRNA signature were inferred within 
a 10-fold cross-validation framework. Cox coefficients 
obtained from the training cohort in ccRCC were used to 
compute the miRisk5 value in other cancer types.
miRisk5

The discrete risk score, miRisk5, is computed as 
follow.

miRisk5 = •
1 if r ≤ 1
2 if r > 1 and r ≤ 2
3 if r > 2 and r ≤ 3
4 if r > 3 and r ≤ 4
5 if r > 4 

where r = 0.22 × vmiR-21 − 0.38 × vmiR-143 − 0.072 × vmiR-10b −  
4.26 × vmiR-192 − 3.57 × vmiR-183 + 27 × age + 637 × stage

and vm is the normalized read count for miRNA m (upper 
quartile method).

Patient clustering

Hierarchical clustering with Ward linkage was 
performed on log2 miRNA expression values of the 
complete ccRCC cohort (training plus validation). 
Patient clusters were defined through a cutoff value of 
15. Distance to the normal patient group was computed 
as an Euclidean distance on log2 miRNA expression 
values, weighted by the respective standard deviations. 
Characteristics curves (mutation and stage) were computed 
through a sliding window of 50 patients with respect to the 
distance. Displayed curves were smoothened by a moving 
average of ± 0.5.
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