
Estimating RNA dynamics using one time 
point for one sample in a single‑pulse metabolic 
labeling experiment
Micha Hersch1,2*, Adriano Biasini1,3, Ana C. Marques1 and Sven Bergmann1,2 

Abstract 

Background:  Over the past decade, experimental procedures such as metabolic 
labeling for determining RNA turnover rates at the transcriptome-wide scale have been 
widely adopted and are now turning to single cell measurements. Several compu-
tational methods to estimate RNA synthesis, processing and degradation rates from 
such experiments have been suggested, but they all require several RNA sequencing 
samples. Here we present a method that can estimate those three rates from a single 
sample.

Methods:  Our method relies on the analytical solution to the Zeisel model of RNA 
dynamics. It was validated on metabolic labeling experiments performed on mouse 
embryonic stem cells. Resulting degradation rates were compared both to previously 
published rates on the same system and to a state-of-the-art method applied to the 
same data.

Results:  Our method is computationally efficient and outputs rates that correlate 
well with previously published data sets. Using it on a single sample, we were able to 
reproduce the observation that dynamic biological processes tend to involve genes 
with higher metabolic rates, while stable processes involve genes with lower rates. This 
supports the hypothesis that cells control not only the mRNA steady-state abundance, 
but also its responsiveness, i.e., how fast steady state is reached. Moreover, degradation 
rates obtained with our method compare favourably with the other tested method.

Conclusions:  In addition to saving experimental work and computational time, 
estimating rates for a single sample has several advantages. It does not require an 
error-prone normalization across samples and enables the use of replicates to esti-
mate uncertainty and assess sample quality. Finally the method and theoretical results 
described here are general enough to be useful in other contexts such as nucleotide 
conversion methods and single cell metabolic labeling experiments.
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Introduction
Since the advent of molecular biology, a consensus has emerged that the regulation of 
gene expression underlies most biological processes including development, disease and 
adaptation [1–3]. While gene expression regulation has mostly been associated with 
activating the production of RNA (e.g. through transcription factors), it has become 
apparent that the regulation of RNA splicing and RNA stability also plays an impor-
tant role in determining the expression level of a gene [4, 5]. Taking advantage of high 
throughput RNA quantification protocols, methods designed to distinguish the effects 
of RNA synthesis, processing and degradation at the transcriptome-wide level have been 
developed. Among them, RNA metabolic labeling techniques relying on chemically 
modified ribonucleotides such as 6-thianoguanosine (6sG) 4-thiouridine (4sU), 5’-Bro-
mouridine (BrU) or 5-ethynyluridine (EU) have been widely adopted (as reviewed in 
[6]), due to their minimal impact on cellular function [7, 8]. Briefly, incubating cells with 
modified ribonucleotides for a limited period of time (referred to as the pulse), and their 
concomitant incorporation in newly synthesized transcripts, allows distinguishing newly 
transcribed from preexisting RNA, which can be biochemically separated and quanti-
fied. The separation can be performed using thiol-specific biotinylation and streptavidin-
dependent enrichment of biotinylated RNA [9] or, through a more recent improvement, 
by direct capture of 4sU onto a solid phase using a methane thiosulfonate resin [10]. Fol-
lowing the quantification, which was based initially on microarray technologies [11] and 
now on RNA-seq [12, 13], the resulting data can then be used to estimate RNA decay 
rates. More recently, methods that rely on nucleotide conversion have been used to the 
same effect, with the advantage of circumventing the cumbersome biochemical enrich-
ment and separation step: SLAM-Seq chemo-selectively labels 4sU with iodoacetamide 
to enable the in silico identification of 4sU containing RNA. While this method avoids 
the biases arising from the enrichment-based methods described above, it also has dis-
advantages. First it requires higher RNA sequencing depth for quality control [14] and 
more resources to implement. Second, SLAM-DUNK, the currently available software 
for analyzing SLAM-Seq data is only compatible with a modified 3’end mRNA sequenc-
ing method, a specialized approach which is only applicable to a fraction of all RNAs 
present in a cell [15].

In contrast, several methods to estimates RNA dynamics from metabolic labeling 
experiment data have been developed [16–18] (see [19] for a review). Typically, labeled 
transcript abundances are fitted to an exponential function approaching to steady-state 
equilibrium during the labeling pulse (or after the pulse, during the so-called chase phase 
when labeled transcripts are being depleted). The RNA half-life can then be estimated 
from those exponential fits [20–22]. This requires time-course experiments in order to 
have enough points for fitting, as well as a way to normalize RNA concentrations across 
samples, either using spike-ins [23], or using internal controls such as intron concentra-
tions [24]. The INSPEcT method [25] goes beyond first order dynamics and takes into 
account the RNA processing rates, which are estimated along with the degradation and 
synthesis rates. This method works by first estimating rates for individual samples by 
assuming, by default, no degradation during the pulse and then uses those estimates as 
a starting point for fitting models of rate evolution for all the rates of all samples. Those 
methods rely, for each sample, on a the separate quantification of labeled RNA on one 



Page 3 of 17Hersch et al. BMC Bioinformatics          (2022) 23:147 	

hand and of total (mixed labeled and unlabeled) and/or unlabeled (or pre-existing) RNA 
on the other hand. In its later version, INSPEcT was extended to estimate rates without 
labeling the sample [26].

In this work, we build on the INSPEcT approach and derive an exact solution (when 
it exists) for the initial rate estimates without making the assumption of no labeled tran-
script degradation. This is achieved by considering the intron to exon ratio for each tran-
script in both the labeled and unlabeled RNA pools, thus allowing to bypass the need 
for normalization across those two samples. We can thus infer synthesis, processing and 
degradation rates from a single sample and time point. Those rates can be used as such, 
allowing to reduce the experimental load and costs and compare rates across samples 
and time points. But they can also be used, as in INSPEcT, as initial estimates for mut-
liple sample-based rate estimation. Applying our method to our own experimental data 
and using a single sample and time point, we obtain synthesis and processing rates that 
are well correlated with the ones obtained using INSPEcT first guess. The degradation 
rates, on the other hand, correlate poorly across the two methods, but those computed 
with our method correlate better than INSPEcT with previously published mRNA deg-
radation rates obtained with three replicates and seven time points in a nuclear conver-
sion protocol [27]. Because it can be reduced to numerically solving an equation with a 
single unknown on a bounded domain, it is also much faster than INSPEcT. Moreover, 
our results are consistent with an adapted gene-specific mRNA responsiveness and co-
transcriptional mRNA processing [28].

Method
Overview

This paragraph summarizes the general strategy of the method, with references to rel-
evant equations indicated in parentheses. We use the Zeisel model of RNA dynam-
ics [29] to model both the unlabeled and the labeled RNA (1, 2). Using the standard 
procedure for solving systems of linear differential equations, we find its general 
solution and its free parameters by setting the initial conditions for both the unla-
beled (or pre-existing) and the labeled RNA (3–6), as illustrated in Fig.  1. We can 
then express, for a given gene and for both unlabeled and labeled RNA, the ratios of 
intron to exon expression level as functions of the processing and degradation rate of 
that gene (8,9). These two ratios are independent from the RNA synthesis rate. Using 
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Fig. 1  Evolution of unlabeled and labeled, premature and mature RNA during labeling according to 
the Zeisel model. Dotted horizontal lines correspond to steady-state levels, dashed lines correspond the 
unlabeled RNA and solid lines to labeled RNA. Processing and degradation rates can be estimated from the 
ratios of the two dashed lines and of the two solid lines at a single time point
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the intron to exon ratios as observables, we are left with two non-linear equations 
and two unknowns, namely the processing and degradation rates. These equations 
are then reparametrised with dimensionless parameters and reduced to a single non-
linear equation with one unknown (13). This resulting equation is only defined on 
a bounded domain (14). Our rates can thus be inferred by numerically solving that 
equation on a bounded domain, which is very fast. In addition, we prove in Addi-
tional file  3: Appendix C that this equation, under certain conditions, has a single 
solution (but in general it can also have two or no solution).

Model

Like previous work [25], we use the Zeisel model of RNA synthesis, processing and deg-
radation [29].

where p is the premature RNA, m the mature RNA, and α , β , γ are RNA the synthesis, 
processing and degradation rates. This model can be solved analytically (see Additional 
file 1: Appendix A). In particular, enforcing the boundary conditions corresponding to 
the unlabeled RNA, namely that it is at steady state when the pulse starts (t = 0) and that 
subsequently no more pre-mature RNA is produced, results in

where the u subscript indicates that this corresponds to the unlabeled RNA pool.
Enforcing boundary conditions corresponding to the labeled RNA, namely that it is 

not (yet) expressed at t = 0 leads to

where the l subscript indicates that this corresponds to the labeled RNA pool.
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Inferring synthesis, processing and degradation rates

We consider that the exonic RNA abundance χ corresponds to the premature and mature 
RNA, while the intronic RNA abundance ι correspond to the premature RNA only. Fur-
thermore, we assume that χ and ι are suitably normalised for exonic and intronic length 
so that they are proportional to the number of transcripts. We can then compute:

where T is the labeling time.
In the case of unlabeled fraction, we have

where we define Eβ = exp(−βT ) and Eγ = exp(−γT ) as abbreviations.
For the labeled fraction, we have

We notice that this last expression is of the same form as the one for the unlabeled frac-
tion (8), but replacing exponentials by their complement to one. Importantly these two 
fractions do not depend on α , which (unlike [26]) allows our method to estimate pro-
cessing and degradation rates independently from the synthesis rate.

Denoting a = ιu
χu

 and b =
ιl
χl

 as the observable unlabeled and labeled ratios of intron to 
exon abundances, we are left with a system of two equations and two unkowns β and γ , 
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which we now set out to solve. First, we reparameterize our system with β = kγ and define 
Ekγ = Eβ = exp(−kγT ) leading to

It is shown in Additional file 2: Appendix B that this system of equations can be simpli-
fied to the following system of equations where k is isolated.

with the following domain of definition D for k:

The above equation (13) does not explicitely depend on T and can be solved numerically 
on D . In practice a and b are approximated by ru and rl , defined as the length-normalized 
intronic to exonic read count ratio (or TPM ratio) for the unlabeled and for the labeled 
sampled respectively.

We further prove in Additional file 3: Appendix C that for b > 1
2−a , Eq. (13) has a 

single solution in the domain given by (14), which can be found very efficiently. This 
enables the estimation of the processing and degradation rates for a single sample. 
Moreover, since the reduced equation is independent from T, uncertainty on its true 
value does not affect the relative values of the  rate estimates. Hence replicates can be 
used to assess the reliability of the estimates and time courses allow to test whether 
the rates are constant as assumed by the model.

If (13) does not have a solution, estimates can be obtained by minimizing (in log 
space) the squared Euclidean distance between the observed (i.e., ru , rl ) and derived 
values of a and b:
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The ratios ru , rl must be smaller than one to make sense within our model and genes 
where this is not the case should be discarded. The log function is used to give exon and 
intron counts equal standing.

The above bivariate function can be reduced to a univariate function f ∗ using (12):

The processing and degradation rates are derived from k using (12) where a and b are 
again approximated by ru and rl respectively. Then the synthesis rate α can be easily 
obtained from (4), where mu is approximated by χu − ιu as unlabeled RNA is likely more 
precisely quantified, due to the usual presence of some unlabeled RNA in the labeled 
RNA pool (captured through unspecific binding):

Note, that the estimation of α using the labeled RNA and (6) is also possible, see Addi-
tional file 4: Fig. D8 in Appendix D for a comparison.
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Fig. 2  Simulated data. Top row: the method correctly estimates synthesis, processing and degradation 
rates. Points with ambiguous solutions are not shown. Some points corresponding to high rates cannot 
be estimated correctly as the system as already reached steady state during the simulated “pulse’. Bottom 
left: the measurement space can be partitioned into ambiguous and unambiguous regions. The green line 
corresponds to b = 1

2−a
 . Above that line, rates are correctly and unambiguously estimated. Boundary cases 

are sometimes wrongly estimated, probably due to numerical errors (red dots). Bottom center: Trajectories 
in the phase space are solely determined by the k parameter. They start at time T = 0 at the top ( b = 1 ) and 
go down. For k < 1 the trajectories (in olive) remain above the green line defined by b = (2− a)−1 and do 
not cross. For k > 1 (in orange), they cross each other below the green line. The velocity at which the system 
follows the trajectory depends on the actual values of β and γ . Bottom right: effect of adding simulated 
Gaussian noise to the exon and intron quantifications on the correlation between estimated and true values 
of the rates. The abscissa indicates the standard deviation of the noise relative to the expression value. The 
black dashed line indicates the fraction of transcripts for which rates could be estimated. For example, a 10% 
standard deviation for noise, provides rates for about 70% of transcripts with around 62%-68% correlation 
with the true values
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Results
Simulated data

In order to confirm that our method can be applied in principle, we evaluated our 
method on simulated data, where the data was generated using the exact model used 
to develop the method (see equations 3 and following). As a first step, we did not simu-
late noise in the model so as to validate the mathematical developments above and our 
implementation of the method. We generated 50000 random value for α , β , and γ rang-
ing between exp(−5) and exp(5) and computed the corresponding values for ι and χ . We 
then computed ru and rl by taking the ratio. Estimates β̂ and γ̂ where then inferred by 
using ru and rl as an input to the method and compare the original β and γ.

Numerically solving equation (13), yielded either one or two solutions. The results 
for the unambiguous cases are shown in Fig  2, left. We see that in virtually all cases, 
the method yields accurate estimates of the processing and degradation rates. For a few 
points, the method is less accurate at the upper boundary of the parameter space, prob-
ably due limited floating point precision. Indeed, if the labeling time is too long with 
respect to the metabolic rates, virtually all unlabeled RNA are degraded and the rates 
cannot be reliably estimated.

As we are considering single-sample estimates, it is possible to chart the observable 
space given by a and b and see when the method provides unambiguous results. Figure 2, 
bottom left, confirms that for b > 1

2−a the method provides a unique (and correct) solu-
tion as proven in Additional file 3: Appendix C. Below this line (displayed in green), the 
methods provides ambiguous results as two distinct set of values β and γ can account for 
the same value of a and b (in blue). It is also possible to visualize the trajectories of the 
observables a and b for various values of k, as depicted in Fig. 2, bottom center. When 
T = 0 , trajectories start from the top of the space at ( 1

1+k
, 1) . When k < 1 , as time passes 

the system moves down to (a, b) → (1− k , 1
1+k

) . For k ≥ 1 , trajectories move to (0, 1
1+k

) . 
Note that this is the expected case, as the splicing of mRNA occurs in general faster than 
its degradation. Note that, in this case, trajectories cross below the green line, explaining 
why two solutions can be found for a single value of (a, b) . The speed at which the system 
follows these trajectories depends on γ.

In order test the robustness of the method to noise, we added various levels of Gauss-
ian noise (in log space) to the simulated intron and exon quantifications and com-
pared the resulting rates with their “true” value, using Pearson correlation. The results 
are shown on the last panel of Fig. 2. We first note that, when adding noise, transcripts 
that fall above the blue horizontal line or below the red diagonal line of the bottom left 
panel cannot be estimated as D in (14) is not defined. The fraction of rates that can be 
estimated drops significantly as the noise increase (see back dashed line). We also see 
that the degradation rate is less affected by low level of noise, but more affected by a 
high level of noise compared to the processing rate, while the converse is true for the 
synthesis rates. A correlation with the true rates above 60% is obtained with a standard 
deviation of the noise below 10%, which is a reasonable scenario for decently expressed 
transcripts.
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Real data

In order to assess the performance of the method on real data, we applied our method 
on the 4sU labeling experiment described in [30]. Briefly, mouse embryonic stem cells 
were plated at a density of 40,000 cells/cm2 on gelatin-coated 10cm tissue culture plates 
and grown for approximately 14 hours. After addition of 4sU to the growth medium, 
cells were incubated at 37C for 10 minutes (10 minutes labeling time). RNA was then 
extracted and processed according to the protocol described in [31]. Reads that did not 
map to mouse ribosomal RNA sequences were aligned to intronic and exonic sequences 
(ENSEMBL v91 mus musculus reference) using STAR V2.5 [32] and quantified using 
RSEM V1.1.17 [33], yielding intron and exon expression levels for unlabeled and labeled 
RNA for each detected transcript.

For a single sample, the observable space represented in Fig.  2 (bottom left and 
center) is represented (in log coordinates) in Fig. 3, left. We see that, while the points 
are centered on the expected region of the observable space, many transcripts lie below 
the diagonal or above the rl = 1 (or log(rl) = 0 ) line (in blue), which is not compatible 
with our model. We observe that those incompatible transcripts lying above the rl > 1 
line are expressed at a much lower level than the transcripts lying below this line (see 
inset). A lower signal to noise ratio in low expressed genes could explain this difference, 
in line with the simulations above. However, another likely explanation pertains to the 
fact that co-transcriptional processing is not accounted for by the Zeisel model. While it 
has been documented that an RNA molecule is often processed while being synthesized 
(the “assembly-line model”) [28], the Zeisel model considers synthesis and processing as 
two independent point events. This discrepancy is likely to be more relevant for short-
lived (and thus low-expressed) transcripts, a sizeable fraction of which is expected to be 
nascent at sequencing time. Those nascent transcripts may contribute to an intron to 
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Fig. 3  Real data. Left: Each point corresponds to a transcript with its transparency reflecting log expression 
value. Like in the previous figure, the green line is defined y = (2− x)−1 . For transcripts lying between the 
abscissa (in blue) and the green line, estimates of processing and degradation rates can be obtained by 
solving (13). For transcripts lying between the diagonal (in red) and the green line, estimates can be obtained 
by minimizing (16). The observed ratios for the remaining transcripts are not coherent with the model and 
are discarded. These trancripts (above the blue line) are lowly expressed compared to the ones below the 
blue line (see inset). Right: RNA processing rates are highly correlated to the synthesis rates (73%), which is 
consistent with co-transcriptional RNA processing. In both plots, density contour lines are shown in beige 
and axes are cropped for a better view of the data
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exon ratios higher than one when they are incompletely synthesized (for example if the 
last exon has not yet been produced). This hypothesis is corroborated by considering 
unspliced transcripts length, which putatively affects synthesis time and thus the prob-
ability of being nascent at sequencing time. Transcripts lying above the rl > 1 line are 
indeed longer than those lying below this line ( p− value < 10−100 , Wilcoxon test).

The transcripts incompatible with our model, amount to 25% of protein-coding genes 
with an exon TPM higher than 1, and are discarded from further analyses. The process-
ing and degradation rates were computed either by solving  (13) when rl > (2− ru)

−1 
or by optimizing (16) otherwise. For these cases that had two solutions (6% of the tran-
scripts), we selected the one corresponding to rates most consistent with the other 
transcripts.

The resulting synthesis and processing rates for protein-coding genes are depicted 
in Fig.  3, right. Although processing rates span a smaller range of values, they are 
highly correlated (74%), which is not surprising as RNA processing occurs co-tran-
scriptionally [28]. More remarkable is the correlation of synthesis and degradation 
rates, displayed in Fig. 4, left. At 62%, it is very similar to the 66% reported by [27] 
for the same cell type. This is also consistent with the emerging concept of a coupling 
between RNA transcription and decay [34]. Our data indicate that genes span a large 
range of dynamics, irrespective of their expression level. Indeed, genes with high syn-
thesis and degradation rates can have the same steady-state expression level as genes 
with low synthesis and degradation rates. However, the former will reach this steady 
state faster than the latter. It thus makes sense to consider our RNA metabolic rates 
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Fig. 4  Left: Estimated RNA synthesis and degradation rates obtained from a single sample. These rates can 
also be considered in a different and maybe functionally more relevant frame of reference defined by the 
steady-state abundance (first axis) and gene responsiveness (second and perpendicular axis), as illustrated by 
the background grid. Genes involved in fast adapting biological processes (such as transcription) tend to be 
more responsive than genes involved in stable functions (such as monosaccharide metabolism). The squares 
on the axes represent the projections of the mean rates for the respective categories (gray representing 
genes that belong to neither of the two categories) and indicate that mean transcript responsiveness (but 
not abundance) is strongly affected by the category. These two GO categories were selected for illustration 
because they were previously reported to be mostly enriched in high and low turn-over genes respectively 
[13]. Right: Same data as in left, but rotated and showing only colored dots, for visibility
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in the functional frame of reference indicated in Fig.  4, left. One axis corresponds 
to the steady-state RNA abundance, given by the log-ratio of synthesis over degra-
dation rates (or equivalently by the difference of log of the rates). The second axis 
corresponds to the responsiveness of the gene, i.e. how fast it reaches steady state 
(computed by the sum of the log of the synthesis and degradation rates). It has been 
observed before that genes involved in more reactive and dynamic biological pro-
cesses such as chromatin remodeling or transcription regulation tend to have a higher 
turnover than genes involved in more stable processes such as basic metabolism [13]. 
We checked that our data confirm this observation by looking at the Gene Ontol-
ogy (GO, [35]) annotations of biological processes most associated by [13] with high 
and low turnover, namely “transcription” and “monosaccharide metabolism”. Despite 
having similar steady-state abundances, transcripts of genes involved in transcrip-
tion indeed have significantly faster dynamics and the ones involved in monosac-
charide metabolism have significantly slower dynamics than the rest of the genes, as 
illustrated by the squares in Fig.  4, left and right. Other categories where our data 
confirms faster genes include chromatin modifications, cell cycle and transcription 
regulation.

We assessed the precision of our method by comparing the resulting degradation rates 
to those published for the same cell type by [27]. Those were obtained by using three rep-
licates and seven time points and applying the SLAM-seq nucleotide-conversion method 
that, unlike metabolic labeling, does not require biochemical separation between the 
labeled and unlabeled RNA and is thus not affected by noise generated by the imperfect 
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ratios can be more reliably estimated. In this experiment, replicate 1 correlates better than the two others, 
indicating that it is probably of better quality
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separation process (although that method has its own source of noise). From our data, 
we obtained gene degradation rates by taking, for each gene, the weighted average deg-
radation rates of the corresponding transcripts The weights were given by the mean 
exonic expression levels (unlabeled and labeled). We expect a lower precision for tran-
scripts close to the rl = 1 line, for which the labeling time was likely somewhat too 
short, so to assess the correlation, we weighted the transcripts by 1− rl . Figure 5, left, 
compares degradation rates obtained in our experiments with those reported by [27], 
keeping only genes with an average expression value higher than 100 TPM. We expect a 
higher precision for highly expressed genes, as this allows for a more precises estimates 
of the intron to exon ratios. This is indeed the case, and depending on the expression 
threshold and the sample, the correlation between our data and the previously published 
rates, we obtain a correlation ranging between 30% and 67% for a single sample estimate 
(see Fig. 5, left). As these experiments were performed in different labs using different 
methods, these numbers show that our rates obtained on a single sample and time point 
are meaningful. For comparison, [36] report correlations around 70% by using the same 
data, but changing only the method of analysis. Using three replicates, [31] report a 26% 
correlation using the INSPEcT package.

Comparison with INSPEcT

Since our method estimates metabolic rates from a single sample, we decided to com-
pare its results to the “initial guess” provided by the INSPEcT method, to our knowledge 
the only other method that does not need multiple samples. Note, however, that those 
rates are only the initial step of the INSPEcT method, and should not be confused with 
the global outcome of INSPEcT, which then aggregates multiple samples for the estima-
tion. For concision, we will in the section refer to our method as SSRE (Single Sample 
Rate Estimation). The main differences between the two approaches is that INSPEcT 
assumes no degradation on labeled RNA and requires the estimation of a scaling fac-
tor accounting for the difference in RNA concentration between labeled and unlabeld 
samples, which SSRE avoids by considering the intron to exon ratio in each sample 
separately for each sample. Furthermore, INSPEcT requires the estimation the time 
derivative of the RNA abundances, which is avoided in SSRE by taking advantage of the 
analytical solution to the Zeisel model.

We used the INSPEcT package for R on the same data from [30] analyzed in the previ-
ous sections (see Figs. 3, 4, 5). The same transcript quantification (TPM) used for our esti-
mates was fed into the newINSPEcT function with parameter preexisting=TRUE 
and then to the ratesFirstGuess function of the INSPEcT package. The expression 
variance required by this package was estimated from the expression level from all three 
replicates using Loess regression on the expression level. It took about 20 minutes to 
estimates rates for each replicate (about 40,000 transcripts) using a single 2GHz core 
from a laptop computer, whereas our implementation of SSRE (also in R) took about 30 
seconds to complete on the same machine. As described in Table 1, SSRE is about 40 
times faster than INSPEcT (0.8 ms vs 34 ms per transcript) but there are also more tran-
scripts that it cannot process.

In addition to direct rate comparison, we decided to compare the methods using three 
criteria: (1) correlation with published rate, (2) rate distributions and (3) reproducibility 
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across replicates. Figure 6 shows that the two methods provides synthesis and processing 
rates that are well correlated, while degradation rates are not. Moreover, the degradation 
rates obtained by INSPEcT correlate well to previously published rates only for one of 
the three samples. In contrast to degradation rates obtained with SSRE, the correlation 
with previously published rates does not improve when focusing on highly expressed 
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Fig. 6  Comparison of our method (SSRE) with the INSPEcT “first guess” on th same data. Top row: direct 
comparison (in log space) of rates obtained with our method and with the INSPEcT package on a single 
sample. Synthesis and processing rates are well correlated but not the degradation rate (Spearman 
correlation shown). The red bar indicates the diagonal. Bottom left: bars indicate the correlation of 
degradation rates with previously published data [27], as in Fig. 5. The INSPEcT method provides degradation 
rates with good correlation only for one of the three replicates (repl. 2), whereas it is the case for all three 
replicates using our method. The big dots indicate the slope of the regression line in log-log space (as in 
Fig. 5, left). Slopes obtained from SSRE estimates are closer to one, which correspond to the ideal case of a 
linear relationship between the (non-log) rates. Bottom center and right: Rates obtained with INSPEcT also 
reproduce the positive correlation between synthesis and processing rates, but they produce a negative 
correlation between synthesis and degradation rates, unlike our method (see Fig. 4, left) and previously 
published results. [27]

Table 1  Comparison of CPU usage and “rejection” rates of INSPEcT and SSRE. The same batch 
(subset of the data described above) were provided to both methods (implemented in R). The 
output size refers to the number of transcripts that can be processed by the method and the 
speed-up is the ratio of INSPEcT over SSRE transcript processing time. SSRE is about 42 times faster 
than INSPEcT with (0.8 ms vs 34 ms per processed transcript). However, SSRE also discards more 
transcripts than INSPEcT, providing rates for 38% of them vs 47% for INSPEcT. Those low numbers 
can be explained by the fact that many transcripts (especially non-coding ones) have a very low 
expression that is poorly estimated in the labeled RNA pool

Batch size INSPEcT SSRE Speed-up

Output size CPU processing time 
[s] ([ms/transcript])

Output size CPU processing time 
[s] ([ms/transcript])

10 5 (50%) 2.09 (402) 5 (50%) 0.052 (10) 40

1000 469 (47%) 15.889 (33) 387 (39%) 0.310 (0.8) 42

91702 42650 (47%) 1453.336 (34) 34512 (38%) 27.792 (0.8) 42
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genes, it even become negative for replicates 1 and 3 (data not shown). This suggests that 
for SSRE, degradation rate estimation is likely to improve with higher sequencing depth 
(and thus a more precise estimate of the intron to exon ratio). Finally, the rates com-
puted using the INSPEcT method do not exhibit the previously documented correlation 
between synthesis and degradation rates [27]. This leads us to think that our degradation 
rates are closer to the real rates than the ones provided by the INSPEcT “first guess”. 
This should not come as a surprised, as our method does not assume that labeled RNA 
does not degrade and estimates degradation and processing rates independently from 
the synthesis rate.

The synthesis and processing rates provided by the two methods are relatively well 
correlated, and INSPEcT provides rates that are more consistants across replicates 
(see Supplementary Fig.  D.9.) It is also interesting to note that SSRE tends to show 
an upper bound for the processing rate, while INSPEcT first shows a lower bound 
for that rate. It is difficult to speculate which (if any) is more likely true, but an upper 
bound would be consistent with bio-physical constraints in a leaky co-transcriptional 
RNA splicing setting. Figure  D.9 also shows that unlike INSPEcT, SSRE computes 
degradation rates that span a larger range of values than processing rates, a property 
also reported in [17] for a different system.

Discussion
In this paper, we presented a method to estimate synthesis, processing and degradation 
rates of RNA transcripts from a single 4sU labeled sample. We validated our method 
first in silico and then on real data obtained from mouse embryonic stem cells. Using our 
method we first replicated, on a different cell type, previous findings about the enrich-
ment in high or low turn-over genes of specific cellular processes. Second, we showed 
that the rates obtained with our method correlate well (between 30% and 67%) with pub-
lished rates obtained by applying SLAM-seq to the same cell types. Methods for such 
estimation have been published before, but they usually require a sufficient number of 
samples (around a dozen). We compared our method to the initial step of the INSPEcT 
method, which handles each sample separately, and obtain similar synthesis and pro-
cessing rates, but different degradation rates. Our rates correlate more consistently with 
previously published degradation rates obtained with nuclear conversion methods on 
the same system, and even more so for highly expressed transcripts. Rates obtained with 
our method also better reproduce previously observed statistical relationships between 
rates, although synthesis and processing rates are less consistant across replicates. Taken 
together these results suggest that our method provides more reliable degradation rates.

In contrast to other methods, our method explicitly uses the analytical solution to the 
Zeisel model of RNA dynamics. Moreover, our method is self-normalizing as it only uses 
the ratio of intron to exon expression levels, making it is less affected by differences in 
sequencing depth of the various samples (although deeper sequencing will provide bet-
ter estimates). This approach makes our method also faster than other methods as it 
boils down to numerically solving on a bounded domain either a univariate equation or 
a one-dimensional optimization for each transcript. Our method could thus be a suitable 
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alternative to the initial step of the INSPEcT method especially when using a large num-
ber of samples as it is also about 20 times faster.

Similarly to the initial step of the INSPEcT method, a caveat of our method is that a 
sizable fraction of mostly lowly expressed transcripts (about 25 % in our case) are incon-
sistent with the model and their dynamics cannot be estimated. Together with the high 
correlation between synthesis and processing rate, it suggests that modeling transcrip-
tion and processing as independent events is a simplification that could be reconsidered, 
as the coupling between the two has been documented [28]. However, this limitation of 
the Zeisel model is likely to also affect other methods using it [26, 37].

Another limitation of the method is that, unlike in [26], it does not consider the effect 
of leakage of unlabeled RNA in the labeled RNA pool because of unspecific capture. This 
leakage has the effect of reducing rl towards the diagonal, and could potentially be esti-
mated from the data as it is shared across all transcripts. Another improvement would 
be to embed this method in a probabilistic framework in order to quantify the estimate 
uncertainty (as in [36] for a simpler model) or to determine the optimal labeling time (as 
in [38]).

While using a single sample allows to reduce costs, this is not the only merit of this 
approach. In practice most experiments will have biological replicates, in which case 
our methods enables obtaining point estimates of α , β and γ for each of them. This 
in turn allows for estimating their variance, as well as assessing sample quality (e.g. 
if one of them systematically gives very different estimates for all genes). Moreover, 
because cell growth is likely to be limited during (short) labeling time, it is less likely 
to interfere in the estimation process than when using time course data, where it can 
have an effet [24]. In addition, when used in a time-course experiment with multiple 
short pulses, our method allows to investigate the evolution of these rates over time 
and assess whether these rates are stationnary, using tools from time series analy-
sis such as (extended) Kalman filtering. Finally, the theoretical results obtained in 
this paper, could be used to improve other methods. For example, the method could 
be used to analyze SLAM-seq data which would reduce the number of samples but 
also provide estimate for the processing rate. Another possible application is single 
cell RNA velocity, where the Zeisel model of RNA dynamics is also used, but splic-
ing rates β are assumed to be equal for all transcripts [37] or estimated jointly with α 
and γ using an EM algorithm [39]. Our approach involving a reparametrization of the 
rates using k could provide a interesting and computationally cheaper alternative, for 
example by considering the strong correlation between the synthesis and processing 
rates. Finally, our method could also be used in conjunction with the recent develope-
ments in single cell metabolic labeling experiments [40, 41].
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