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ABSTRACT: Research in natural products, the genetically encoded small
molecules produced by organisms in an idiosyncratic fashion, deals with
molecular structure, biosynthesis, and biological activity. Bioinformatics
analyses of microbial genomes can successfully reveal the genetic instructions,
biosynthetic gene clusters, that produce many natural products. Genes to
molecule predictions made on biosynthetic gene clusters have revealed many
important new structures. There is no comparable method for genes to
biological activity predictions. To address this missing pathway, we developed
a machine learning bioinformatics method for predicting a natural product’s
antibiotic activity directly from the sequence of its biosynthetic gene cluster.
We trained commonly used machine learning classifiers to predict
antibacterial or antifungal activity based on features of known natural product biosynthetic gene clusters. We have identified
classifiers that can attain accuracies as high as 80% and that have enabled the identification of biosynthetic enzymes and their
corresponding molecular features that are associated with antibiotic activity.

■ INTRODUCTION
Natural products from bacteria, fungi, and plants have long
been a rich source of useful molecules. Some 23.5% of FDA-
approved drugs are small molecule natural products or
chemically modified analogs of natural products, and an
additional 22.5% are synthetic drugs designed to hit the same
target as a natural product.1 High-throughput screening and
bioinformatics analysis have increased efficiencies in steps on
the discovery to drug pipeline, but identifying desired
functions such as antibiotic activity require production,
purification, and assaying, which collectively form a major
bottleneck.2 The historic order, assaying, production, and
purification, has the same collective bottleneck but with the
added disadvantage of ultimately identifying a previously
discovered molecule.3,4 Several different mass spectrometry or
NMR-based methods can be used to increase efficiencies in
some steps, but these in themselves do not obviate the need to
have molecules to test.5−8 Overall, the process of going from
activity in an extract of a bacterial culture to the discovery of a
novel active molecule remains a time-consuming roadblock in
using natural products as a source of antibiotics and other
therapeutic agents.
One step that can be performed efficiently at scale is

identifying promising biosynthetic gene clusters (BGC) in the
growing number of available bacterial genomes. However, the
“promising” rankings that emerge have been based on genes to
structure connections. Existing genome mining tools, which
include antiSMASH,9 PRISM,10 Deep-BGC,11 SMURF,12 as
well as others that are geared toward identifying specific classes
of natural products such as PKminer,13 2metDB,14 RiPP

Miner,15 BAGEL,16 RODEO,17 and NeuRiPP,18 can be used
to identify BGCs in genomes and compare them to BGCs for
known natural products. There are over 147,000 BGC
sequences that have been identified by antiSMASH
alone,19,20 and prioritization based on structural novelty,
which has resulted in many new molecules being discovered,
has not really addressed the issue of finding molecules with
useful functions. There are numerous architecturally fascinat-
ing molecules being published that lack any identified function.
If the activity of a natural product could be predicted from its
BGC, searches could be prioritized to increase focus only on
those most likely to produce a natural product with the activity
of interest.
Typically, it is not possible to predict the activity of natural

products from a BGC. The presence of known resistance
markers or duplication of an essential gene can indicate that a
BGC produces an inhibitor for the duplicated gene.21 Existing
tools to prioritize BGCs with resistance markers include the
Resistance Gene Identifier (RGI)22 and the Antibiotic
Resistant Target Seeker (ARTS).23 However, these methods
limit discovery to natural products with antibacterial activity
and, except in the case of resistance through gene duplication,
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are less likely to identify natural products that act through
novel mechanisms of action. A recently reported genome
mining tool, Deep-BGC, uses machine learning to predict
antibacterial, cytotoxic, inhibitor, and antifungal activity, but
due to a small training set size (370), it does so with only low
accuracy.11 The activity predictions made by Deep-BGC were
based only on protein family (PFAM) domains and no other
types of genetic feature that could be predictive of activity.
PRISM 4, another recently reported method for predicting
natural product activity from the sequence of BGCs, first
predicted the structure of the natural product from the BGC
and then used chemical fingerprints to predict its activity.24

There is still an unmet need for a more general method of
predicting a natural product’s biological activity from its BGC
sequence using both biosynthetic genes and other genetic
features such as resistance markers.
We here report a bioinformatics-based machine learning

method to predict natural product activities from BGC
sequences. To do this, we broke BGCs down into features
that describe the type of genes and biosynthetic capabilities
present in the cluster using automatic annotations such as
PFAM domains and the Resistance Gene Identifier (RGI). We
then trained machine learning models to predict the likelihood
that a natural product will have activity such as antibacterial or
antifungal with a library assembled from the MiBIG database
and the literature. The resulting classifiers predict activity with
accuracies up to 80%. In theory, this tool could also be trained
to predict any other bioactivity if a high quality training dataset
was available.

■ RESULTS AND DISCUSSION
Generating a Training Data Set. In order to develop a

machine learning model that can predict natural product
bioactivity, we assembled a dataset of known BGCs paired with
the activity of their products, represented BGCs as vectors
based on the number of times various gene annotations
appeared in the cluster, and trained several different binary

classifiers on the resulting dataset (Figure 1A). To assemble a
training dataset, we used bacterial BGCs listed in the
Minimum Information about a Biosynthetic Gene Custer
(MIBiG) database (version 1.4).25 For each metabolite, we
searched the literature to determine what was known about its
bioactivity. Specifically, we searched to determine if a
metabolite had recorded antibacterial, antifungal, cytotoxic,
antitumor, or other activities. We only included compounds
that had a documented activity or function or that had been
shown to lack antibacterial, antifungal, or antitumor activity in
our dataset. We recorded activity as a binary yes/no value and
due to the difficulties in comparing the level of activity
measured by different assays and did not require a specific level
of activity. We assumed that a natural product had only the
activities that it was reported to have and not any additional
activities that were not reported. It is likely that this
assumption will be incorrect in some cases because not every
natural product has been exhaustively tested for the activities
for which we developed classifiers. This incomplete informa-
tion will likely contribute to error in predictions. If a BGC was
documented to produce multiple products, we counted it as
active if one or more of the produced compounds was active. A
full list of natural products used in the training set is available
in Table S1.
Using existing bioinformatics techniques, we identified the

number of times different families of proteins occurred in the
biosynthetic gene cluster. We used the annotations produced
by antiSMASH 4.1,26 protein family (PFAM) classifications,
smCOG, CDs motifs, and predictions of monomers for
polyketides and nonribosomal peptides. To include more
information about the biosynthetic machinery in each BGC,
we further broke down some of the PFAM domains that were
most associated with activity into sub-PFAM domains using
sequence similarity networks (SSNs), which allow for the
clustering of protein sequences into groups with high sequence
similarity and often similar function.27,28 These annotations
provide information about the types of functional groups or

Figure 1. Machine learning method for predicting natural product activities. (A) Schematic illustrating our machine method for predicting natural
product bioactivity. First, we generated a dataset of known BGCs and the activity of the natural product they produce, and we then represented the
BGCs as a vector denoting the number of times different types of genes occurred in the cluster. Finally, we trained machine learning models to
predict bioactivity. (B) Illustration of how example annotations provide information about the structure of erythromycin, e.g., how many polyketide
units and sugars are in the molecule, as well as the approximate level of reduction of the polyketide backbone. Gene cluster rendered using
Geneious Prime 2020.0.3 (https://www.geneious.com).
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substructures present in the molecule, such as sugars, amines,
and halogens. They can also provide information about the
general level of oxidation or reduction of the molecule,
especially in the case of polyketides where modules require
specific domains to reduce the growing polyketide chain
(Figure 1B). We used the Resistance Gene Identifier (RGI)
3.2.129 to identify genes that had similarity to known resistance
genes, which we expect to be predictive of antibacterial activity.
In total, this analysis resulted in 1809 features for 1003 BGCs.
Training and Optimizing Machine Learning Models.

We trained and optimized binary classifiers on six different
binary classification problems: (1) antibacterial, (2) anti-
Gram-positive, (3) anti-Gram-negative, (4) antifungal, anti-
tumor, or cytotoxic (antifungal/antitumor/cytotoxic), (5)
antifungal, and (6) antitumor or cytotoxic. We used binary
classifiers rather than multilabel classification because many
molecules have multiple activities and therefore belong to
multiple classes. We chose to make the combined antifungal/
antitumor/cytotoxic classifier, by considering a compound
active if it has one or more of these activities, since they all
indicate activity against eukaryotic cells. We used classifiers
available in the Python scikit-learn library to perform
classifications. We used random forest with extra-randomized
trees, support vector machine (SVM), and logistic regression
with regularization because these classifiers enable interpreta-
tion of which features are important for predictions.
Parameters for each classifier were optimized to maximize
average accuracy in a 10-fold cross-validation, a process in
which over 10 trials, a different one-tenth of the data is held
out from training and used to evaluate classifier accuracy
(Figure S1 and Table S2).
The balanced accuracy metric in scikit-learn was used to

compare the performance of the optimized classifiers. The
balanced accuracy metric is a more accurate reflection of
classifier performance in the case of imbalanced datasets, where
one class dominates the dataset. Our dataset is very
imbalanced for the antifungal (20% of the dataset) and anti-
Gram-negative (17% of the dataset) classification problems.
We compared each classifier to the performance of a classifier
trained on a scrambled version of the features, which
represents random guessing. All of the scrambled data
classifiers had balanced accuracies of approximately 50%; this
is the expected result because binary classifiers can trivially
achieve 50% balanced accuracy by always guessing the same
label, regardless of how balanced the class labels are (see proof
in the Supporting Information). All classifiers, except for the
antifungal logistic regression classifier, perform significantly
better (p < 0.001 for antifungal classification, p < 0.0001 for all
other binary classifiers) than their randomized counterpart on
10-fold cross-validation (Figure 2). Performance was generally
independent of the classification method (Figure 2). Classifiers
for the antibacterial, anti-Gram-positive, and antifungal/
antitumor/cytotoxic classification problems were all highly
accurate, with balanced accuracies ranging from 74 to 80%
(Figure 2). The accuracy for classifying natural products as
cytotoxic or antitumor was slightly less accurate (ranging from
69 to 73%). The anti-Gram-negative and antifungal classifiers
are the least accurate (with accuracies between 57 and 64% for
antifungal and between 66 and 70% for anti-Gram-negative).
We used cross-validation to limit the degree that overfitting
influenced our estimated accuracies. However, we did use the
entire training set to optimize parameters for the classifiers, so
it is likely that there is still some degree of overfitting.

In addition to balanced accuracy, we also generated receiver
operator characteristic (ROC) curves and precision−recall
curves for each classifier. ROC curves plot the false positive
rate of a classifier vs the true positive rate, with a higher area
under the curve (AROC), indicating that the classifier has a
better true to false positive ratio. Our classifiers perform well
with AROCs ranging between 0.57 and 0.79 (Figure S2).
Precision−recall curves (Figure S3) plot the recall (x axis), or
true positives/(true positives + false negatives), vs precision (y
axis), or true positives/(true positives + false positives), and
are a better way to gauge the accuracy of classifiers applied to
unbalanced datasets. A good classifier will have a higher area
under the curve, not sacrificing precision for a higher recall. By
both the ROC and precision−recall curve metrics, the
antibacterial, anti-Gram-positive, and antifungal/antitumor/
cytotoxic classifiers perform very well while the anti-Gram-
negative and antifungal classifiers do not perform as well. One
possible reason for the lower accuracies of the anti-Gram-
negative and antifungal classifiers is that natural products with
anti-Gram-negative or antifungal activity make up a smaller
portion of the dataset, 17% and 20%, respectively. The
assumption that if a natural product was never recorded to
have an activity then it does not have that activity likely
contributes to error in all our classifiers but may especially

Figure 2. Balanced accuracy of classifiers. Balanced accuracy, or the
average of the true positive rate and true negative rate, in a 10-fold
cross-validation for (A) antibacterial classifiers and (B) antifungal/
antitumor classifiers. Solid bars represent classifiers trained on training
dataset; hashed bars are trained on randomly scrambled. Significance
was determined using a one-way ANOVA.
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affect the antifungal classifier because many compounds in the
dataset were only tested for antitumor activity and not
antifungal activity. Due to historical focus on the discovery of
natural products with the activities for which we developed
classifiers along with the use of bioactivity guided fractionation,
our dataset is likely biased toward active natural products,
especially antibacterial molecules. Therefore, it is likely that the
probabilities calculated by our method are overestimated.
Future work will focus on assessing the degree of this
overestimate by experimentally validating the classifiers’
predictions.
Our classifiers performed better than those in Deep-BGC11

for the same activity classification, likely because of our larger
training sets and inclusion of additional features such as
resistance markers and sub-PFAM domains. Deep-BGC used
only a random forest classifier, which is more difficult to
interpret in terms of which features are associated with activity
than the logistic regression classifier we used to interpret how
our classifiers make predictions. Random forests have an
importance score that can identify which features are the most
important for classification, but the importance score does not
specify whether the feature is associated with the presence or
absence of activity, which the coefficients of a logistic
regression do. Our analysis of the coefficient scores and the
inclusion of sub-PFAM domains as features made it possible
for us to identify molecular features associated with activity
and to understand how our classifiers make their predictions. It
is more difficult to compare the accuracy of our classifiers to
PRISM 4 because they only reported the ROC curve, but
comparison of these curves shows that our antibacterial and
antitumor classifiers performed better than PRISM 4,24 while
the antifungal classifiers performed approximately as well as
PRISM 4. Our improved performance could be due to
inclusion of non-biosynthetic features such as resistance
markers and transporters or due to more thorough
optimization of classifier hyperparameters.
Our classifiers were trained on activity alone and do not

make any predictions about the mechanism of action, although
some information about mechanism of action is contained in
the resistance gene features and PFAM domains. Therefore, it
is possible that our classifiers could identify natural products
with previously undiscovered mechanisms of action. A recently
reported deep learning method for predicting antibiotic activity
based on molecular structure successfully used a similar
mechanism-blind approach.30 Future experimental work will
focus on determining mechanism of action for any active
molecules identified by our classifiers in order to test this
hypothesis.
The precision−recall curves for our classifiers provide insight

into how our classifiers could be used to prioritize BGCs for
study. For example, if a researcher is using heterologous
expression of a variety of BGC classes, a relatively time-
consuming approach, they would want to screen only a few
BGCs and would want a few false positives (high precision).
Even for the antifungal classifier, the precision−recall curve
shows that it is possible to achieve a high precision of 78% (2
in 10 of the BGCs screened would be expected to be a false
positive) with a recall of 33% (Figure S3). If the BGCs in
question were amenable to high throughput cloning and
heterologous expression, then the researcher would be willing
to sacrifice some precision to obtain a higher recall. In the case
of the antifungal classifier, the precision−recall curve shows
that it is possible to achieve a recall of 90% and still have a

precision of 30%. In practice, these accuracies might be slightly
overestimated due to the similarity of the training and
validation data and because the historical use of bioactivity
guided fractionation likely inflates the number of active
compounds in our training set. Specifically, we expect that
the classifiers will be more accurate for BGCs that share
features with those in our training set and will therefore be
most accurate for BGCs for the major classes of natural
products (nonribosomal and ribosomal peptides, polyketides,
terpenes, alkaloids, and saccharides). If a BGC for a novel
natural product class is discovered, it is possible that our
classifiers could still make accurate predictions if it shares
tailoring enzymes, transporters, or resistance markers with
BGCs in the training set but researchers should treat these
predictions with caution. Future work will determine the TPR
and FPRs for the classifiers on BGCs for different levels of
novelty relative to the training data set.

Different Features Play a Role in Different Prediction
Problems.We used the trained logistic regression classifiers to
determine which features are most important for each
classification problem. Using the coefficients from the logistic
regression, we ranked features by their importance to the
prediction. Features with a large positive coefficient are highly
associated with the activity, while those with a large negative
coefficient are strongly associated with not having activity.
Because we used elastic net regularization, most of the
coefficients are zero or close to zero, indicating that they are
not important for making predictions (Figure S4). We chose to
analyze only the 50 features with the highest coefficients and
50 with the lowest coefficients. Figure 3 shows pie charts with
classification of the top and bottom 50 features for each
classification problem; Table S3 lists the specific features.
The types of features associated with activity vary

considerably between the different types of activities for

Figure 3. PFAM domains associated with activity. Pie charts showing
the 50 protein family domains most or least associated with activity, as
measured by their coefficients in the logistic regression classifier. A full
list of these PFAM domains is available in Table S3.
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which we developed classifiers. For example, for all
antibacterial classifiers, many transporter genes were highly
associated with activity, accounting for 16−36% of the top 50
features. Transporters are less important for predicting
antifungal or antitumor activity, accounting for only 6−14%

of the top 50 features (Figure 3). This is probably due to the
importance of transporters as a resistance mechanism; a
dedicated transporter may be required to provide bacteria
resistance to antibacterial secondary metabolites, while
antifungal molecules could possibly be transported by a

Figure 4. Aminotransferase class I and II SSN. (A) Each node in the sequence similarity network represents a domain from a BGC. Nodes are
colored based on the activity of the natural product produced by the biosynthetic gene cluster, pink denotes antibacterial activity, blue antifungal,
antitumor, or cytotoxic activity, red both activities, green neither activity, and black unknown activity. Clusters are numbered based on the number
of sequences assigned to them. For clarity, clusters with three or fewer members are not shown. (B) Cluster 3 is involved in the biosynthesis of
phenylglycine and its analogs. Cluster 6 installs an amine on the sugar mycosamine, and cluster 8 is involved in the synthesis of various sugars found
in aminoglycoside antibiotics. (C) Examples of nonribosomal peptide antibiotics that contain at least one phenylglycine analog, highlighted in red.
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general transporter. Some transporter genes also appear in the
bottom 50 features for each classifier, suggesting that only
certain transporters are associated with those activities. For
example, in the case of the antibacterial classifier, multiple
PFAM domains that are part of ABC-transporters are highly
associated with antibacterial activity. Conversely, some major
facilitator transporters are in the top 50 genes and some are in
the bottom 50 (Table S3). More work will be required to
understand why certain transporters are associated with
antibacterial compounds and others are not. Genes associated
with resistance that were not transporters were generally not
highly correlated with antibacterial activity. Initially, we were
surprised by this result but resistance mechanisms such as drug
modification, target modification, or target duplication are all
specific to a class of molecules or mechanism of action.
Transporters can provide resistance to many molecule classes
that act through different mechanisms and are therefore more
useful as a general predictor of antibacterial activity.
There were also many biosynthetic genes associated with

activity. Seven aminotransferase genes were in the top 50 genes
associated with anti-Gram-negative activity (none were in the
top 50 for Gram-positive). This is consistent with a known
Gram-negative permeability rule, that molecules containing an
amine are more likely to accumulate in Gram-negative
bacteria.31 Genes associated with RiPP biosynthesis, especially
lantipeptides, are strongly associated with antibacterial activity
in general and with anti-Gram-positive activity but not with
anti-Gram-negative activity or other activities (Figure 3).
Lantipeptides often have activity against Gram-positive
bacteria but rarely have activity against Gram-negative
bacteria,32 fungi,33 or tumor cells. Genes for synthesizing the
other major classes of natural products are present in both the
top and bottom 50 genes, and it is difficult to draw any
conclusions about how these correlations relate to structure−
activity relationships. This is unsurprising because many of
these genes, such as those responsible for NRPS and PKS
synthesis, are responsible for the synthesis of diverse molecules
with a variety of functions.
PFAM Sub-Families Give Insight into Molecular

Features Associated with Function. While analyzing how
PFAM, antiSMASH, and resistance marker features correlated
with activity was useful to draw some general conclusions
about what types of biosynthetic genes and natural product
classes are associated with various activities, they failed to
provide much insight into how specific chemical features might
contribute to activity. Therefore, we made Sequence Similarity
Networks (SSNs) for some of the PFAMs most associated with
activity to break them down into sub-PFAMs. SSNs, which
group proteins based on pairwise sequence similarity, have
been shown to cluster proteins with similar enzymatic activities
and substrates.27,28 We colored each SSN based on the activity
of the natural product produced by the cluster the domain was
from and prioritized SSNs where there were one or more
clusters dominated by a single activity. We first examined the
SSN network generated for the aminotransferase class I and II
PFAM domain (accession number PF00155) because it
contained multiple clusters that were associated with different
activities (Figure 4A). We then examined the literature to
determine the enzymatic activity of each activity-associated
cluster. We identified three sub-PFAM domains that were both
associated with activity and had a single enzymatic activity
(Figure 4A,B).

The sixth largest cluster associated with antifungal activity
produced the sugar mycosamine.34 BGCs containing this
mycosamine-producing sub-PFAM domain are all polyene
macrolides with similar structures (Figure S5). The eighth
largest cluster is associated with antibacterial activity, and the
sub-PFAM domains in this cluster all transfer amines to sugars
in aminoglycoside antibiotics, e.g., kanosamine, part of the
antibiotic kanamycin (Figure 4B).35 Therefore clusters 6 and 8
both produce substructures of a single class of natural product.
In the case of the polyene macrolides, the mycosamine sugar
has been shown to be essential for activity, likely through its
interactions with sterols in the fungal membrane.36 This is
encouraging as it shows that the SSN approach can rediscover
classes of active molecules and identify the biosynthetic
machinery that installs the groups that are essential for activity.
Unlike clusters 6 and 8, cluster 3, whose members produce

L-phenylglycine and its hydroxylated analogs, hydroxyphenyl-
glycine (Hpg) and dihydroxyphenylglycine (Dpg), was not
confined to one class of molecule.37,38 All the BGCs in our
database containing phenylglycine transaminase produced
natural products with antibacterial activity, but they produced
molecules with very divergent structures (Figure 4C). In line
with this observation, these natural products also do not all act
through the same mechanism of action. For example,
glycopeptide antibiotics such as vancomycin inhibit cell wall
synthesis by binding to the D-Ala-D-Ala terminal of growing
peptide chains in the cell wall, preventing cell wall
remodeling,39 while nocardicin A is a β-lactam that inhibits
cell wall synthesis by binding to penicillin binding proteins,40

and pristinamycin inhibits protein synthesis by binding to the
ribosome.41 This suggests that, unlike mycosamine in polyenes,
phenylglycine supports activity in a general way rather than
through a specific mechanism or binding interaction. One
possible explanation for phenylglycine’s association with
activity is that unlike proteinogenic amino acids, phenylglycine
does not have a β-carbon, so it has fewer rotatable bonds than
proteinogenic aromatic amino acids like phenylalanine.38

Therefore, phenylglycine-containing peptides should be more
rigid than they would be if they contained a proteinogenic
amino acid instead, reducing the entropic cost for binding to a
target. There is evidence that the structural rigidity of
glycopeptide antibiotics are thought to be especially important
for their activity.37,42 Alanine scanning studies have shown that
two Hpg residues in the antibiotic feglymycin and four Hpg
residues in ramoplanin are important for activity.43,44

However, it is not clear why phenylglycine appears to be
associated only with antibacterial activity and no other
activities. It is possible that the reason for this is evolutionary,
that once a bacteria’s competitor evolved resistance to an
ancient phenylglycine-containing antibiotic, evolutionary pres-
sure maintained the antibacterial function of the molecule but
altered it to work through an alternative mechanism.
Interestingly, many of the phenylglycine-containing antibiotics,
including glycopeptide antibiotics, nocardicin, ramoplanin, and
feglymycin, act through inhibiting cell wall formation through
different targets.39,40,44,45 Additional study will be required to
determine if phenylglycine transaminases are useful as a handle
for antibacterial discovery and to determine the mechanism by
which phenylglycine and its analogs support activity.
We examined 46 other SSNs for trends similar those

observed for the aminotransferase class I and II PFAM domain.
We found that five SSNs had at least one cluster associated
with activity and, as determined by literature search, had an
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enzymatic activity distinct from other enzymes not in the
cluster. The functional groups produced by these enzymes are
summarized in Figure 5, and the SSNs are shown in Figures
S6−S9. While five of these functional groups, including the
previously mentioned mycosamine and aminoglycoside sugars,
were restricted to one class of active molecule, another 10 of
these were not specific to one natural product scaffold (Figure
5). The sub-PFAM domains that produce these functional
groups could be useful handles for discovering novel bioactive
natural product scaffolds. It is likely that most of these
functional groups are associated with activity because they
change general properties of the molecule to improve its
activity. For example, we identified one sub-PFAM domain
that N-methylates the backbone or side chain of non-ribosomal
peptides. It is known that N-methylation of peptides can
improve their cell permeability in mammalian cells, increase
protease resistance, and stabilize the conformation of cyclic
peptides.46−48 It is likely that many of the other functional
groups identified through this analysis also support activity by
making the molecule more permeable to the target organism’s
membrane or improve binding to target proteins. Bacteria may
have evolved these sub-PFAM domains to improve the activity
of their natural products analogous to how medicinal chemists
use specific chemical modifications to improve the drug-like
properties of a molecule. These activity-associated domains
could both be used to identify new BGCs that produce active
molecules and to engineer known natural products to improve
their activity.
Classifiers Perform Well on Holdout Set BGCs with

Some Similarity to BGCs in the Training Set. To assess
how well our classifiers will perform on novel BGCs, we
applied it to a holdout set of BGCs that were not used during
the development and optimization of the classifiers. A holdout
set is useful for assessing the algorithm because it ensures that
the optimization process did not produce a classifier that works
only on the training set and will not work as well on other data.
To generate a holdout set, we used BGCs that were added to

the MiBIG database when it was upgraded from version 1.4 to
version 2.0.49 Our holdout set consisted of 258 BGCs for
which we could find information about the activity of the
associated natural product(s) (Table S5).
To assess the accuracy of the classifiers on the holdout set,

we split the holdout set into subsets based on how similar the
BGCs were to BGCs in the training set. To do this, we used
the “knownclusterblast” feature of antiSMASH,26 which scores
how similar BGCs are to known clusters. We split the holdout
set into six subsets: clusters not recognized by antiSMASH and
therefore lacking a knownclusterblast score (ND) and
maximum percentage of genes that show similarity to genes
in a single training set cluster of 0, (0−25], (25−50], (50−75],
and (75−100] (Figure 6 and Figures S10−S12). The balanced
accuracy increased with the similarity of all genes for almost all
classifiers. This means that while the classifiers cannot
accurately predict the activity for a natural product when its
BGC has no similarity to any training set BGC, as the similarity
increases, so does the accuracy of the prediction. All classifiers,
except the antifungal SVM classifier, perform well on the 75−
100 holdout set with balanced accuracies ranging from 67 to
98% (Figure 6 and Figures S10−S12). Most classifiers also
perform well on the 50−75 holdout set, with accuracies as high
as 85%. This indicates that if a novel cluster has a
knownclusterblast similarity score of at least 50 with a BGC
in the training set, then the predictions made by the classifiers
are fairly accurate. We expect that the addition of more BGCs
to the training set would increase its diversity and therefore
improve the accuracy of predictions made by the classifiers.
The molecules produced by BGCs with similarity scores

higher than 50 can still be quite different. One example from
the holdout set that demonstrates this is the aurantinin
cluster.50 The closest match to aurantinin in the training set is
the bacillaene cluster,51 with a similarity score of 57%. Despite
the high similarity, aurantinin and bacillaene have quite
different molecular structures (Figure 6B). Aurantinin has
multiple cycles and is glycosylated,50 while bacillaene is linear,

Figure 5. Summary of molecular features associated with activity. List of molecular features associated with (A) antibacterial, (B) antifungal,
antitumor, or cytotoxic, and (C) antibacterial, antifungal, antitumor, or cytotoxic activities identified through analysis of SSNs of PFAM domains
from BGCs. Yellow boxes indicate features that were not associated with a single molecular scaffold or mechanism of action. These sub-PFAM
domains could be useful handles for the discovery of bioactive compounds with novel scaffolds.
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not glycosylated, and contains peptides in addition to the main
polyketide backbone.51 Despite their different structures,
aurantinin and bacillaene both have antibacterial activity.50,52

The classifiers were able to successfully predict that aurantinin
has antibacterial activity (60% average probability). We also
looked for examples in the holdout set that were very similar
structurally to a molecule from the training set but that had
different activities. We found that aurantimycin53 is similar
both in structure and BGC sequence (67% similarity score) to
polyoxypeptin54 (Figure 6C). Despite their similarity,
aurantimycin is documented to have both antibacterial and
antitumor activity,55 both of which were correctly predicted by
the classifier, with probabilities of 58% for antibacterial activity
and 85% for antifungal, antitumor, or cytotoxic activity. In the
literature we reviewed, polyoxypeptin was only documented to
have antitumor activity.56 Together, these examples suggest
that the classifiers are not merely relying on the most similar
cluster to make their predictions and are able to distinguish
between similar BGCs that produce molecules with different
activities. Therefore, we expect that the model will perform

well on novel BGCs if they have some degree of similarity to
BGCs in the training set and that the similarity required for
accurate predictions does not mean that the molecules
produced by the BGCs will themselves be similar.

■ CONCLUSIONS

We developed a bioinformatics method for predicting
biological activities, antibacterial, antifungal, or antitumor,
from biosynthetic gene clusters. The ability to predict natural
product activity from BGC sequences alone will make it
possible to prioritize clusters that are most likely to produce
molecules with a desired activity, minimizing the number of
times the bottlenecks of natural product discovery need to be
encountered to discover a novel active compound. Our
approach used machine learning to generate classifiers, which
have balanced accuracies of at least 57% and up to 79%.
Classifiers’ performance depends on training sets, and they
work best for problems where there are many positive and
negative examples in the dataset, which is why we focused on
antibacterial activity. The method does not perform as well

Figure 6. Performance of classifiers on holdout set. (A) Balanced accuracy of random forest antibacterial, antifungal/antitumor/cytotoxic, and
antifungal classifiers applied to subsets of the holdout set, split based on the maximum known cluster BLAST similarity score to BGCs in the
training set. ND indicates the subset where antiSMASH did not identify the cluster and therefore did not determine a known cluster BLAST score.
(B) Comparison of aurantinin B50 and bacillaene51 structures and BGCs; genes that were identified as similar by known cluster BLAST are colored
in the same color. (C) Comparison of aurantimycin A53 and polyoxypeptin54 structures and BGCs; genes that were identified as similar by known
cluster BLAST are colored in the same color.
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when molecules with the desired activity sparsely populate the
dataset. In our analysis, this feature of machine learning is most
pronounced for the antifungal classifiers, for which our method
has the lowest accuracy. It is likely that increasing the size of
the dataset will further improve the accuracy of all classifiers,
especially the antifungal and anti-Gram-negative classifiers. By
examining which features of BGCs are associated with activity,
we gained new insights into which molecular features of
natural products are associated with their activity. Some of
these observations were consistent with previously discovered
structure−activity relationships, for example, that molecules
with an amine are more likely to accumulate in Gram-negative
bacteria31 or that mycosamine is essential for the activity of
antifungal polyenes.36 This concordance demonstrates that
trained classifiers can be used to identify structural features
associated with activity. Future work will be focused on
validating our machine learning approach as a tool to
accelerate functional natural product discovery and on
investigating the connection between molecular features
identified by our classifiers and activity.

■ METHODS
Assembly of Training Dataset. We assembled a training

dataset from BGCs available from the MiBIG (version 1.4)
database.25 We then searched the literature for each natural
product to determine if it had documented antibacterial,
antifungal, antitumor, or cytotoxic activity. If a natural product
was documented to not have a given activity, we recorded it as
not having the activity in the dataset. Unfortunately, we found
that reports rarely note the absence of activity. Therefore, we
also assumed that a molecule did not have a given activity if
there were no reports stating that it had that activity and if it
was described as having a different activity (e.g., activity against
a different organism, siderophore activity, ionophore activity,
antioxidant activity, etc.). If the molecule had no recorded
activity or function and no assays specifically showing its
inactivity, we assumed that it was not tested for activity and we
excluded it from our dataset.
Selection of Features. We ran antiSMASH 4.126 on the

BGCs in the dataset and wrote a Python script to extract
PFAM, CDS motif, smCOG, and polyketide and non-
ribosomal peptide monomer prediction annotations of BGCs
from an antiSMASH output file. We also ran RGI 3.2.129 on all
clusters and wrote a script to extract resistance marker features.
Features were only included if they appeared at least five times
in the dataset. Further details on settings used to run
antiSMASH and RGI as well as more details on the scripts
are available in the Supporting Information. Scripts are
available as a Jupyter notebook here: https://github.com/
allie-walker/Natural-product-function. Since our initial devel-
opment of the classification algorithm, new versions of
antiSMASH and RGI became available. The command line
version of our prediction algorithm, also available on GitHub,
accepts input files from antiSMASH 5 and RGI 5 as well as the
versions used in this paper.
Sequence Similarity Networks of PFAM Domains. To

add additional information about the biosynthetic capabilities
of the BGCs to the features, we broke down PFAM domains
into sub-PFAM domains using the SSN algorithm on the EFI-
EST webserver.28 We made SSNs for the top 30 PFAM
domains associated with antibacterial or antifungal/antitumor/
cytotoxic activity as measured by χ2 value, excluding any
PFAM domains that appeared in fewer than 35 training set

BGCs. We applied the EFI-EST tool to the sequences of
selected PFAM domains that appeared in our training set
BGCs. We chose alignment scores for clustering cutoffs that
would result in distinct clusters in the SSN (listed in Table S4).
We designated each cluster that contained more than five
sequences and occurred in at least three BGCs a sub-PFAM
domain and included it as a feature for training. SSN networks
shown in Figure 4 and Figures S6−S9 were visualized using
Cytoscape.57

Optimization and Training of Classifiers. We used
modules from the scikit-learn Python library58 to perform all
machine learning. Before training regression and SVM
classifiers, we scaled all features using a min max scaler
(scikit-learn MinMaxScaler). To assess which parameters
produced the best results, we measured the average accuracy
for each parameter set over a 10-fold cross-validation, where
one-tenth of the data was held out from training in each trial
and then used to assess accuracy. For the logistic regression
classifier, we used the Stochastic Gradient Decent Classifier
module (SGDClassifier) from scikit-learn with loss=’log’ and
reg=’elasticnet’. We then tested all combinations of α = 0.5,
0.3, 0.2, 0.1, 10−2, 10−3, 10−4, 10−5, and 10−6 and l1 ratios =
0.5, 0.2, 0.1, 0.05, 10−2, 10−3, and 10−4 (Figure S1A and Table
S2). For the SVM classifier, we used the SVC module from
scikit-learn. We tested the accuracy of the SVM with linear and
rbf kernels and tested the C (l2 regularization parameter)
values = 100, 10, 1, 0.5, 0.1, and 0.01. For the rbf kernel, we
also tested kernel coefficients, γ = 0.001, 0.01, 0.1, 1, and 10
(Figure S1B and Table S2). To train random forest classifiers,
we used the ExtraTreesClassifier module from scikit-learn with
bootstrap = True, max_features=’auto’, and criterion=’gini’.
We then tested all combinations of n_estimators = 1, 5, 10, 15,
20, 25, 50, and 100 and max_depth = 10, 20, 50, 100, 1000,
and None (Figure S1C). We then chose the combination of
parameters with the highest average accuracy for each
classification problem for all subsequent analysis (Table S2).

Calculating Accuracy Metrics for Trained Classifiers.
Methods from the scikit-learn metrics module were used to
analyze the accuracy of our classifiers. The methods we used
were balanced_accuracy_score, roc_curve, roc_auc_score, and
precision_recall_curve. For the balanced accuracy and AROC
scores, we took the average of scores from a 10-fold cross-
validation. For plots showing ROC and precision recall curves,
we displayed a curve from one trial of the cross-validation.
Statistical significance of improvement over random guessing
was determined in PRISM using and one-way ANOVA test.
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Terlouw, B. R.; van der Hooft, J. J. J.; van Santen, J. A.; Tracanna, V.;
Suarez Duran, H. G.; Pascal Andreu, V.; Selem-Mojica, N.; Alanjary,
M.; Robinson, S. L.; Lund, G.; Epstein, S. C.; Sisto, A. C.;
Charkoudian, L. K.; Collemare, J.; Linington, R. G.; Weber, T.;
Medema, M. H. MIBiG 2.0: a repository for biosynthetic gene clusters
of known function. Nucleic Acids Res. 2020, 48, D454−D458.
(50) Yang, J.; Zhu, X.; Cao, M.; Wang, C.; Zhang, C.; Lu, Z.; Lu, F.
Genomics-Inspired Discovery of Three Antibacterial Active Metab-
olites, Aurantinins B, C, and D from Compost-Associated Bacillus
subtilis fmb60. J. Agric. Food Chem. 2016, 64, 8811−8820.
(51) Butcher, R. A.; Schroeder, F. C.; Fischbach, M. A.; Straight, P.
D.; Kolter, R.; Walsh, C. T.; Clardy, J. The identification of bacillaene,
the product of the PksX megacomplex in Bacillus subtilis. Proc. Natl.
Acad. Sci. U. S. A. 2007, 104, 1506−1509.
(52) Patel, P. S.; Huang, S.; Fisher, S.; Pirnik, D.; Aklonis, C.; Dean,
L.; Meyers, E.; Fernandes, P.; Mayerl, F. Bacillaene, a novel inhibitor

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.0c01304
J. Chem. Inf. Model. 2021, 61, 2560−2571

2570

https://doi.org/10.1038/nchembio.1890
https://doi.org/10.1038/nchembio.1890
https://doi.org/10.1093/nar/gkx319
https://doi.org/10.1093/nar/gkx319
https://doi.org/10.1093/nar/gkx319
https://doi.org/10.1371/journal.pone.0004345
https://doi.org/10.1371/journal.pone.0004345
https://doi.org/10.1371/journal.pone.0004345
https://doi.org/10.1016/j.bbapap.2015.04.015
https://doi.org/10.1016/j.bbapap.2015.04.015
https://doi.org/10.1016/j.bbapap.2015.04.015
https://doi.org/10.1093/nar/gkw1004
https://doi.org/10.1093/nar/gkw1004
https://doi.org/10.1093/nar/gkw1004
https://doi.org/10.1016/j.cell.2020.04.001
https://doi.org/10.1016/j.cell.2020.04.001
https://doi.org/10.1038/nature22308
https://doi.org/10.1038/nature22308
https://doi.org/10.3389/fmicb.2015.01363
https://doi.org/10.3389/fmicb.2015.01363
https://doi.org/10.1002/anie.201500927
https://doi.org/10.1002/anie.201500927
https://doi.org/10.1128/AEM.01122-07
https://doi.org/10.1128/AEM.01122-07
https://doi.org/10.1128/AEM.01122-07
https://doi.org/10.1021/acs.biochem.0c00204?ref=pdf
https://doi.org/10.1021/acs.biochem.0c00204?ref=pdf
https://doi.org/10.1021/acs.biochem.0c00204?ref=pdf
https://doi.org/10.1073/pnas.1015023108
https://doi.org/10.1073/pnas.1015023108
https://doi.org/10.1016/S1074-5521(00)00043-0
https://doi.org/10.1016/S1074-5521(00)00043-0
https://doi.org/10.1016/S1074-5521(00)00043-0
https://doi.org/10.1039/C5NP00025D
https://doi.org/10.1039/C5NP00025D
https://doi.org/10.1038/271223a0
https://doi.org/10.1038/271223a0
https://doi.org/10.1111/j.1432-1033.1982.tb06760.x
https://doi.org/10.1111/j.1432-1033.1982.tb06760.x
https://doi.org/10.1111/j.1432-1033.1982.tb06760.x
https://doi.org/10.1016/S0022-2836(03)00662-4
https://doi.org/10.1016/S0022-2836(03)00662-4
https://doi.org/10.1016/S0022-2836(03)00662-4
https://doi.org/10.1021/ja302692j?ref=pdf
https://doi.org/10.1021/ja302692j?ref=pdf
https://doi.org/10.1021/ja302692j?ref=pdf
https://doi.org/10.1002/cbic.201300032
https://doi.org/10.1002/cbic.201300032
https://doi.org/10.1002/cbic.201300032
https://doi.org/10.1021/ja068573k?ref=pdf
https://doi.org/10.1021/ja068573k?ref=pdf
https://doi.org/10.1021/ja068573k?ref=pdf
https://doi.org/10.1002/cbic.201100120
https://doi.org/10.1002/cbic.201100120
https://doi.org/10.1021/acs.jmedchem.5b00919?ref=pdf
https://doi.org/10.1021/acs.jmedchem.5b00919?ref=pdf
https://doi.org/10.1021/acs.jmedchem.5b00919?ref=pdf
https://doi.org/10.1021/acs.jmedchem.5b00919?ref=pdf
https://doi.org/10.1002/cbic.200800208
https://doi.org/10.1002/cbic.200800208
https://doi.org/10.1002/cbic.200800208
https://doi.org/10.1021/ar8000603?ref=pdf
https://doi.org/10.1021/ar8000603?ref=pdf
https://doi.org/10.1093/nar/gkz882
https://doi.org/10.1093/nar/gkz882
https://doi.org/10.1021/acs.jafc.6b04455?ref=pdf
https://doi.org/10.1021/acs.jafc.6b04455?ref=pdf
https://doi.org/10.1021/acs.jafc.6b04455?ref=pdf
https://doi.org/10.1073/pnas.0610503104
https://doi.org/10.1073/pnas.0610503104
https://doi.org/10.7164/antibiotics.48.997
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.0c01304?rel=cite-as&ref=PDF&jav=VoR


of procaryotic protein synthesis produced by Bacillus subtilis:
production, taxonomy, isolation, physico-chemical characterization
and biological activity. J. Antibiot. 1995, 48, 997−1003.
(53) Zhao, H.; Wang, L.; Wan, D.; Qi, J.; Gong, R.; Deng, Z.; Chen,
W. Characterization of the aurantimycin biosynthetic gene cluster and
enhancing its production by manipulating two pathway-specific
activators in Streptomyces aurantiacus JA 4570. Microb. Cell Fact.
2016, 15, 160.
(54) Du, Y.; Wang, Y.; Huang, T.; Tao, M.; Deng, Z.; Lin, S.
Identification and characterization of the biosynthetic gene cluster of
polyoxypeptin A, a potent apoptosis inducer. BMC Microbiol. 2014,
14, 30.
(55) Gräfe, U.; Schlegel, R.; Ritzau, M.; Ihn, W.; Dornberger, K.;
Stengel, C.; Fleck, W. F.; Gutsche, W.; Härtl, A.; Paulus, E. F.
Aurantimycins, new depsipeptide antibiotics from Streptomyces
aurantiacus IMET 43917. Production, isolation, structure elucidation,
and biological activity. J. Antibiot. 1995, 48, 119−125.
(56) Umezawa, K.; Nakazawa, K.; Ikeda, Y.; Naganawa, H.; Kondo,
S. Polyoxypeptins A and B Produced by Streptomyces: Apoptosis-
Inducing Cyclic Depsipeptides Containing the Novel Amino Acid
(2S,3R)-3-Hydroxy-3-methylproline. J. Org. Chem. 1999, 64, 3034−
3038.
(57) Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N. S.; Wang, J. T.;
Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a
software environment for integrated models of biomolecular
interaction networks. Genome Res. 2003, 13, 2498−2504.
(58) Pedergosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.;
Perrot, M.; Duchesnay, E. Scikit-learn: Machine Learning in Python. J.
Mach. Learn. 2011, 12, 2825−2830.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.0c01304
J. Chem. Inf. Model. 2021, 61, 2560−2571

2571

https://doi.org/10.7164/antibiotics.48.997
https://doi.org/10.7164/antibiotics.48.997
https://doi.org/10.7164/antibiotics.48.997
https://doi.org/10.1186/s12934-016-0559-7
https://doi.org/10.1186/s12934-016-0559-7
https://doi.org/10.1186/s12934-016-0559-7
https://doi.org/10.1186/1471-2180-14-30
https://doi.org/10.1186/1471-2180-14-30
https://doi.org/10.7164/antibiotics.48.119
https://doi.org/10.7164/antibiotics.48.119
https://doi.org/10.7164/antibiotics.48.119
https://doi.org/10.1021/jo981512n?ref=pdf
https://doi.org/10.1021/jo981512n?ref=pdf
https://doi.org/10.1021/jo981512n?ref=pdf
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.0c01304?rel=cite-as&ref=PDF&jav=VoR

