
Moderate Intra-Group Bias Maximizes Cooperation on
Interdependent Populations
Changbing Tang1, Zhen Wang2,3, Xiang Li1*

1 Adaptive Networks and Control Lab, Department of Electronic Engineering, Fudan University, Shanghai, PR China, 2 Department of Physics, Hong Kong Baptist

University, Kowloon Tong, Hong Kong, 3 Center for Nonlinear Studies and the Beijing-Hong Kong-Singapore Joint Center for Nonlinear and Complex systems (Hong

Kong), Hong Kong Baptist University, Kowloon Tong, Hong Kong

Abstract

Evolutionary game theory on spatial structures has received increasing attention during the past decades. However, the
majority of these achievements focuses on single and static population structures, which is not fully consistent with the fact
that real structures are composed of many interactive groups. These groups are interdependent on each other and present
dynamical features, in which individuals mimic the strategy of neighbors and switch their partnerships continually. It is
however unclear how the dynamical and interdependent interactions among groups affect the evolution of collective
behaviors. In this work, we employ the prisoner’s dilemma game to investigate how the dynamics of structure influences
cooperation on interdependent populations, where populations are represented by group structures. It is found that the
more robust the links between cooperators (or the more fragile the links between cooperators and defectors), the more
prevalent of cooperation. Furthermore, theoretical analysis shows that the intra-group bias can favor cooperation, which is
only possible when individuals are likely to attach neighbors within the same group. Yet, interestingly, cooperation can be
even inhibited for large intra-group bias, allowing the moderate intra-group bias maximizes the cooperation level.
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Introduction

Cooperation is a widely observed phenomenon in social science,

biology and economics [1,2]. However, cooperative behavior

apparently contradicts the natural selection [3]: Selfish players

always have a higher average fitness than that of cooperators, since

selfish players enjoy the benefits from the cooperation of others

without associated costs. Therefore, it has fascinated many

interests from natural and social scientists to understand the

emergence and the stability of cooperation.

Within the interdisciplinary field of evolutionary game theory,

this puzzle benefits from techniques of biology, economy,

computer sciences, and physics [4,5]. As a metaphor, the

prisoner’s dilemma (PD) game has attracted great attention in

both theoretical and experimental studies to investigate the

evolution of cooperation [6–12]. In a typical PD game, two

players simultaneously decide whether they act as a cooperator (C)

or a defector (D). Cs are willing to engage in cooperative tasks,

while Ds prefer not to. They will receive the reward, R, if both

cooperate, and the punishment, P, if both defect. However, if one

player defects while the other decides to cooperate, the former will

get the temptation, T , while the latter will get the sucker’s payoff,

S. Namely, the local interaction between C and D is given by the

following payoff matrix:

C D

C

D

R S

T P

 !
,

ð1Þ

where these payoffs satisfy TwRwPwS and 2RwTzP. It is

obvious that players prefer to defect if they wish to maximize their

own payoffs, whatever the opponent’s decision.

Various mechanisms to support the evolution of cooperation

have been identified recently [13–18], such as direct reciprocity,

indirect reciprocity, group selection and network reciprocity [19].

The most famous context is spatial games introduced by Nowak

and May [20], where players are arranged on a spatially structured

population and interact with their neighbors only. It is shown that

cooperators could survive by means of forming compact clusters,

which minimize the exploitation of defectors. In the line of this

seminal achievement, the role of spatial game and its underlying

promoted mechanisms in evolutionary games have been inten-

sively explored, such as the mobility of players [21–23], different

evolutionary time scales [24–27], social diversity [28,29], hetero-

geneous ability and aspiration [30,31] (for comprehensive reviews

refer to Ref. [32]).

Though large amounts of work upon spatial reciprocity are

available, the main attention remains in an isolated and single

structure. In human societies, empirical evidences have shown that
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the realistic structures are composed of many interactive groups,

which interact with each other over time [33–40]. In this context,

the evolution behavior traits have been considered underlying the

interdependent populations, where populations are represented by

group structures to account for different social types. Note that this

framework is similar with previous studies that have addressed the

structure on interdependent networks, in the sense that the success

of one node in a given group not only depends on the nodes in the

same group, but also replies on the states of other nodes in other

groups. Taking some examples more specifically, in a recent paper

[41], where the biased utility function on interdependent networks

were implemented, it was shown that the stronger the bias in the

utility function, the higher the level of public cooperation. While in

[42], a replicator such as evolutionary game dynamics took place

on interdependent populations, cooperative behaviors are fixed on

the system (even if the system is well-mixed). Moreover, it was also

a remarkable hint that only an intermediate density of sufficiently

strong interactions between groups could lead the optimal

resolution of social dilemmas [43,44].

Aside from the effect of spatial structure and its various

promoted mechanisms, the co-evolution of game models also

attracts numerous attention [45–52], which not only reflects the

evolving of strategies over time, but also characterizes the adaptive

development of topologies and/or update rules. In particular, the

interdependent populations in our real social life are dynamical

and changing over time. Besides, the essence of evolutionary game

theory on interdependent populations remains unclear, especially

for the question how the structure of dynamical and interdepen-

dent populations affects the evolution of cooperation. Therefore,

we introduce an intra-group bias based rewiring probability, and

focus on co-evolution of strategy and structure to investigate the

evolution of cooperation on interdependent populations. Within

the fast rewiring process, we derive a simple rule quantitatively

revealing how the link breaking probability and intra-group bias

are chosen to stabilize cooperation. Interestingly, though cooper-

ation is favored by intra-group bias conditionally, it is precluded

for a large intra-group bias, which uncovers that the moderate

intra-group bias maximizes the cooperation level.

Model and Analysis

2.1 Model
We consider the co-evolution of strategy and topology structure

of the PD game. Each player can be one of the two strategies,

either cooperation (C) or defection (D), where Cs incur a cost c
and provide a benefit b to its opponent (bwcw0), while Ds neither

incur costs nor provide benefits. The local interaction between C
and D is given by the payoff matrix Mij , which is a simplified

version of Eq. (1):

C D

C

D

b{c {c

b 0

 !
:

ð2Þ

Initially, the whole population is located at interdependent

populations, which consists of Group-1 and Group-2 (see Fig. 1).

Each Group-i (i~1,2) is represented by a network structure with

size Ni, leading to the size of total population N~N1zN2. The

average degree of Group-i is Li~2Hi=Ni, where Hi is the total

number of links in Group-i. Assume Ni&Li, which implies that

each player has a limited number of neighbors compared with the

population size of the group. Denote the number of links

connecting two nodes via intra-group interactions as Hii

(i~1,2), while the number of links connecting two nodes via
inter-group interactions as H12 (or H21). Then, the total number of

links is H~H12zH11zH22.

At each time step, the event of updating strategy takes place

with probability v, otherwise link adjustment happens with

probability 1{v. Here, v governs the dynamical timescales

between strategy updating and topology evolution.

For the strategy updating, we adopt the Fermi dynamics [53,54]

on interdependent populations. Each player is allowed to play with

all its current neighbours, and obtains an accumulated payoff.

Player g in the whole population is selected at random,

subsequently player h is selected among g’s current neighbors.

Then, the strategy of focal player g tries to replace that of neighbor

h with probability p~
1

1ze{b(Pg{Ph)
, where Pg~

P2
i~1 Pi,g

represents the total payoff of player g (Pi,g is the payoff of player

g obtained from Group-i). b denotes the imitation intensity,

measuring how strongly the imitation behavior depends on the

payoff difference [55]. In this work, we consider the weak selection

(i.e., b%1), i.e., one phenotype is slightly advantageous, and the

effects of payoff differences are small, such that the evolutionary

dynamics are mainly driven by random fluctuations.

For the linking dynamics, each link is assigned a label

l[f1,2, � � � ,Hg as its name. Assume players will leave or break

interactions when they dissatisfy with the current situations. In

fact, the social interactions between players in evolve with time

based on aspiration payoff [30,31], reputation [56,57], and other

Figure 1. The schematic presentation for the linking adjust-
ment between interdependent populations. Two types of players,
C and D, are arranged on the nodes of two interactive groups: Group-1
and Group-2, respectively. If the dashed link is selected in the
topological evolution, it will be broken off with probability kCD. If the
dashed link is broken, one of the two players (C or D) occupying the
two extremes of the broken link is selected randomly. Subsequently,
the selected player (marked by red circle) switches to another player
who is not its current neighbor: it will choose the player in its own
group with probability a, and choose the player in the other group with
probability 1{a.
doi:10.1371/journal.pone.0088412.g001
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mechanisms [49,51]. To characterize the dynamics of structure

with various kinds of relationship, we introduce probability kXY to

estimate whether the XY -type link is broken. At each time of

linking dynamics, link lt of type XiYj is selected from the whole

interdependent populations at random (X ,Y[fC,Dg, i,j[f1,2g).
With probability 1{kXY , the selected link lt remains unchanged,

otherwise, the selected link is broken. If the link is broken, then one

node is selected randomly from the two, and it tries to find another

partner to connect with. With probability a, the neighbor is only

selected within the same group, otherwise, the potential neighbor

is chosen from the other group (see Fig. 1). Here, a is the intra-

group attaching bias between two interactive groups, which

reflects the propensity to rewire neighbors via intra-group

interactions.

It is worth noting that kXY is time-invariant and describes an

intrinsic quantity of the linking dynamics. It is shown that the

duration time of XY link obeys the geometric distribution with

parameter kXY [58,59]. Therefore, the inverse of kXY can be

taken as the the average interaction rate between X and Y .

Besides, the total number of links remains constant during the

linking dynamics of the interdependent populations as in [24,47].

2.2 Evolutionary dynamics on interdependent
populations

Denoted the types of link lt as T(lt)[fC1C1,C1D1,D1D1,
C1C2,C1D2,D1C2,D1D2,C2C2,C2D2, D2D2g. Then, the dynam-

ics of T(lt) is captured by a Markov chain with transition matrix

Q~½Q(XiYj )(ZmWn)�, whose entry Q(XiYj )(ZmWn) is the transition

probability that link lt of type XiYj transforms to link ltz1 of type

ZmWn. The transition matrix of such a Markov chain is given by

Q~(1=H)Pz½(H{1)=H�I10 (See Text S1).

Since the Markov chain is irreducible and aperiodic, there exists

a unique stationary distribution W~(WXiYj
) determined by

equation WQ~W [58],

WXiYj
~

1
2

g(xi,xj)a
xi,X xj,Y

kXY

(2{dXY ), i~j

g(xi,xj)(1{a)
xi,X xj,Y

kXY

, i=j,

8><
>: ð3Þ

where d indicates the Kronecker delta, xi,X is the frequency of

strategy X in Group-i, and g(xi,xj)~½
1

2
aS

xi,X xj,Y

kXY

(2{dXY )

z(1{a)S
xi,X xj,Y

kXY

�{1
is the normalization factor. The normal-

ized stationary distribution WXiYj
represents the fraction of XiYj

links in the whole population. Therefore, the average number of

XiYj links is HWXiYj
.

In the case of a fast rewiring process, i.e., w%1, the strategy

updating occurs less frequently than linking adjustment [24,25],

and the structure of groups is almost in the stationary state with the

distribution described by Eq. (3) when the strategy evolution

occurs. In this case, the average fitness function of strategies C and

D in Group-i is given by

fi,C~
G

Ni

½ae1
~MMxiz(1{a)e1

~MMxj �

fi,D~
G

Ni

½ae2
~MMxiz(1{a)e2

~MMxj �

8>><
>>: ð4Þ

where e1~(1,0), e2~(0,1), G~H:g(xi,xj), xi~(xi,C ,xi,D)T , and

M~

b{c

kCC

{c

kCD

b

kCD

0

kDD

0
BB@

1
CCA ð5Þ

is a modified payoff matrix of Eq. (2), whose payoff entry is

rescaled by the inverse of the breaking probability. Note that the

first term in the bracket of Eq. (4) represents the payoff obtained

via interactions in the same group, while the second term of Eq. (4)

represents the payoff obtained via interactions belonging to

different groups. Therefore, the payoff of each player in the

interdependent populations relies on the neighbors in not only the

same group but also the other group.

Besides, as shown in Fig. 2, the change of xi,C in Group-i is due

to the pairwise comparison between the focal player C in Group-i

and player D in Group-i (or Group-j), which yields the transition

probabilities

T+
i ~

Nixi,C

N1zN2

Nixi,D

N1zN2

1

1ze+b(fi,C{fi,D)

Tz
j ~

Nixi,D

N1zN2

Njxj,C

N1zN2

1

1ze
{b(fj,C{fi,D)

T{
j ~

Nixi,C

N1zN2

Njxj,D

N1zN2

1

1ze
{b(fj,D{fi,C )

ð6Þ

where Ti(Ti[fTz
i ,T{

i g) is the transition probability caused by the

pairwise comparison occurring in the same group, while

Tj(Tj[fTz
j ,T{

j g) is the transition probability caused by the

pairwise comparison occurring in different groups.

For a large population, the stochastic process can be well

approximated by a set of stochastic differential equations referring

to Langevin dynamics [60]. To the pairwise comparison process

occurring on interdependent populations, the Langevin dynamics

yields _xxi,C~a(xi,C)zb(xi,C)j, where a(xi,C)~(Tz
i zTz

j ){

(T{
i zT{

j ), b(xi,C) is the effective terms, and j is the uncorrelated

Gaussian noise. Since minfN1,N2g&maxfL1,L2g, the stochastic

term vanishes [61,62], which leads to

Figure 2. An illustrative transition probability of interdepen-
dent populations. The left: probability that the number of C players
in Group-i increases from k to kz1 is Tz, which is caused by a player
C in Group-i (a) (or Group-j (b)) replacing a player D in Group-i. The
right: probability that the number of C players in Group-i decreases
from k to k{1 is T{, which is caused by a player C in Group-i replaced
by a player D in Group-i (c) (or Group-j (d)).
doi:10.1371/journal.pone.0088412.g002
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_xxi,C~(Tz
i {T{

i )z(Tz
j {T{

j )

~
Nixi,C

N1zN2

Nixi,D

N1zN2
tanh(b

fi,C{fi,D

2
)

z
Nixi,D

N1zN2

Njxj,C

N1zN2

1

1ze
{b(fj,C{fi,D)

{
Nixi,C

N1zN2

Njxj,D

N1zN2

1

1ze
{b(fj,D{fi,C )

:

ð7Þ

Especially, when N1~N2, the strategy evolution degenerates to

an extension of the replicator dynamics, which yields

_xxi,C~2kxi,C(1{xi,C)(d1xi,Czd2xj,Cz
d5

a
)z

1

8
(xj,C{xi,C)

zkxj,C(1{xi,C)(d3xi,Czd4xj,Cz
d5

a
)

zkxi,C(1{xj,C)(d4xi,Czd3xj,Cz
d5

a
)

ð8Þ

where k~
bG

16N1
is a constant factor influencing the timescale

only. Besides, d1~a(b{c)(
1

kCC

{
1

kCD

), d2~(1{a)(b{c)

(
1

kCC

{
1

kCD

), d3~
(1{a)(b{c)

kCC

z
(1{a)c

kCD

{
ab

kCD

, d4~
a(b{c)

kCC

z
ac

kCD

{
(1{a)b

kCD

, d5~{
c

kCD

a. Here, we assume N1~N2 for

simplicity without loss of generality, and the numerical results for

N1=N2 are consistent with this simplification.

Note that the unit square 0ƒx1,C ,x2,Cƒ1 is the invariant set of

2-D plane. From Eq. (8), we obtain three possible equilibria

E1~(0,0), E2~(1,1), and E3~(x�1,C ,x�2,C) (x�1,C~x�2,C~

{
2d5

a(d1zd2zd3zd4)
). For such three equilibria, the Jacobian

matrix J of (8) has the form

J~
J11 J12

J21 J22

� �
,

where J11~k½(1{2x1,C)((2d1z2d2zd3zd4)x1,Cz3
d5

a
)z(2d1

zd3zd4)x1,C(1{x1,C)�{ 1

8
, J12~2kd2x1,C(1{x1,C)z

1

2
½(1{

2x1,C)((d3zd4)x1,Cz
d5
a )z(d3zd4)x1,C(1{x1,C)�z 1

8
, J21~

2kd2x2,C(1{x2,C)z
1

2
½(1{2x2,C)((d3zc4)x2,Cz

d5

a
)z(d3zd4)

x2,C(1{x2,C)�z 1

8
, J22~k½(1{2x2,C)((2d1z2d2zd3zd4)x2,C

z3
d5

a
)z(2d1zd3zd4)x2,C(1{x2,C)�{ 1

8
. The corresponding

eigenvalues of Jacobian matrix J at E1, E2 and E3 are listed in

Table 1.

When
b{c

kCC

w

b

kCD

, d5v0 and d5v
1

8k
, which implies that the

eigenvalues of Jacobian matrix J are both negative for E1;

d1zd5w0 and 2k
1

a
(d1zd5)z

1

4
w0, which implies that both the

the eigenvalues of Jacobian matrix J are negative for E2.

Therefore, both E1 and E2 are stable. For the interior equilibrium

E3, when (2a{1)w{
1

8k

d1

d5(d1zd5)
, the eigenvalues of Jacobian

matrix J are both positive for {4k
1

a

d5

d1
(d1zd5)w0 and

{2k
2a{1

a

d5

d1
(d1zd5){

1

4
w0, which indicates that the eigen-

values of Jacobian matrix J are positive for E3. Therefore, when

awa� (a�~
1

2
{

d1

16kd5(d1zd5)
), E3 is an unstable equilibrium.

Results

Let us now consider how the co-evolution of strategy and link

dynamics affects cooperation on the interdependent populations.

When
b

c
w1z

kCC

kCD{kCC

and awa� (a�~
1

2
{

d1

16kd5(d1zd5)
),

the eigenvalues of the Jacobian matrix in Eq. (8) are negative for

both E1 and E2, yet positive for E3. Thus, both E1 and E2 are

stable, and E3 is unstable, which leads to the final state converging

to E1 or E2. Namely, Eq. (8) in the whole group is composed of all-

C (E2) or all-D (E1) (See Fig. 3). On the other hand, when ava�,
E3 becomes a saddle-point. Therefore, strategies C and D are

bistable on the interdependent populations.

Besides, the equilibrium E3~(x�1,C ,x�2,C) determines the attrac-

tion basin of cooperation (x�1,C ,1�|(x�2,C ,1�. If the initial

condition, xi,C(0), is more than the critical value of x�i,C (i.e.,

x1,C(0)wx�1,C and x2,C(0)wx�2,C ), then system (8) converges to all-

C; otherwise, it reaches all-D. The effect of initialization on the

frequency of strategy C in both groups is shown in Fig. 4. In other

Figure 3. Phase portrait of Eq. (5) under weak selection. The
direction of the velocity field is denoted by arrows. We set N1~150,
N2~100, L1~6, L2~9, v~0:01, and b~0:1. Under the condition
b

c
w1z

kCC

kCD{kCC

and awa� (b~2, c~1, kCC~0:2, kCD~0:6, kDD~0:8

and a~0:7), the velocity field converges to the corner equilibrium E1 or
E2 independent of the initialization.
doi:10.1371/journal.pone.0088412.g003

Table 1. Eigenvalues of Jacobin matrix J at E1, E2 and E3.

E1
4k

d5

a
2k

d5

a
{

1

4

E2
{4k

1

a
(d1zd5) {2k

1

a
(d1zd5){

1

4

E3
{4k

1

a

d5

d1

(d1zd5) {2k
2a{1

a

d5

d1

(d1zd5){
1

4

doi:10.1371/journal.pone.0088412.t001
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words, the PD game with link dynamics corresponds to a

coordination game in well-mixed populations, where both

cooperation and defection are best replies to themselves [63].

Thus, cooperation is stable only when

b

c
w1z

kCC

kCD{kCC

awa�

8<
:

:

ð9Þ

Note that Eq. (9) is necessary for emerging cooperation, namely,

the co-evolution of strategy and link dynamics can favor

cooperation if the benefit-to-cost ratio b=c exceeds lz1

(l~
kCC

kCD{kCC

). This condition is intuitive: the critical benefit-

to-cost ratio is a decreasing function of kCD but an increasing

function of kCC . Indeed, the evolution of cooperation is promoted

if C{D links are more fragile than C{C links, which coincides

with the results in [24,64]. Besides, quantity l measures the

propensity for cooperators to form clusters, and

kCD=kCC~(1=l)z1 characterizes the fragility ratio between

C{D link and C{C link. Decreasing l allows cooperators to

spread more effectively [22]. In particular, when l?0, a

cooperator is more likely to play with cooperators rather than

defectors, and easier to form clusters. In this sense, l illustrates

how likely a cooperator is to interact with a cooperator.

Figure 4. Simultaneous time-evolution of the frequency of cooperator in Group-1 and Group-2 under weak selection. Initially, strategy
C is randomly distributed in Group-1 and Group-2. For all plots, we set N1~150, N2~100, L1~6, L2~9, v~0:01, b~0:1, b~2, c~1, kCC~0:2,
kCD~0:6, kDD~0:8 and a~0:7. (a) When x1,C (0)~0:35wx�1,C~0:33 and x2,C(0)~0:65wx�2,C~0:33, Eq. (5) converges to the state of all-C

independent of the initialization. (b) When x1,C (0)~0:4wx�1,C~0:33, but x2,C(0)~0:2vx�2,C~0:33, Eq. (5) converges to the state of all-D.

doi:10.1371/journal.pone.0088412.g004

Figure 5. Final fraction of cooperators as a function of the
intra-group bias a. We set N1~150, N2~100, L1~6, L2~9, v~0:01,
b~0:1, b~2, c~1, kCC~0:2, kCD~0:6 and kDD~0:8. The analytical
value of a�~0:65, which is marked out by red arrow in the plot. Each
data point is averaged over 30 independent runs, and in each
realization, we set 106 time steps to ensure the evolution of dynamics
in steady states. It is shown that there exists a moderate intra-group
bias leading to maximum cooperation level in the whole populations.
doi:10.1371/journal.pone.0088412.g005

Figure 6. Final fraction of cooperators as a function of initial
fraction of cooperators with different kCC . According to Eq. (8), we
obtain that when kCC~0:1,0:2,0:3, the analytical results of
x�C~0:208,0:5,0:9375 respectively, which are marked out by arrows in
the plot. For all the three line in the plot, we set N1~150, N2~100,
L1~6, L2~9, v~0:01, b~0:1, b~1:8, c~1, a~0:6, kCD~0:7 and
kDD~0:8. The simulation results show that the initial frequency of
cooperators x�C increases with increasing of kCC . Large kCC narrows the
attraction basin of cooperation, which makes the flourishing of
cooperation difficult.
doi:10.1371/journal.pone.0088412.g006
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More interestingly, there exists a lower bound of the intra-group

bias between two groups for emerging cooperation. The intra-

group bias between two groups hinders the invasion of defectors

on the single group, thereby influences the evolution of

cooperation. When the value of ava�, the interior equilibrium

becomes a saddle point. Thus, small value of a is excluded to the

model of coordination game, and the cooperation will never

emerges when a is smaller than the critical value a�. For instance,

with a small value of a, a defector on Group-1 might take

advantage from the vicinity of cooperators on Group-2, because

the corresponding interactions on Group-2 may supply enough

resource to be exploited, which results in the prosperous of

defection. On the other hand, big intra-group bias also ignores the

inter-group interactions between two interdependent groups. In

this way, increasing a narrows the attraction basin of cooperation

(x�1,C ,1�|(x�2,C ,1�, and makes it difficult for cooperation to gain a

foothold in the population. Therefore, the intra-group bias favors

the cooperation for players are likely to switching to attach

neighbors within the same group. However, too large intra-group

bias hinders the prosperity of cooperation, allowing the moderate

intra-group bias maximizes the cooperation level (See Fig. 5).

Till now, we have shown a simple rule telling how cooperation

emerges with linking dynamics. Although, condition (9) guarantees

the necessity of emerging cooperation, it’s not sufficient to make

cooperation advantageous. To make cooperators gain a foothold

in the population of coordination game, the initial frequency of

cooperators in the whole group should exceeds the unstable

interior fixed point, which equals

x�C~x�1,C~x�2,C~
NC

N
&

ckCC

(b{c)(kCD{kCC)
: ð10Þ

Similarly, x�C is a decreasing function of kCD and an increasing

function of kCC . Thus, decreasing kCC and increasing kCD

enlarges the attraction basin of cooperation (x�1,C ,1�|(x�2,C ,1�, and

makes it easier for cooperation thrives. Fig. 6 shows that the

critical value of unstable interior fixed point x�C increases with

increasing kCC , i.e. a larger kCC leads to the larger x�C , which

makes the flourishing of cooperation more difficult. Increasing the

value of kCC to 0:4, cooperators are never advantageous compared

to defectors. Thus, cooperators are never favored by selection.

Besides, the critical unstable interior fixed point x�C decreases with

increase of kCD (see Fig. 7), i.e., a larger kCD leads to the smaller

x�C , which is beneficial to the flourishing of cooperation.

Contrarily, a smaller kCD prevents the flourishing of cooperation.

Specially, when decreases kCD to 0:4, cooperators are never

advantageous compared to defectors.

Conclusions

To sum up, we have established a microscopic model on the co-

evolutionary dynamics of cooperation and interdependent popu-

lations. Under the assumption of fast structure evolving, we

analytically arrived in the macro-dynamics at the population level:

an extended replicator equation which incorporates both the

interactions of groups and the strategy evolution. Based on this

extended equation, it is shown that the less the fragile cooperator-

cooperator links (or the more the fragile cooperator-defector links),

the easier the emergence of cooperation. This result is consistent

with previous findings that assortments of cooperators are likely to

invade a defector population and escape from the exploitation of

defector mutants [24,25,47], which paves the way for both

emergence and stabilization of cooperation.

Interestingly, we have revealed that the dynamical interactions

on interdependent populations can greatly affect the evolution of

cooperation: cooperation can only emerge when intra-group bias

is big enough. This is intuitive in the sense that intra-group bias

can lead to cooperation [35,36], which indicates that it might be

more likely to establish neighbors within the same group.

However, counterintuitive results also arise: it is unlikely that the

more possible individuals establishing neighbors within the same

group, the higher cooperation level is. In fact, too large intra-

group switching bias inhibits cooperation [42,43]. This reminds us

with the migration effect: Neither too large nor too small mutation

rate benefits cooperation. Thus, it would be beneficial for

cooperators to move from time to time in order to hunt/establish

a paradise to live, since this accidental moving can help the

cooperators to escape from the nasty environment consisting of

mainly defectors. Yet large migration rates make the population

approximately well-mixed destroying the cooperation clustering,

which deters cooperation. The switching rate of attaching

neighbors outside the group can be viewed as the migration rate,

thus leads to moderate switching rate maximizing cooperation.

Our work shed light on how the dynamic of interdependent have

an impact on the cooperation. This insight might also be

constructive to other collective behaviors such as swarming and

coordination and opinion formation. Works along those lines are

in progress.

Supporting Information

Text S1 Embedded Markov chain approximation for
linking dynamics.

(PDF)

Figure 7. Final fraction of cooperators as a function of initial
fraction of cooperators with different kCD. According to Eq. (8), we
obtain that when kCD~0:6,0:8, the analyt ical results of
x�C~0:625,0:0:417 respectively, which are marked out by arrows in
the plot. For all the three line in the plot, we set N1~150, N2~100,
L1~6, L2~9, v~0:01, b~0:1, b~1:8, c~1, a~0:6, kCC~0:2 and
kDD~0:8. The simulation results show that the initial frequency of
cooperators x�C decreases with increasing of kCD, i.e., large kCD enlarges
the attraction basin of cooperation and promotes the flourishing of
cooperation.
doi:10.1371/journal.pone.0088412.g007
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